Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective
Abstract
:1. Introduction
2. Case Studies Highlighting Challenges to Tick Control
2.1. Global Climate Change: Ixodes scapularis Range Expansion into Canada
2.2. Globalization: Haemaphysalis longicornis Introduction into the Continental U.S.
2.3. Policy and Shared Political Borders: Rhipicephalus spp. Tick Management at the Mexico–U.S. Border
3. Conclusions
3.1. Lessons Learned and Future Needs
3.2. Public Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilpatrick, A.M.; Randolph, S.E. Drivers, Dynamics, and Control of Emerging Vector-Borne Zoonotic Diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Morse, S.S. Factors in the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Pfäffle, M.; Littwin, N.; Muders, S.V.; Petney, T.N. The Ecology of Tick-Borne Diseases. Int. J. Parasitol. 2013, 43, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L. The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annu. Rev. Entomol. 2021, 66, 273–288. [Google Scholar] [CrossRef]
- Paddock, C.D.; Lane, R.S.; Staples, J.E.; Labruna, M.B. A8: Changing Paradigms for Tick-Borne Diseases in the Americas. In Global Health Impacts of Vector-Borne Diseases: Workshop Summary; National Academies of Sciences, Engineering, and Medicine, Ed.; The National Academies Press: Washington, DC, USA, 2016; pp. 221–257. ISBN 9780309377591. [Google Scholar]
- Eisen, R.J.; Kugeler, K.J.; Eisen, L.; Beard, C.B.; Paddock, C.D. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR J. 2017, 58, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System, 2019 Annual Tables of Infectious Disease Data; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021. [Google Scholar]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef]
- Sonenshine, D.E. Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. Int. J. Environ. Res. Public Health 2018, 15, 478. [Google Scholar] [CrossRef] [Green Version]
- Ostfeld, R.S.; Brunner, J.L. Climate Change and Ixodes Tick-Borne Diseases of Humans. Philos. Trans. R. Soc. B 2015, 370, 20140051. [Google Scholar] [CrossRef] [Green Version]
- Murray, D.L.; Cox, E.W.; Ballard, W.B.; Whitlaw, H.A.; Lenarz, M.S.; Custer, T.W.; Barnett, T.; Fuller, T.K. Pathogens, Nutritional Deficiency, and Climate Influences on a Declining Moose Population. Wildl. Monogr. 2006, 166, 1–30. [Google Scholar] [CrossRef]
- Samuel, W. Factors Affecting Epizootics of Winter Ticks and Mortality of Moose. Alces 2007, 43, 39–48. [Google Scholar]
- Ogden, N.H.; Radojević, M.; Wu, X.; Duvvuri, V.R.; Leighton, P.A.; Wu, J. Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes Scapularis. Environ. Health Perspect. 2014, 122, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, E.T.; Springer, H.R.; Brown, J.E.; Olafson, P.U. Sudden Mortality in Captive White-Tailed Deer with Atypical Infestation of Winter Tick. J. Med. Entomol. 2021, 58, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Calvente, E.; Chinnici, N.; Brown, J.; Banfield, J.E.; Brooks, J.W.; Yabsley, M.J. Winter Tick (Dermacentor Albipictus)–Associated Dermatitis in a Wild Elk (Cervus Canadensis) in Pennsylvania, USA. J. Wildl. Dis. 2020, 56, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Lindsay, L.R.; Morshed, M.; Sockett, P.N.; Artsob, H. The Emergence of Lyme Disease in Canada. Can. Med. Assoc. 2009, 180, 1221–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.A.; Marrotte, R.R.; Desrosiers, N.; Fiset, J.; Gaitan, J.; Gonzalez, A.; Koffi, J.K.; Lapointe, F.J.; Leighton, P.A.; Lindsay, L.R.; et al. Climate Change and Habitat Fragmentation Drive the Occurrence of Borrelia Burgdorferi, the Agent of Lyme Disease, at the Northeastern Limit of Its Distribution. Evol. Appl. 2014, 7, 750–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, N.H.; Beard, C.B.; Ginsberg, H.S.; Tsao, J.I. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J. Med. Entomol. 2020, 58, 1536–1545. [Google Scholar] [CrossRef]
- Porras, M.F.; Navas, C.A.; Marden, J.H.; Mescher, M.C.; De Moraes, C.M.; Pincebourde, S.; Sandoval-Mojica, A.; Raygoza-Garay, J.A.; Holguin, G.A.; Rajotte, E.G.; et al. Enhanced Heat Tolerance of Viral-Infected Aphids Leads to Niche Expansion and Reduced Interspecific Competition. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brites-Neto, J.; Duarte, K.M.R.; Martins, T.F. Tick-Borne Infections in Human and Animal Population Worldwide. Vet. World 2015, 8, 301–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musante, A.R.; Pekins, P.J.; Scarpitti, D.L. Characteristics and Dynamics of a Regional Moose Alces Alces Population in the Northeastern United States. Wildlife Biol. 2010, 16, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Pekins, P.; Kantar, L.; Sidor, I.; Ellingwood, D.; Lichtenwalner, A.; O’neal, M. Mortality Assessment of Moose (Alces Alces) Calves during Successive Years of Winter Tick (Dermacentor Albipictus) Epizootics in New Hampshire and Maine (USA). Can. J. Zool. 2019, 97, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Molaei, G.; Mertins, J.W.; Stafford, K.C. Enduring Challenge of Invasive Ticks: Introduction of Amblyomma Oblongoguttatum (Acari: Ixodidae) into the United States on a Human Traveler Returning from Central America. J. Parasitol. 2020, 106, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Keirans, J.E.; Durden, L.A. Invasion: Exotic Ticks (Acari: Argasidae, Ixodidae) Imported into the United States. A Review and New Records. J. Med. Entomol. 2001, 38, 850–861. [Google Scholar] [CrossRef]
- Rainey, T.; Occi, J.L.; Robbins, R.G.; Egizi, A. Discovery of Haemaphysalis Longicornis (Ixodida: Ixodidae) Parasitizing a Sheep in New Jersey, United States. J. Med. Entomol. 2018, 55, 757–759. [Google Scholar] [CrossRef]
- Wormser, G.P.; McKenna, D.; Piedmonte, N.; Vinci, V.; Egizi, A.M.; Backenson, B.; Falco, R.C. First Recognized Human Bite in the United States by the Asian Longhorned Tick, Haemaphysalis Longicornis. Clin. Infect. Dis. 2020, 70, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Egizi, A.; Bulaga-Seraphin, L.; Alt, E.; Bajwa, W.I.; Bernick, J.; Bickerton, M.; Campbell, S.R.; Connally, N.; Doi, K.; Falco, R.C.; et al. First Glimpse into the Origin and Spread of the Asian Longhorned Tick, Haemaphysalis Longicornis, in the United States. Zoonoses Public Health 2020, 67, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.B.; Occi, J.; Bonilla, D.L.; Egizi, A.M.; Fonseca, D.M.; Mertins, J.W.; Bryon, P. Multistate Infestation with the Exotic Disease—Vector Tick Haemaphysalis Longicornis—United States, August 2017—September 2018. MMWR 2018, 67, 1310–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogstraal, H.; Roberts, F.H.; Kohls, G.M.; Tipton, V.J. Review of Haemaphysalis (Kaiseriana) Longicornis Neumann (Resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and Its Parthenogenetic and Bisexual Populations (Ixodoidea, Ixodidae). J. Parasitol. 1968, 54, 1197–1213. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.C.G. A History of the Introduction, Establishment, Dispersal and Management of Haemaphysalis Longicornis Neumann, 1901 (Ixodida: Ixodidae) in New Zealand. N. Z. J. Zool. 2020, 47, 241–271. [Google Scholar] [CrossRef]
- Raghavan, R.K.; Barker, S.C.; Cobos, M.E.; Barker, D.; Teo, E.J.M.; Foley, D.H.; Nakao, R.; Lawrence, K.; Heath, A.C.G.; Peterson, A.T. Potential Spatial Distribution of the Newly Introduced Long-Horned Tick, Haemaphysalis Longicornis in North America. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.A.; Chandler, J.G.; Vail, K.M.; Holderman, C.J.; Trout Fryxell, R.T. Spray and Pour-On Acaricides Killed Tennessee (United States) Field-Collected Haemaphysalis Longicornis Nymphs (Acari: Ixodidae) in Laboratory Bioassays. J. Med. Entomol. 2021, 58, 2514–2518. [Google Scholar] [CrossRef]
- Esteve-Gasent, M.D.; Rodríguez-Vivas, R.I.; Medina, R.F.; Ellis, D.; Schwartz, A.; Garcia, B.C.; Hunt, C.; Tietjen, M.; Bonilla, D.; Thomas, D.; et al. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Cartín-Rojas, A. Transboundary animal diseases and international trade. In International Trade from Economic and Policy Perspective; InTech: London, UK, 2012; pp. 143–166. ISBN 0000957720. [Google Scholar]
- Pérez de León, A.A.; Mitchell, R.D.; Watson, D.W. Ectoparasites of Cattle. Vet. Clin. North Am.-Food Anim. Pract. 2020, 36, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Roger Iván Rodríguez-Vivas, L.G.; de León, A.A.P.; Villela, H.S.; de Torres-Acosta, J.F.J.; Sánchez, H.F.; Salas, D.R.; Cruz, R.R.; Saldierna, F.; Carrasco, D.G. Potential Economic Impact Assessment for Cattle Parasites in Mexico. Review Evaluación Del Impacto Económico Potencial de Los Parásitos. Rev. Mex. Cienc. Pecu. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Peel, D.S.; Mathews, K.H.; Johnson, R.J. Trade, the Expanding Mexican Beef Industry, and Feedlot and Stocker Cattle Production in Mexico; There’s the Beef: Select Research on Global Beef Production and Trade; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2012; Volume 5, pp. 133–151.
- Bram, R.A.; George, J.E.; Reichard, R.E.; Tabachnick, W.J. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J. Med. Entomol. 2002, 39, 405–416. [Google Scholar] [CrossRef]
- Busch, J.D.; Stone, N.E.; Nottingham, R.; Araya-Anchetta, A.; Lewis, J.; Hochhalter, C.; Giles, J.R.; Gruendike, J.; Freeman, J.; Buckmeier, G.; et al. Widespread Movement of Invasive Cattle Fever Ticks (Rhipicephalus Microplus) in Southern Texas Leads to Shared Local Infestations on Cattle and Deer. Parasites Vectors 2014, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Goolsby, J.A.; Singh, N.K.; Ortega, S.A.; Hewitt, D.G.; Campbell, T.A.; Wester, D.; Pérez de León, A.A. Comparison of Natural and Artificial Odor Lures for Nilgai (Boselaphus Tragocamelus) and White-Tailed Deer (Odocoileus Virginianus) in South Texas: Developing Treatment for Cattle Fever Tick Eradication. Int. J. Parasitol. Parasites Wildl. 2017, 6, 100–107. [Google Scholar] [CrossRef]
- Mullens, B.A. Veterinary Entomology. In Encyclopedia of Insects; Academic Press: Cambridge, MA, USA, 2009; pp. 1031–1034. [Google Scholar] [CrossRef]
- Mahefarisoa, K.L.; Simon Delso, N.; Zaninotto, V.; Colin, M.E.; Bonmatin, J.M. The Threat of Veterinary Medicinal Products and Biocides on Pollinators: A One Health Perspective. One Health 2021, 12, 100237. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach-Why Is It so Important? Trop. Med. Infect. Dis. 2019, 4, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.A.; Karesh, W.B.; Osofsky, S.A. One World-One Health: Building Interdisciplinary Bridges. Available online: http://www.oneworldonehealth.org/sept2004/owoh_sept04.html (accessed on 19 November 2022).
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and Tick-Borne Diseases: A One Health Perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef]
- Ogden, N.H.; St.-Onge, L.; Barker, I.K.; Brazeau, S.; Bigras-Poulin, M.; Charron, D.F.; Francis, C.M.; Heagy, A.; Lindsay, L.R.; Maarouf, A.; et al. Risk Maps for Range Expansion of the Lyme Disease Vector, Ixodes Scapularis, in Canada Now and with Climate Change. Int. J. Health Geogr. 2008, 7, 1–15. [Google Scholar] [CrossRef]
- Clow, K.M.; Leighton, P.A.; Pearl, D.L.; Jardine, C.M. A Framework for Adaptive Surveillance of Emerging Tick-Borne Zoonoses. One Health 2019, 7, 100083. [Google Scholar] [CrossRef]
- Ogden, N.H.; Trudel, L.; Artsob, H.; Barker, I.K.; Beauchamp, G.; Charron, D.F.; Drebot, M.A.; Galloway, T.D.; O’Handley, R.; Thompson, R.A.; et al. Ixodes Scapularis Ticks Collected by Passive Surveillance in Canada: Analysis of Geographic Distribution and Infection with Lyme Borreliosis Agent Borrelia Burgdorferi. J. Med. Entomol. 2006, 43, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S. Northern Trek: The Spread of Ixodes Scapularis into Canada. Environ. Health Perspect. 2017, 125, 074002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatchikian, C.E.; Prusinski, M.; Stone, M.; Bryon Backenson, P.; Wang, I.N.; Levy, M.Z.; Brisson, D. Geographical and Environmental Factors Driving the Increase in the Lyme Disease Vector Ixodes Scapularis. Ecosphere 2012, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Bouchard, C.; Badcock, J.; Drebot, M.A.; Elias, S.P.; Hatchette, T.F.; Koffi, J.K.; Leighton, P.A.; Lindsay, L.R.; Lubelczyk, C.B.; et al. What Is the Real Number of Lyme Disease Cases in Canada? BMC Public Health 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Mather, T.N.; Wilson, M.L.; Moore, S.I.; Ribeiro, J.M.C.; Spielman, A. Comparing the Relative Potential of Rodents as Reservoirs of the Lyme Disease Spirochete (Borreliaburgdorferi). Am. J. Epidemiol. 1989, 130, 143–150. [Google Scholar] [CrossRef]
- Shaw, M.T.; Keesing, F.; McGrail, R.; Ostfeld, R.S. Factors Influencing the Distribution of Larval Blacklegged Ticks on Rodent Hosts. Am. J. Trop. Med. Hyg. 2003, 68, 447–452. [Google Scholar] [CrossRef]
- Eisen, R.J.; Paddock, C.D. Tick and Tickborne Pathogen Surveillance as a Public Health Tool in the United States. J. Med. Entomol. 2021, 58, 1490–1502. [Google Scholar] [CrossRef]
- Eisen, R.J.; Eisen, L.; Graham, C.B.; Hojgaard, A.; Mead, P.S.; Kersch, G.; Karpathy, S.; Paddock, C.D.; Savage, H.; Herwaldt, B.L.; et al. Surveillance for Ixodes Scapularis and Pathogens Found in This Tick Species in the United States. Centers Dis. Control Prev. 2019, 1, 34. [Google Scholar]
- Roy-Dufresne, E.; Logan, T.; Simon, J.A.; Chmura, G.L.; Millien, V. Poleward Expansion of the White-Footed Mouse (Peromyscus Leucopus) under Climate Change: Implications for the Spread of Lyme Disease. PLoS ONE 2013, 8, e80724. [Google Scholar] [CrossRef] [Green Version]
- Diuk-Wasser, M.A.; Vourc’h, G.; Cislo, P.; Hoen, A.G.; Melton, F.; Hamer, S.A.; Rowland, M.; Cortinas, R.; Hickling, G.J.; Tsao, J.I.; et al. Field and Climate-Based Model for Predicting the Density of Host-Seeking Nymphal Ixodes Scapularis, an Important Vector of Tick-Borne Disease Agents in the Eastern United States. Glob. Ecol. Biogeogr. 2010, 19, 504–514. [Google Scholar] [CrossRef]
- Tiffin, H.S.; Peper, S.T.; Wilson-Fallon, A.N.; Haydett, K.M.; Cao, G.; Presley, S.M. The Influence of New Surveillance Data on Predictive Species Distribution Modeling of Aedes Aegypti and Aedes Albopictus in the United States. Insects 2019, 10, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leighton, P.A.; Koffi, J.K.; Pelcat, Y.; Lindsay, L.R.; Ogden, N.H. Predicting the Speed of Tick Invasion: An Empirical Model of Range Expansion for the Lyme Disease Vector Ixodes Scapularis in Canada. J. Appl. Ecol. 2012, 49, 457–464. [Google Scholar] [CrossRef]
- Ripoche Id, M.; Bouchard, C.; Irace-Cima, A.; Leighton, P.; Thivierge, K. Current and Future Distribution of Ixodes Scapularis Ticks in Québec: Field Validation of a Predictive Model. PLoS ONE 2022, 17, e0263243. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences Engineering and Medicine. Global Health Impacts of Vector-Borne Diseases: Workshop Summary; The National Academies Press: Washington, DC, USA, 2016; ISBN 9780309377591. [Google Scholar]
- White, S.A.; Bevins, S.N.; Ruder, M.G.; Shaw, D.; Vigil, S.L.; Randall, A.; Deliberto, T.J.; Dominguez, K.; Thompson, A.T.; Mertins, J.W.; et al. Surveys for Ticks on Wildlife Hosts and in the Environment at Asian Longhorned Tick (Haemaphysalis Longicornis)-Positive Sites in Virginia and New Jersey, 2018. Transbound. Emerg. Dis. 2020, 68, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.C.G.; Hardwick, S. The Role of Humans in the Importation of Ticks to New Zealand: A Threat to Public Health and Biosecurity. N. Z. Med. J. 2011, 124, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bao, C.; Hu, J.; Liu, W.; Wang, X.; Zhang, L.; Ji, Z.; Feng, Z.; Li, L.; Shen, A.; et al. Ecology of the Tick-Borne Phlebovirus Causing Severe Fever with Thrombocytopenia Syndrome in an Endemic Area of China. PLoS Negl. Trop. Dis. 2016, 10, e0004574. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; He, B.; Huang, S.Y.; Wei, F.; Zhu, X.Q. Severe Fever with Thrombocytopenia Syndrome, an Emerging Tick-Borne Zoonosis. Lancet Infect. Dis. 2014, 14, 763–772. [Google Scholar] [CrossRef]
- Zhuang, L.; Sun, Y.; Cui, X.M.; Tang, F.; Hu, J.G.; Wang, L.Y.; Cui, N.; Yang, Z.D.; Huang, D.D.; Zhang, X.A.; et al. Transmission of Severe Fever with Thrombocytopenia Syndrome Virus by Haemaphysalis Longicornis Ticks, China. Emerg. Infect. Dis. 2018, 24, 868–871. [Google Scholar] [CrossRef] [Green Version]
- Mahara, F. Japanese Spotted Fever: Report of 31 Cases and Review of the Literature. Emerg. Infect. Dis. 1997, 3, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, M.; Oshita, S.; Yamazoe, N.; Miyazaki, M.; Takemura, Y.C. Important Clinical Features of Japanese Spotted Fever. Am. J. Trop. Med. Hyg. 2018, 99, 466–469. [Google Scholar] [CrossRef]
- Tabara, K.; Kawabata, H.; Arai, S.; Itagaki, A.; Yamauchi, T.; Katayama, T.; Fujita, H.; Takada, N. High Incidence of Rickettsiosis Correlated to Prevalence of Rickettsia Japonica among Haemaphysalis Longicornis Tick. J. Vet. Med. Sci. 2011, 73, 507–510. [Google Scholar] [CrossRef] [Green Version]
- USDA-APHIS. National Haemaphysalis Longicornis (Asian Longhorned Tick) Situation Report; United States Department of Agriculture: Washington, DC, USA, 2022.
- USDA-APHIS. National Haemaphysalis Longicornis (Asian Longhorned Tick) Situation Report; United States Department of Agriculture: Washington, DC, USA, 2021.
- Tufts, D.M.; Goodman, L.B.; Benedict, M.C.; Davis, A.D.; VanAcker, M.C.; Diuk-Wasser, M. Association of the Invasive Haemaphysalis Longicornis Tick with Vertebrate Hosts, Other Native Tick Vectors, and Tick-Borne Pathogens in New York City, USA. Int. J. Parasitol. 2021, 51, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Ronai, I.; Tufts, D.M.; Diuk-Wasser, M.A. Aversion of the Invasive Asian Longhorned Tick to the White-Footed Mouse, the Dominant Reservoir of Tick-Borne Pathogens in the U.S.A. Med. Vet. Entomol. 2020, 34, 369–373. [Google Scholar] [CrossRef] [PubMed]
- North Carolina Department of Agriculture and Consumer Services Asian Longhorned Tick. Available online: https://www.ncagr.gov/vet/Livestock/AsianLonghornedTick.htm (accessed on 12 May 2022).
- Oakes, V.J.; Yabsley, M.J.; Schwartz, D.; LeRoith, T.; Bissett, C.; Broaddus, C.; Schlater, J.L.; Todd, S.M.; Boes, K.M.; Brookhart, M.; et al. Theileria Orientalis Ikeda Genotype in Cattle, Virginia, USA. Emerg. Infect. Dis. 2019, 25, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.T.; White, S.; Shaw, D.; Egizi, A.; Lahmers, K.; Ruder, M.G.; Yabsley, M.J. Theileria Orientalis Ikeda in Host-Seeking Haemaphysalis Longicornis in Virginia, U.S.A. Ticks Tick. Borne. Dis. 2020, 11, 101450. [Google Scholar] [CrossRef]
- Dinkel, K.D.; Herndon, D.R.; Noh, S.M.; Lahmers, K.K.; Todd, S.M.; Ueti, M.W.; Scoles, G.A.; Mason, K.L.; Fry, L.M. A U.S. Isolate of Theileria Orientalis, Ikeda Genotype, Is Transmitted to Cattle by the Invasive Asian Longhorned Tick, Haemaphysalis Longicornis. Parasites Vectors 2021, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hammer, J.F.; Emery, D.; Bogema, D.R.; Jenkins, C. Detection of Theileria Orientalis Genotypes in Haemaphysalis Longicornis Ticks from Southern Australia. Parasites Vectors 2015, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cumbie, A.N.; Trimble, R.N.; Eastwood, G. Pathogen Spillover to an Invasive Tick Species: First Detection of Bourbon Virus in Haemaphysalis Longicornis in the United States. Pathogens 2022, 11, 454. [Google Scholar] [CrossRef]
- Breuner, N.E.; Ford, S.L.; Hojgaard, A.; Osikowicz, L.M.; Parise, C.M.; Rosales Rizzo, M.F.; Bai, Y.; Levin, M.L.; Eisen, R.J.; Eisen, L. Failure of the Asian Longhorned Tick, Haemaphysalis Longicornis, to Serve as an Experimental Vector of the Lyme Disease Spirochete, Borrelia Burgdorferi Sensu Stricto. Ticks Tick. Borne. Dis. 2020, 11, 101311. [Google Scholar] [CrossRef]
- Henrioud, A.N. Towards Sustainable Parasite Control Practices in Livestock Production with Emphasis in Latin America. Vet. Parasitol. 2011, 180, 2–11. [Google Scholar] [CrossRef]
- Pérez de Leon, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA Is Required to Mitigate the Impact of Global Change. Front. Physiol. 2012, 3, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide Resistance in Cattle Ticks and Approaches to Its Management: The State of Play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of Cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Smith, T.; Kilborne, F.L. Investigations into the Nature, Causation and Prevention of Southern Cattle Fever; US Department of Agriculture, Bureau of Animal Industry: Washington, DC, USA, 1893.
- Graham, O.H.; Hourrigan, J.L. Eradication Programs for the Arthropod Parasites of Livestock. J. Med. Entomol. 1977, 13, 629–658. [Google Scholar] [CrossRef] [PubMed]
- FAO. Guidelines: Resistance Management and Integrated Parasite Control in Rumiants; FAO: Rome, Italy, 2004. [Google Scholar]
- Fernandez-Salas, A.; Rodríguez-Vivas, R.I.; Alonso-Díaz, M.A. Resistance of Rhipicephalus Microplus to Amitraz and Cypermethrin in Tropical Cattle Farms in Veracruz, Mexico. J. Parasitol. 2012, 98, 1010–1014. [Google Scholar] [CrossRef]
- Pérez de Leon, A.A.; Strickman, D.A.; Knowles, D.P.; Fish, D.; Thacker, E.; De La Fuente, J.; Krause, P.J.; Wikel, S.K.; Miller, R.S.; Wagner, G.G.; et al. One Health Approach to Identify Research Needs in Bovine and Human Babesioses: Workshop Report. Parasites Vectors 2010, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryser-Degiorgis, M.P. Wildlife Health Investigations: Needs, Challenges and Recommendations. BMC Vet. Res. 2013, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, Y.; Machalaba, C.C.; Tang, H.; Chmura, A.A.; Fielder, M.D.; Daszak, P. Wild Animal and Zoonotic Disease Risk Management and Regulation in China: Examining Gaps and One Health Opportunities in Scope, Mandates, and Monitoring Systems. One Health 2021, 13, 100301. [Google Scholar] [CrossRef]
- Maani, N.; Galea, S. COVID-19 and Underinvestment in the Public Health Infrastructure of the United States. Milbank Q. 2020, 98, 250–259. [Google Scholar] [CrossRef]
- Weiner, D.L.; Balasubramaniam, V.; Shah, S.I.; Javier, J.R. COVID-19 Impact on Research, Lessons Learned from COVID-19 Research, Implications for Pediatric Research. Pediatr. Res. 2020, 88, 148–150. [Google Scholar] [CrossRef]
- Dolan, B.; Rutherford, G. How History of Medicine Helps Us Understand COVID-19 Challenges. Public Health Rep. 2020, 135, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Burtis, J.C.; Sullivan, P.; Levi, T.; Oggenfuss, K.; Fahey, T.J.; Ostfeld, R.S. The Impact of Temperature and Precipitation on Blacklegged Tick Activity and Lyme Disease Incidence in Endemic and Emerging Regions. Parasites Vectors 2016, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pak, D.; Jacobs, S.B.; Sakamoto, J.M. A 117 Year Retrospective Analysis of Pennsylvania Tick Community Dynamics. Parasit. Vectors 2019, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Ostfeld, R.S.; Young, T.P.; Allan, B.F. Cattle and Rainfall Affect Tick Abundance in Central Kenya. Parasitology 2018, 145, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Allan, B.F.; Tallis, H.; Chaplin-Kramer, R.; Huckett, S.; Kowal, V.A.; Musengezi, J.; Okanga, S.; Ostfeld, R.S.; Schieltz, J.; Warui, C.M.; et al. Can Integrating Wildlife and Livestock Enhance Ecosystem Services in Central Kenya? Front. Ecol. Environ. 2017, 15, 328–335. [Google Scholar] [CrossRef]
- Keesing, F.; Allan, B.F.; Young, T.P.; Ostfeld, R.S. Effects of Wildlife and Cattle on Tick Abundance in Central Kenya. Ecol. Appl. 2013, 23, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Brunner, J.; Duerr, S.; Killilea, M.; LoGiudice, K.; Schmidt, K.; Vuong, H.; Ostfeld, R.S. Hosts as Ecological Traps for the Vector of Lyme Disease. Proc. R. Soc. B Biol. Sci. 2009, 276, 3911–3919. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Grant, W.E.; Teel, P.D.; Lohmeyer, K.H.; Pérez de León, A.A. Simulated Dynamics of Southern Cattle Fever Ticks (Rhipicephalus (Boophilus) Microplus) in South Texas, USA: Investigating Potential Wildlife-Mediated Impacts on Eradication Efforts. Parasites Vectors 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling Ticks and Tick-Borne Zoonoses with Biological and Chemical Agents. Bioscience 2006, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Lydecker, H.W.; Etheridge, B.; Price, C.; Banks, P.B.; Hochuli, D.F. Landscapes within Landscapes: A Parasite Utilizes Different Ecological Niches on the Host Landscapes of Two Host Species. Acta Trop. 2019, 193, 60–65. [Google Scholar] [CrossRef]
- Halsey, S.J.; Allan, B.F.; Miller, J.R. The Role of Ixodes Scapularis, Borrelia Burgdorferi and Wildlife Hosts in Lyme Disease Prevalence: A Quantitative Review. Ticks Tick. Borne. Dis. 2018, 9, 1103–1114. [Google Scholar] [CrossRef]
- Fedele, K.; Poh, K.C.; Brown, J.E.; Jones, A.; Durden, L.A.; Tiffin, H.S.; Pagac, A.; Li, A.Y.; Machtinger, E.T. Host Distribution and Pathogen Infection of Fleas (Siphonaptera) Recovered from Small Mammals in Pennsylvania. J. Vector Ecol. 2020, 45, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.A.; Nelson, C.A.; Mead, P.S. U.S. Public’s Experience with Ticks and Tick-Borne Diseases: Results from National HealthStyles Surveys. Ticks Tick Borne Dis. 2015, 6, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Kopsco, H.L.; Duhaime, R.J.; Mather, T.N. Assessing Public Tick Identification Ability and Tick Bite Riskiness Using Passive Photograph-Based Crowdsourced Tick Surveillance. J. Med. Entomol. 2021, 58, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, E.T.; Li, A.Y.; Liu, Y. Tick Bite Risk and Tick-Borne Disease Perceptions of School District Administrators in the Mid-Atlantic United States. J. Sch. Health 2019, 89, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L.; Stafford, K.C. Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae). J. Med. Entomol. 2021, 58, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiffin, H.S.; Rajotte, E.G.; Sakamoto, J.M.; Machtinger, E.T. Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective. Trop. Med. Infect. Dis. 2022, 7, 388. https://doi.org/10.3390/tropicalmed7110388
Tiffin HS, Rajotte EG, Sakamoto JM, Machtinger ET. Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective. Tropical Medicine and Infectious Disease. 2022; 7(11):388. https://doi.org/10.3390/tropicalmed7110388
Chicago/Turabian StyleTiffin, Hannah S., Edwin G. Rajotte, Joyce M. Sakamoto, and Erika T. Machtinger. 2022. "Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective" Tropical Medicine and Infectious Disease 7, no. 11: 388. https://doi.org/10.3390/tropicalmed7110388
APA StyleTiffin, H. S., Rajotte, E. G., Sakamoto, J. M., & Machtinger, E. T. (2022). Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective. Tropical Medicine and Infectious Disease, 7(11), 388. https://doi.org/10.3390/tropicalmed7110388