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Abstract: In spite of ongoing eradication programs, helminth infections are still a medical issue in
Ghana. For follow-up assessments on the decline of regional helminth infections, historic baseline
prevalence values obtained with standardized diagnostic procedures can be helpful. In this retrospec-
tive cross-sectional study, real-time PCR targeting the nematodes Ancylostoma spp. (ITS2), Ascaris
lumbricoides (ITS1), Enterobius vermicularis (ITS1), Necator americanus (ITS2), Strongyloides stercoralis
(18S rRNA) and Trichuris trichiura (18S rRNA), the trematodes Schistosoma spp. (ITS2) as well as the
cestodes Hymenolepis nana (ITS1), Taenia saginata (ITS1) and Taenia solium (ITS1) was applied with 2046
DNA eluates from stool samples of Ghanaian children from the Ashanti region collected between
2007 and 2008 in order to retrospectively define prevalence values. The overall prevalence was low
with 3.8% (n = 77) and only 0.1% (n = 2) double infections with helminths were recorded. The three
most frequently detected enteric helminth species comprised 2% S. stercoralis (n = 41), 0.8% H. nana
(n = 16), and 0.7% N. americanus (n = 14), while only sporadic infection events were recorded for
other helminth species comprising 0.1% E. vermicularis (n = 2), 0.1% Schistosoma spp. (n = 2), 0.1%
T. saginata (n = 1) and 0.1% T. trichiura (n = 1). A. lumbricoides, Ancylostoma spp. and T. solium were
not detected at all. In conclusion, the retrospective assessment suggests a low prevalence of enteric
helminth infections in Ghanaian children from the Ashanti Region within the assessment period
between 2007 and 2008.

Keywords: helminth; epidemiology; diarrhea; Ascaris; hookworm; Strongyloides; Trichuris; Taenia;
Schistosoma; Hymenolepis; Enterobius; Ghana

1. Introduction

Intestinal helminth infections are common, particularly in resource-limited tropical
settings [1,2] where access even to baseline hygiene precautions such as hand washing with
soap is sometimes scarcely available [3]. In addition, meta-analyses have suggested the
association of specific helminth infections with age, sex, co-infections, previous treatment,
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and lifestyle [4,5]. In the tropics, co-infections with different helminths as well as co-
infections of helminths and other severe infections are quite frequently observed, making
mutual supportive interactions likely [6–10]. In contrast, the worm burden declines in
settings showing socio-economic development where systematic deworming programs are
implemented [11].

From the public health perspective, deworming programs are useful because intestinal
helminth infections have been reported to be associated with stunted growth, cognitive
impairment [12,13], likely effects even on adult productivity [14] as well as with pregnancy
and birth complications [15,16]. As a complication of hookworm infections in Ghana,
resistance determinants against benzimidazoles are common [17], which might partially ex-
plain the varying effectiveness of benzimidazole-based treatment as observed in Ghanaian
patients [18,19].

For West African Ghana, the prevalence of multiple helminth infections has been re-
ported. In Ghanaian individuals, infection rates with intestinal helminths have been shown
to be in the range of 2–22% [20–23] with declining prevalence over recent decades [24],
urogenital schistosomiasis in the range of 2.5–12% [20,24], while intestinal schistosomiasis
was regionally reported for more than 90% of assessed Ghanaian children [25] but in less
than 2% for other Ghanaian patients [22]. Swimming in surface water is an independent
risk factor for schistosomiasis in Ghana [26,27], and reinfection rates are high with up
to 40% within six months in some areas [28]. In historic assessments covering the pre-
vious decades, very high infection rates >50% were quite common for schistosomiasis
in Ghana [29–33]. In exposed individuals such as waste handlers, prevalence rates for
soil-transmissible helminths of 5% have been reported [34], and prevalence rates >20%
were observed in farmers [35]. In the case of Ghanaian farmers, wastewater irrigation
increases the risk of intestinal helminth infections by factor 3 [36]. Cases of taeniasis have
been detected in Ghana including cerebral affections [21,37] same as trematode infections
with Fasciola gigantica [38] and Dicrocoelium dendriticum [39]. Even solitary egg findings
suggesting infections with small liver flukes like Clonorchis spp. or Opisthorchis spp. have
been reported from Ghana [40]. Frequently detected intestinal helminths in Ghana com-
prise Ascaris lumbricoides, hookworms with higher infection rates for Necator americanus
than for Ancylostoma spp., Hymenolepis spp., Taenia spp., Strongyloides stercoralis, Schistosoma
spp. and Trichuris trichiura [21–23,41–43]. In spite of declining overall helminth infection
rates, intestinal helminths are yet among the top five outpatient morbidities in Ghana [44],
making Ghana a suitable site to study inference between helminth infections and other
diseases like, e.g., allergic diatheses [45]. Consequently, modeling suggested that Ghana is
among the countries where the interruption of transmission of soil-transmitted helminths
may become challenging [46]. Animal reservoirs are elements of the transmission cycles as
well [47].

To follow up with the decline of helminth infections in Ghana [44] with the aim of
final eradication, information on historic prevalence values determined with up-to-date
real-time PCR approaches, which were not available yet when the samples were collected,
can be helpful to define baseline prevalence values. Accordingly, enteric helminth-specific
real-time PCR from frozen residual DNA eluate samples derived from stool specimens
of children with and without diarrhea collected in the Ghanaian Ashanti region between
2007 and 2008 [48–53] was performed in order to contribute to the available epidemiologic
knowledge on historic regional intestinal helminth prevalence.

2. Materials and Methods
2.1. Study Type and Sample Collection

For the retrospective cross-sectional assessment, residual nucleic acid extractions
from 2046 stool samples which were collected in the course of a study from 2007 till
2008 from Ghanaian children from the Ashanti Region with and without clinical diarrhea
(defined by ≥3 unformed stools per day) were included in the assessment. As detailed
elsewhere, multiple screenings for viral, bacterial, and protozoan enteropathogens were
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performed with those samples [48–53], while molecular helminth assessment had not yet
been conducted so far. Nucleic acid extraction was performed with the QiaAMP DNA
Stool Mini Kit (Qiagen, Hilden, Germany) as described by the manufacturer. Subsequently,
the samples were stored frozen at −80 ◦C. As reported previously [48–53], children were
≤13 years of age with a median of less than 3 years in a left-shifted distribution, while the
proportions of boys and girls as well as the proportions of individuals with and without
diarrhea were nearly evenly distributed. Further, about one out of five children were
diagnosed with malaria at the time of the assessment.

2.2. Applied Real-Time PCRs for the Detection of Helminth DNA in Stool Samples, Inclusion and
Exclusion Criteria and Statistical Assessment

All nucleic acid extractions from human stool were subjected to in-house multiplex
real-time PCR targeting Ascaris lumbricoides (ITS1, minimum detectable genomic equivalent:
1.3 × 102), Ancylostoma spp. (ITS2, minimum detectable genomic equivalent: 1.3 × 102),
Enterobius vermicularis (ITS1, minimum detectable genomic equivalent: 1.6 × 101), Hy-
menolepis nana (ITS1, minimum detectable genomic equivalent: 1.4 × 101), Necator ameri-
canus (ITS2, minimum detectable genomic equivalent: 1.3 × 102), Schistosoma spp. (detect-
ing S. haematobium, S. mansoni and S. intercalatum without discrimination on the species
level, ITS2, minimum detectable genomic equivalent: 3.0 × 100), Strongyloides stercoralis
(18S rRNA, minimum detectable genomic equivalent: 1.3 × 102), Taenia saginata (ITS1, min-
imum detectable genomic equivalent: 9.0 × 100), Taenia solium (ITS1, minimum detectable
genomic equivalent: 1.3 × 101), and Trichuris trichiura (18S rRNA, minimum detectable ge-
nomic equivalent: 1.1 × 101), respectively. Plasmid-based positive controls and PCR-grade
water-based negative controls were included in each real-time PCR run. The sequences of
the primer and probe oligonucleotides as well as of the positive control plasmid inserts
as published elsewhere [54] are shown in Appendix A Table A1. The real-time PCRs were
performed on RotorGene Q thermocyclers exactly as described elsewhere; performance
characteristics of the assays have been provided there as well [54]. Based on the experience
of a previous multicentric evaluation study [54] and participation in the international
external laboratory assessment scheme for helminth PCR [55], late real-time PCR signals
with cycle threshold (Ct) values higher than 40 with typical sigmoid-shaped amplification
curves still indicate specific amplification. All samples, for which sufficient residual nucleic
acid material was available, were included in the assessment. The study samples were
treated in the same way as patient samples in diagnostic routine use of the applied helminth
PCR assays without technical replicates. There were no exclusion criteria. The results were
descriptively demonstrated without further statistical analyses.

2.3. Ethics

Ethical clearance for the sample collection and the informed consent procedure was ob-
tained from the Committee on Human Research, Publications and Ethics, School of Medical
Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (reference
CHRPE/KNUST/KATH/01_10_08). To be included in the study, written informed consent
was obtained from the parents or the legal guardian prior to the enrolment. In case of
non-participation, medical treatment was nevertheless provided. Further, anonymous
characterization of residual samples was granted by the medical association of Hamburg,
Germany, (reference number: WF-011/19, obtained on 11 March 2019). The assessments
were performed in line with the Declaration of Helsinki and its amendments.

3. Results

From a total of 2046 included residual sample materials, positive real-time PCR results
were obtained from 3.8% (n = 77) samples. Prevalence values for detected target DNA
of the different assessed helminths ranged from 0.0% (n = 0) to 2.0% (n = 41). Preva-
lence values > 0.5% were recorded for only three species with 2.0% Strongyloides stercoralis
(n = 41), 0.8% Hymenolepis nana (n = 16), and 0.7% Necator americanus (n = 14). Solely individ-
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ual cases were observed for other helminths with 0.1% Enterobius vermicularis (n = 2), 0.1%
Schistosoma spp. (n = 2), 0.1% Taenia saginata (n = 1), and 0.1% Trichuris trichiura (n = 1). No
cases at all were seen for Ascaris lumbricoides, Ancylostoma spp. and Taenia solium (Figure 1).
Details including the recorded cycle threshold (Ct value) ranges are provided in Table 1.
In 2.6% (2/77) of the positive samples and thus in 0.1% (2/2046) of the totally assessed
samples, co-infections with different helminths were recorded. The co-infections comprised
two different target helminths each, i.e., T. trichiura and T. saginata in one case as well as
N. americanus and S. stercoralis in the other case.
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Figure 1. Percentages (%) of recorded helminth DNA in the stool samples of the study participants.

Table 1. Positive PCR results and recorded cycle threshold (Ct) value ranges. A total of 2046 samples
were assessed.

Target Pathogen
Number of
Positives

(n)

Proportion
of Positives

(%)

Minimum
Recorded Ct

Value

Maximum
Recorded Ct

Value

Mean Ct
Value

Standard
Deviation

(SD)

Median Ct
Value

Ascaris lumbricoides 0 0 n.a. n.a. n.a. n.a. n.a.
Ancylostoma spp. 0 0 n.a. n.a. n.a. n.a. n.a.
Enterobius vermicularis 2 0.1 27.0 33.0 30.0 3.0 30.0
Hymenolepis nana 16 0.8 19.0 35.0 28.7 4.4 31.0
Necator americanus 14 0.7 27.0 41.2 34.0 3.4 34.0
Schistosoma spp. 2 0.1 18.0 24.0 21.0 3.0 21.0
Strongyloides stercoralis 41 2.0 23.0 44.0 30.3 5.0 30.3
Taenia saginata 1 0.1 28.0 28.0 28.0 n.a. 28.0
Taenia solium 0 0 n.a. n.a. n.a. n.a. n.a.
Trichuris trichiura 1 0.1 28.0 28.0 28.0 n.a. 28.0

n.a. = not applicable.

Focusing on associations of helminth infections and malaria, the co-incidence of
helminth infections and malaria was 22.7% (14/77). Helminth infections co-occurring
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with malaria comprised S. stercoralis (n = 6), H. nana (n = 5), E. vermicularis (n = 1), N.
americanus (n = 1), and a co-infection with S. stercoralis and N. americanus (n = 1). A minority
of 24.7% (19/77) of the recorded helminth infections was associated with reported diarrhea,
comprising S. stercoralis (n = 12), H. nana (n = 3), N. americanus (n = 3), and Schistosoma spp.
(n = 1). No significant differences were observed between cycle threshold (Ct) values of
helminth infections in patients with and without diarrhea (Table 2).

Table 2. Ct values in case of helminth infections in patients with and without reported diarrhea.

Helminth

Mean Ct Value from
Samples of Patients
with Diarrhea
(± Standard
Deviation SD)

Mean Ct Value from
Samples of Patients
without Diarrhea
(± Standard
Deviation SD)

Significance p *

Strongyloides stercoralis 30.0 (6.5) 30.2 (4.5) p = 0.73 (n.s.)
Hymenolepis nana 30.7 (3.2) 28.2 (4.8) p = 0.28 (n.s.)
Necator americanus 37.0 (4.6) 33.3 (3.1) p = 0.21 (n.s.)
Schistosoma spp. 18 (-) 24 (-) n.e.

* Calculated with Mann–Whitney U-testing applying the software GraphPad Instat version 3.06 (GraphPad
Software Inc., La Jolla, CA, USA). spp. = species (plural). n.e. = not estimable. n.s. = not significant.

4. Discussion

A PCR-based assessment of helminth prevalences was performed with stool samples
of Ghanaian children from the Ashanti Region. Residual sample material was used that
was collected in the years 2007 and 2008 [48–53]. Therefore, baseline prevalence values
for follow-up assessments were established. In line with ongoing intervention programs
in Ghana [56], the overall prevalence of recorded helminth infections was low. In detail,
the epidemiological coverage of anti-helminthic mass drug administration for Ghanaian
pre-school children was estimated to be 98.37% in the study year 2008 [57], likely explaining
the very low detection rates in the stool samples. Although socioeconomic and behavioral
aspects specifically related to helminth infections had not been systematically recorded
for the study population, malnourishment of no more than 10% and vaccination rates
ranging between 80% and more than 90% as reported elsewhere [48] suggest little hints
for neglect and a good general access of the assessed children to the country’s public
health infrastructure.

In contrast to the low prevalence values as observed in the study here, estimates of
the helminth prevalence on a Pan-African level in the decade of the study period were
much higher. In a review from 2009, Sub-Saharan African prevalence estimates for enteric
infections with hookworms, A. lumbricoides and T. trichiura but also for infections with
Schistosoma spp. were higher than 20% each [58]. Another research group [6] argued that
those estimates might have been too high, suggesting lower prevalence estimates of 16.5%
for hookworms, 6.6% for A. lumbricoides, and 4.4% for T. trichiura instead. Still, those
estimates were much higher than the proportions of infections observed in the assessed
Ghanaian children.

In line with previous assessments in Ghana [20–23,42,43], nematodes such as S. ster-
coralis and hookworms quantitatively dominated. In comparison, the very low rate of
Schistosoma spp. was less expected [25,59] but reflects the scattered distribution of S. man-
soni as reported for Ghana [22,60,61]. Interestingly, the cestode H. nana was the second most
frequent helminth within the assessed Ghanaian stool samples, although its prevalence
was still low and well in line with previous scarcely available Ghanaian studies including
this parameter [21,62]. Real-time PCR-based screening for H. nana is yet rarely applied in
epidemiological studies compared to more frequently used assays targeting nematodes [54].
The protocol from this study was first introduced after evaluation in 2020 [54]. All other
helminths included in the screening were only rarely identified or absent. Helminth co-
infections, i.e., infections with more than one helminth species, were observed in two
instances (0.1%) only.



Trop. Med. Infect. Dis. 2022, 7, 374 6 of 12

Due to the very low overall detection rates, assessment of associations with demo-
graphic features or clinical features was not possible. It should be noted that such associ-
ations are difficult to interpret because of the high rates of co-infections with facultative
enteropathogenic bacteria and protozoa [48,49]. While only a minority of 19 helminth
infections with a distribution resembling the overall distribution of positive helminth
real-time PCR results in this study was associated with reported diarrhea, a total of 27 co-
infections with the bacterial and protozoan pathogens Campylobacter jejuni (n = 10), Giardia
duodenalis (n = 7), Shigella spp./enteroinvasive Escherichia coli (not further discriminated,
n = 6), Cryptosporidium parvum (n = 3) and Salmonella enterica (n = 1) had been previously
detected in the same 19 samples [48]. Accordingly, any etiological relevance of the helminth
detections with a focus on diarrhea is highly questionable for the donors of the respective
stool samples, which is also in line with the seemingly paradox, non-significant finding of
higher mean Ct values for H. nana and N. americanus in samples of patients with diarrhea
compared to patients without diarrhea. In a similar way, the proportion of helminth de-
tections in stool samples of patients with malaria just matched the overall proportion of
malaria cases within the assessed population, not allowing for any further conclusions.

Interestingly, the abundance of the helminth species S. stercoralis and N. americanus in
the assessed samples outnumbered orally transmitted helminths. The specific reasons are
unknown because previous assessments of enteric pathogens other than helminths in the
study population suggested frequent transmission events via the oral route [48,49]. So, it is
likely that the finding more reflects a generally higher regional abundance of these species
rather than a lower relevance of the oral transmission route.

The observed low abundance of Enterobius vermicularis is surprising in a cohort con-
sisting of children. It remains unclear whether this finding was just a consequence of the
Ghanaian anti-helminthic mass drug administration program [57]. Alternatively, sensitivity
issues of the real-time PCR-based testing approach might have also played a role here,
because scotch tape preparations were not performed but target DNA was just amplified
from stool DNA extractions.

The study has a number of limitations. First, storage of the nucleic acid eluates for
about 13 years since the time of sample collection may have resulted in minor nucleic acid
degradation, potentially resulting in decreased sensitivity with regard to samples with a
priori low target DNA concentrations close to the technical detection limits of the real-time
PCRs. To keep the probability of this type of bias low, the nucleic acids within the eluates
had been optimally preserved by storing the samples deep frozen at −80 ◦C. Moreover,
the recorded cycle threshold values were in the typical range as observed for infected
individuals and sufficiently far away from the detection threshold, suggesting that the DNA
was still widely intact. In addition, DNA preservation had been exemplarily controlled
in the course of a recent test comparison assessment [63]. For the respective study [63],
selected residual samples had been re-assessed with the same real-time PCR assays for
DNA of enteric protozoa and entero-invasive bacteria which had also been applied with the
same stool samples shortly after acquisition in Ghana. Obtained cycle threshold values had
been in a comparable range, thus suggesting that deep freezing-based DNA preservation
had been successful. Second, no microscopic results were available for correlation and
confirmation of the PCR results. While real-time PCR from stool samples is a priori more
sensitive than microscopy for protozoan pathogens, this is considerably less unambiguously
true in the case of helminths [64], from which nucleic acids are more difficult to extract from
eggs and cuticula cells [65]. So, microscopic results would have provided true additional
value but the retrospective design of the study made this option unfeasible. Fourth, the
study did not provide a comprehensive assessment of all helminth infections potentially
occurring in Ghanaian individuals. For example, no serological screening for toxocariasis
was conducted, although high seroprevalence rates have previously been reported from
Ghana [66]. Fifth, the conducted stool assessment for Schistosoma spp. DNA did not exclude
the shedding of Schistosoma haematobium eggs via the patients’ urine and so, it did not
provide a comprehensive overview of schistosomiasis in the assessed Ghanaian population.
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Sixth, lacking systematic assessment of demographic, socioeconomic, and behavioral data
related to helminth infections limits the interpretability of the study results.

5. Conclusions

In spite of the abovementioned limitations, the results of the study suggested a low
overall infection rate of the assessed Ghanaian children from the Ashanti Region in 2007 and
2008 with enteric helminths. Next to the expected dominance of the nematodes S. stercoralis
and N. americanus, the cestode H. nana was among the most frequently identified helminths.
The assessment provides a small piece to the epidemiological puzzle and baseline values
for future follow-up assessments in this geographic region.
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Appendix A

Table A1. Sequences of the primer and probe oligonucleotides (hybridization probes including the used reporter and quencher molecules) as well as of the positive
control plasmid inserts of the applied helminth-specific real-time PCRs. The positive control plasmid inserts were included in pEX-A128 vector backbones (Eurofins
Scientific SE, Luxembourg).

Ascaris lumbricoides-specific real-time PCR oligonucleotides

forward primer 5′-GTAATAGCAGTCGGCGGTTTCTT-3′

reverse primer 5′-GCCCAACATGCCACCTATTC-3′

probe 5′-ROX-TTGGCGGACAATTGCATGCGAT-BHQ2-3′

positive control insert 5′-GGTGATGTAATAGCAGTCGGCGGTTTCTTTTTTTTTGGCGGACAATTGCATGCGATTTGCTATGTGTTGAGGGAGAATAGGTGGCATGTTGGGCTTGTTA-3′

Strongyloides stercoralis-specific real-time PCR oligonucleotides

forward primer 5′-GAATTCCAAGTAAACGTAAGTCATTAGC-3′

reverse primer 5′-TGCCTCTGGATATTGCTCAGTTC-3′

probe 5′-CY5-ACACACCGGCCGTCGCTGC-BHQ2-3′

positive control insert 5′-AACGAGGAATTCCAAGTAAACGTAAGTCATTAGCTTACATTGATTACGTCCCTGCCCTTTGTACACACCGGCCGTCGCTGCCCGGAACTGAGCAATATCCAGAGGCAGGAAGA-3′

Ancyclostoma spp.-specific real-time PCR oligonucleotides

forward primer 5′-GAATGACAGCAAACTCGTTGTTG-3′

reverse primer 5′-ATACTAGCCACTGCCGAAACGT-3′

probe 5′-YAKYE-ATCGTTTACCGACTTTAG-MGBEQ-3′

positive control insert 5′-TGCGCTGAATGACAGCAAACTCGTTGTTGCTGCTGAATCGTTTACCGACTTTAGAACGTTTCGGCAGTGGCTAGTATAACAAC-3′

Necator americanus-specific real-time PCR oligonucleotides

forward primer 5′-CTGTTTGTCGAACGGTACTTGC-3′

reverse primer 5′-ATAACAGCGTGCACATGTTGC-3′

probe 5′-FAM-CTGTACTACGCATTGTATAC-MGBEQ-3′

positive control insert 5′-GAACACTGTTTGTCGAACGGTACTTGCTCTGTACTACGCATTGTATACGTGTTCAGCAATTCCCGTTTAAGTGAAGAACACACGTGCAACATGTGCACGCTGTTATTCACTACG-3′

Trichuris trichiura-specific real-time PCR oligonucleotides

forward primer 5′-TTGAAACGACTTGCTCATCAACTT-3′

reverse primer 5′-CTGATTCTCCGTTAACCGTTGTC-3′

probe 5′-YAKYE-CGATGGTACGCTACGTGCTTACCATGG-MGBEQ-3′

positive control insert 5′-CGACGATGCTTTGAAACGACTTGCTCATCAACTTTCGATGGTACGCTACGTGCTTACCATGGTGACAACGGTTAACGGAGAATCAGGGTTCGGCTC-3′
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Table A1. Cont.

Schistosoma spp.-specific real-time PCR oligonucleotides
forward primer 5′-GGTCTAGATGACTTGATYGAGATGCT-3′

reverse primer 5′-TCCCGAGCGYGTATAATGTCATTA-3′

probe 5′-FAM-TGGGTTGTGCTCGAGTCGTGGC-BHQ1-3′

positive control insert 5′-TAGTCTGGTCTAGATGACTTGATTGAGATGCTGCGGTGGGTTGTGCTCGAGTCGTGGCTTAATGACATTATACACGCTCGGGATAATTC-3′

Taenia solium-specific real-time PCR oligonucleotides

forward primer 5′-ATGGATCAATCTGGGTGGAGTT-3′

reverse primer 5′-ATCGCAGGGTAAGAAAAGAAGGT-3′

probe 5′-Cy5-TGGTACTGCTGTGGCGGCGG-BHQ2-3′

positive control insert 5′-TTGACTGATGATGGATCAATCTGGGTGGAGTTGGTGGTACTGCTGTGGCGGCGGTATTGTCAACTTCTTCTGTACCTTCTTTTCTTACCCTGCGATGGGGTGCCTA-3′

Taenia saginata-specific real-time PCR oligonucleotides

forward primer 5′-GCGTCGTCTTTGCGTTACAC-3′

reverse primer 5′-TGACACAACCGCGCTCTG-3′

probe 5′-ROX-CCACAGCACCAGCGACAGCAGCAA-BHQ2-3′

positive control insert 5′-GCCCCATCATGCGTCGTCTTTGCGTTACACGTGGCGATGTTGCTGCTGTCGCTGGTGCTGTGGTGGCGGCGCAGAGCGCGGTTGTGTCACCGTTGGTGG-3′

Enterobius vermicularis-specific real-time PCR oligonucleotides

forward primer 5′CGGTGTAATTTTGTTGGTGTCTATG-3′

reverse primer 5′-TGGCAGCATTGCAAACTAATG-3′

probe 5′-FAM-TGTGCCAGTCAACGCCTAAACCGT-C-BHQ1-3′

positive control insert 5′-TGTAATATAACGGTGTAATTTTGTTGGTGTCTATGCTTTGTGCCAGTCAACGCCTAAACCGTCGTTGATGTGTGTATAAGATGAAGCATAAAGCAAAAGGTTTGCTACTTGTAGCAGA-
CTAGACTTAATAAGCATTAGTTTGCAATGCTGCCAACTATGATAA-3′

Hymenolepis nana-specific real-time PCR oligonucleotides

forward primer 5′-CATTGTGTACCAAATTGATGATGAGTA-3′

reverse primer 5′-CAACTGACAGCATGTTTCGATATG-3′

probe 5′-JOE-CGTGTGCGCCTCTGGCTTACCG-BHQ1-3′

positive control insert 5′-ACACTTATTACATTGTGTACCAAATTGATGATGAGTAGACGTGTGCGCCTCTGGCTTACCGTTTACTGCCTCGTCATATCGAAACATGCTGTCAGTTGCTGCTGCTCA-3′
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