Field Evaluation of Novel Spatial Repellent Controlled Release Devices (CRDs) against Mosquitoes in an Outdoor Setting in the Northern Peruvian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Mosquito Collections
2.3. Devices and Active Ingredient
Statistical Analysis
3. Results
4. Discussion
5. Disclaimer
6. Copyright Statement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Introduction
- Four measurement stations (separating distances are negligible);
- Five human collectors;
- Six consecutive measurement time periods of 30 min each day;
- Four treatments: three with repellent (same doses) and a control;
- HLC broken down by subfamily (Anophelinae and Culicinae).
Appendix A.2. Data Description
Control | Mean | Median | sd | n |
---|---|---|---|---|
Control | 33.39 | 25 | 25.43 | 66 |
Repellent | 19.99 | 17 | 12.90 | 198 |
Appendix A.2.1. Time of Day Condition
- 1800–1830
- 1900–1930
- 2000–2030
- 2100–2130
- 2200–2230
- 2300–2330
Hour | Mean | Median | sd | Obs |
---|---|---|---|---|
1800–1830 | 26.18 | 19.0 | 22.81 | 44 |
1900–1930 | 30.05 | 26.0 | 20.98 | 44 |
2000–2030 | 24.59 | 23.5 | 15.46 | 44 |
2100–2130 | 18.45 | 15.5 | 11.79 | 44 |
2200–2230 | 21.75 | 16.0 | 16.48 | 44 |
2300–2330 | 19.02 | 16.0 | 15.34 | 44 |
Appendix A.2.2. Collectors
Collector | Mean | Median | Std Dev | Obs |
---|---|---|---|---|
Danter | 28.65 | 22.0 | 22.29 | 66 |
Josias | 17.30 | 15.0 | 9.09 | 66 |
Juan | 20.50 | 16.5 | 13.20 | 42 |
Renan | 26.04 | 25.5 | 10.70 | 24 |
Wilmer | 24.89 | 18.0 | 21.96 | 66 |
Danter | Josias | Juan | Renan | Wilmer | |
---|---|---|---|---|---|
CONTROL | 24 | 0 | 24 | 0 | 18 |
T1-CDR-IA | 0 | 0 | 18 | 24 | 24 |
T2-CRD-IA | 18 | 24 | 0 | 0 | 24 |
T3CDR-IA | 24 | 42 | 0 | 0 | 0 |
Appendix A.2.3. Position (Station)
Position | Mean | Median | n |
---|---|---|---|
1 | 22.94 | 19 | 66 |
2 | 23.56 | 20 | 66 |
3 | 19.79 | 18 | 66 |
4 | 27.08 | 19 | 66 |
Appendix A.2.4. Mosquito Subfamilies
Appendix A.3. Effect of Repellent
Treatment | Std Dev |
---|---|
CONTROL | 0.73 |
T1-CDR-IA | 0.66 |
T2-CRD-IA | 0.65 |
T3CDR-IA | 0.60 |
Appendix A.3.1. ANOVA
- : log HLC of experimental Unit “j” for Treatment “i”;
- : Global Mean of log HLC;
- : Mean of log HLC’s for treatment “i”;
- : Error of experimental Unit “j” in Treatment “i”.
Degrees of Freedom | Sum of Squares | Mean of Sum of Squares | F Value | PR (>F) | |
---|---|---|---|---|---|
Treatment | 3 | 11.41 | 3.803 | 8.678 | 1.65 × 10−6 *** |
Residuals | 260 | 113.95 | 0.438 |
Appendix A.3.2. Comparison of Treatments Effects
CONTROL | T1-CRD-IA | T2-CRD-IA | T3-CRD-IA |
---|---|---|---|
0.3343 | −0.0665 | −0.2360 | −0.0318 |
Appendix A.3.3. Interaction Effects
- : Log HLC within experimental unit “k” for Treatment “i” and Hour “j”;
- : Global Mean of Log HLC;
- : Effect of treatment “i” on Log HLC;
- : Effect of Block “j” on Log HLC;
- : Effect of interaction of Treatment “i” and Hour “j” on Log HLC;
- : Error of experimental unit “k” in Treatment “i” and Hour “j” on Log HLC.
Degrees of Freedom | Sum of Squares | Mean of Sum of Squares | F Value | PR (>F) | |
---|---|---|---|---|---|
Treatment | 3 | 11.41 | 3.803 | 9.114 | 9.79 × 10−6 *** |
Hour | 5 | 8.12 | 1.624 | 3.892 | 0.00207 ** |
Treatment:Hour | 15 | 5.67 | 0.378 | 0.906 | 0.55818 |
Residuals | 240 | 100.15 | 0.417 |
Degrees of Freedom | Sum of Squares | Mean of Sum of Squares | F Value | PR (>F) | |
---|---|---|---|---|---|
Treatment | 1 | 7.11 | 7.113 | 16.273 | 9.45 × 10−5 *** |
Hour | 2 | 4.36 | 2.178 | 4.982 | 0.00827 ** |
Treatment:Collector | 2 | 5.19 | 2.597 | 5.942 | 0.00342 ** |
Residuals | 126 | 55.08 | 0.437 |
Appendix A.4. Analysis by Subfamily
Appendix A.4.1. Anophelinae
Degrees of Freedom | Sum of Squares | Mean of Sum of Squares | F Value | PR (>F) | |
---|---|---|---|---|---|
Treatment | 3 | 25.7 | 8.574 | 3.641 | 0.0133 * |
Residuals | 260 | 612.3 | 2.355 |
Appendix A.4.2. Culicinae
Degrees of Freedom | Sum of Squares | Mean of Sum of Squares | F Value | PR (>F) | |
---|---|---|---|---|---|
Treatment | 3 | 15.38 | 5.126 | 10.35 | 1.87 × 10−6 *** |
Residuals | 260 | 128.82 | 0.495 |
Appendix B
Appendix B.1. Controlled Release Process and Spatial Active Ingredient (AI) Distribution Model
Appendix B.2. Currents Crossing the Domain
Appendix B.3. Currents Creating Vortices in the Domain
Appendix B.4. Spatial AI Distribution Model
References
- Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet 2018, 21, 1608–1621. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debboun, M.; Strickman, D.A.; Klun, J.A. Repellents and the military: Our first line of defense. J. Am. Mosq. Control Assoc. 2005, 21, 4–6. [Google Scholar] [CrossRef]
- Charlwood, J.D.; Nenhep, S.; Protopopoff, N.; Sovannaroth, S.; Morgan, J.C.; Hemingway, J. Effects of the spatial repellent metofluthrin on landing rates of outdoor biting anophelines in Cambodia, Southeast Asia. Med. Vet. Entomol. 2016, 30, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Achee, N.L.; Bangs, M.J.; Farlow, R.; Killeen, G.F.; Lindsay, S.; Logan, J.G.; Zwiebel, L.J. Spatial repellents: From discovery and development to evidence-based validation. Malar. J. 2012, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Syafruddin, D.; Asih, P.B.; Rozi, I.E.; Permana, D.H.; Nur Hidayati, A.P.; Syahrani, L.; Liu, F. Efficacy of a Spatial Repellent for Control of Malaria in Indonesia: A Cluster-Randomized Controlled Trial. Am. J. Trop. Med. Hyg. 2020, 103, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Syafruddin, D.; Bangs, M.J.; Sidik, D.; Elyazar, I.; Asih, P.B.; Chan, K.; Ishak, H. Impact of a spatial repellent on malaria incidence in two villages in Sumba, Indonesia. Am. J. Trop. Med. Hyg. 2014, 91, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Hill, N.; Zhou, H.N.; Wang, P.; Guo, X.; Carneiro, I.; Moore, S.J. A household randomized, controlled trial of the efficacy of 0.03% transfluthrin coils alone and in combination with long-lasting insecticidal nets on the incidence of Plasmodium falciparum and Plasmodium vivax malaria in Western Yunnan Province, China. Malar. J. 2014, 13, 208. [Google Scholar] [CrossRef] [Green Version]
- Khater, E.; Zhu, D.; Bibbs, C.; Xue, R.; Peper, S. Insecticide efficacy of spatial repellent compound-metofluthrin against susceptible and resistant strains of aedes aegypti. J. Fla. Mosq. Control Assoc. 2021, 68, 86–91. [Google Scholar] [CrossRef]
- Permana, D.H.; Zubaidah, S.; Syahrani, L.; Asih, P.B.S.; Syafruddin, D.; Rozi, I.E.; Hidayati, A.P.N.; Kosasih, S.; Dewayanti, F.K.; Rachmawati, N.; et al. Impact of a spatial repellent product on Anopheles and non-Anopheles mosquitoes in Sumba, Indonesia. Malar. J. 2022, 21, 166. [Google Scholar] [CrossRef]
- Ochomo, E.O.; Gimnig, J.E.; Bhattarai, A.; Samuels, A.M.; Kariuki, S.; Okello, G.; Abong’O, B.; Ouma, E.A.; Kosgei, J.; Munga, S.; et al. Evaluation of the protective efficacy of a spatial repellent to reduce malaria incidence in children in western Kenya compared to placebo: Study protocol for a cluster-randomized double-blinded control trial (the AEGIS program). Trials 2022, 23, 260. [Google Scholar] [CrossRef] [PubMed]
- Bernier, U.R.; Kline, D.L.; Vazquez-Abad, A.; Perry, M.; Cohnstaedt, L.W.; Gurman, P.; D’Hers, S.; Elman, N.M. A combined experimental-computational approach for spatial protection efficacy assessment of controlled release devices against mosquitoes (Anopheles). PLoS Neglected Trop. Dis. 2019, 13, e0007188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, J.C.; Simubali, L.; Mudenda, T.; Cardol, E.; Bernier, U.R.; Vazquez, A.A.; Thuma, P.E.; Norris, D.; Perry, M.; Kline, D.L.; et al. Controlled release spatial repellent devices (CRDs) as novel tools against malaria transmission: A semi-field study in Macha, Zambia. Malar. J. 2018, 17, 437. [Google Scholar] [CrossRef]
- Need, J.T.; Rogers, E.J.; Phillips, I.A.; Falcon, R.; Fernandez, R.; Carbajal, F.; Quintana, J. Mosquitoes (Diptera: Culicidae) Captured in the Iquitos Area of Peru. J. Med. Entomol. 1993, 30, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Peck, G.W.; Castro-Llanos, F.; López-Sifuentes, V.M.; Vásquez, G.M.; Lindroth, E. Comparative Analysis of Mosquito Trap Counts In the Peruvian Amazon: Effect of Trap Type and Other Covariates On Counts and Diversity. J. Am. Mosq. Control Assoc. 2018, 34, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, A.C.; Reiner, R.C.; Elson, W.H.; Astete, H.; Guevara, C.; Del Aguila, C.; Bazan, I.; Siles, C.; Barrera, P.; Kawiecki, A.B.; et al. Efficacy of a spatial repellent for control of Aedes -borne virus transmission: A cluster-randomized trial in Iquitos, Peru. Proc. Natl. Acad. Sci. USA 2022, 119, e2118283119. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Saavedra, M.P.; Bickersmith, S.A.; Lainhart, W.; Tong, C.; Alava, F.; Vinetz, J.M.; Conn, J.E. Implications for changes in Anopheles darlingi biting behaviour in three communities in the peri-Iquitos region of Amazonian Peru. Malar. J. 2015, 14, 290. [Google Scholar] [CrossRef] [Green Version]
- Dame, D.A.; Meisch, M.V.; Lewis, C.N.; Kline, D.L.; Clark, G.G. Field Evaluation of Four Spatial Repellent Devices Against Arkansas Rice-Land Mosquitoes. J. Am. Mosq. Control Assoc. 2014, 30, 31–36. [Google Scholar] [CrossRef]
- Ogoma, S.B.; Moore, S.J.; Maia, M.F. A systematic review of mosquito coils and passive emanators: Defining recommendations for spatial repellency testing methodologies. Parasites Vectors 2012, 5, 287. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Efficacy Testing of Spatial Repellents; WHO: Geneva, Switzerland, 2013; p. 58.
- Buhagiar, T.S.; Devine, G.J.; Ritchie, S.A. Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queensland. Parasites Vectors 2017, 10, 274. [Google Scholar] [CrossRef]
- Bibbs, C.S.; Kline, J.; Kline, D.L.; Estaver, J.; Strohschein, R.; Allan, S.A.; Batich, C.D. Olfactometric comparison of the volatile insecticide, metofluthrin, through behavioral responses of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, K.; Mori, T.; Iwasaki, T.; Sugano, M.; Shono, Y.; Matsuo, N. Metofluthrin: A Potent New Synthetic Pyrethroid with High Vapor Activity against Mosquitoes. Biosci. Biotechnol. Biochem. 2004, 68, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, J.R.; Shono, Y.; Iwasaki, T.; Ishiwatari, T.; Spero, N. Field Efficacy of Metofluthrin—A New Mosquito Repellent. In Proceedings of the Fifth International Conference on Urban Pests, Singapore, 11–13 July 2005. [Google Scholar]
- Lucas, J.R.; Shono, Y.; Iwasaki, T.; Ishiwatari, T.; Spero, N.; Benzon, G.U.S. Laboratory and field trials of metofluthrin (SumiOne®) emanators for reducing mosquito biting outdoors. J. Am. Mosq. Control Assoc. 2007, 23, 47–54. [Google Scholar] [CrossRef]
- Xue, R.D.; Qualls, W.A.; Smith, M.L.; Gaines, M.K.; Weaver, J.H.; Debboun, M. Field evaluation of the Off! Clip-on Mosquito Repellent (metofluthrin) against Aedes albopictus and Aedes taeniorhynchus (Diptera: Culicidae) in northeastern Florida. J. Med. Entomol. 2012, 49, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Achee, N.; Masuoka, P.; Smith, P.; Martin, N.; Chareonviryiphap, T.; Polsomboon, S.; Grieco, J. Identifying the effective concentration for spatial repellency of the dengue vector Aedes aegypti. Parasites Vectors 2012, 5, 300. [Google Scholar] [CrossRef] [Green Version]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
Species | No. Collected | Mosquito/Man/Hour | |
---|---|---|---|
Control | CRD-AI | ||
Anopheline | |||
Anopheles (Nyssorhynchus) benarrochi | 189 | 0.62 | 0.75 |
Anopheles (Nys.) darlingi | 455 | 1.50 | 1.80 |
Anopheles (Nys.) konderi s.l. | 59 | 0.23 | 0.22 |
Anopheles (Nys.) sp. | 41 | 0.21 | 0.14 |
Anopheles (Nys.) triannulatus | 30 | 0.14 | 0.11 |
Anopheles (Anopheles) forattinii | 109 | 0.42 | 0.41 |
Anopheles (Ano.) peryassui | 177 | 1.06 | 0.54 |
Culicine | |||
Aedes (Ochlerotatus) fulvus | 352 | 1.24 | 1.36 |
Aedes (Och.) serratus | 419 | 1.85 | 1.50 |
Coquillettidia (Rhychotaenia) venezuelensis | 471 | 2.06 | 1.69 |
Coquillettidia (Rhy.) nigricans | 9 | - | 0.05 |
Coquillettidia spp. | 4 | 0.03 | 0.01 |
Culex (Culex) coronator | 1143 | 8.42 | 2.96 |
Culex (Cux.) quinquefasciatus | 23 | 0.03 | 0.11 |
Culex (Melanoconium) gnomatus | 8 | 0.08 | 0.02 |
Culex (Mel.) ocossa | 3 | 0.02 | 0.01 |
Culex (Mel.) pedroi | 121 | 1.00 | 0.28 |
Culex (Mel.) portesi | 3 | 0.03 | 0.01 |
Culex (Mel.) sp. 1 | 58 | 0.45 | 0.14 |
Culex (Mel.) spissipes | 9 | 0.09 | 0.02 |
Culex (Mel.) theobaldi | 768 | 4.65 | 2.33 |
Culex (Mel.) vomerifer | 24 | 0.21 | 0.05 |
Johnbelkinia longipes | 1 | 0.02 | - |
Mansonia (Mansonia.) indubitans/titillans | 233 | 1.48 | 0.68 |
Mansonia (Man.) humeralis | 1 | - | 0.01 |
Psorophora (Grabhania) cingulata | 689 | 3.36 | 2.36 |
Psorophora (Janthinosoma) albigenu | 668 | 3.48 | 2.21 |
Psorophora (Janthinosoma) ferox | 95 | 0.70 | 0.25 |
Total | 6162 | 33.39 | 19.99 |
Taxonomic Group | CRD 1 | CRD 2 | CRD 3 | Control |
---|---|---|---|---|
Anophelinae | 4.83 ± 5.32 | 3.15 ± 4.04 | 3.89 ± 6.16 | 4.18 ± 4.22 |
Culicinae | 16.03 ± 10.49 | 14.82 ± 11.53 | 17.24 ± 9.82 | 29.21 ± 23.77 |
Total Mosquitoes | 20.86 ± 12.34 | 17.97 ± 13.04 | 21.14 ± 13.27 | 33.39 ± 25.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Mendoza, C.; López-Sifuentes, V.M.; Vásquez, G.M.; Stoops, C.A.; Fisher, M.L.; Bernier, U.R.; Perry, M.; Mollica, J.; Coltzau, D.A.; Gurman, P.; et al. Field Evaluation of Novel Spatial Repellent Controlled Release Devices (CRDs) against Mosquitoes in an Outdoor Setting in the Northern Peruvian Amazon. Trop. Med. Infect. Dis. 2022, 7, 372. https://doi.org/10.3390/tropicalmed7110372
Flores-Mendoza C, López-Sifuentes VM, Vásquez GM, Stoops CA, Fisher ML, Bernier UR, Perry M, Mollica J, Coltzau DA, Gurman P, et al. Field Evaluation of Novel Spatial Repellent Controlled Release Devices (CRDs) against Mosquitoes in an Outdoor Setting in the Northern Peruvian Amazon. Tropical Medicine and Infectious Disease. 2022; 7(11):372. https://doi.org/10.3390/tropicalmed7110372
Chicago/Turabian StyleFlores-Mendoza, Carmen, Victor M. López-Sifuentes, Gissella M. Vásquez, Craig A. Stoops, Michael L. Fisher, Ulrich R. Bernier, Melynda Perry, Juan Mollica, Damián A. Coltzau, Pablo Gurman, and et al. 2022. "Field Evaluation of Novel Spatial Repellent Controlled Release Devices (CRDs) against Mosquitoes in an Outdoor Setting in the Northern Peruvian Amazon" Tropical Medicine and Infectious Disease 7, no. 11: 372. https://doi.org/10.3390/tropicalmed7110372
APA StyleFlores-Mendoza, C., López-Sifuentes, V. M., Vásquez, G. M., Stoops, C. A., Fisher, M. L., Bernier, U. R., Perry, M., Mollica, J., Coltzau, D. A., Gurman, P., D’hers, S., & Elman, N. M. (2022). Field Evaluation of Novel Spatial Repellent Controlled Release Devices (CRDs) against Mosquitoes in an Outdoor Setting in the Northern Peruvian Amazon. Tropical Medicine and Infectious Disease, 7(11), 372. https://doi.org/10.3390/tropicalmed7110372