Prevalence of Escherichia coli ST1193 Causing Intracranial Infection in Changsha, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Multilocus Sequence Typing and Phylogenetic Group
2.3. Antimicrobial Susceptibility Testing
2.4. Molecular Characterization of ST1193
2.5. Clinical Data Collection
2.6. Statistical Analysis
3. Results
3.1. Multilocus Sequence Typing and Phylogenetic Group
3.2. Antimicrobial Susceptibility
3.3. Molecular Characterization of ST1193
3.4. Clinical Characteristics of the Patients with ST1193 Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipworth, S.; Vihta, K.-D.; Chau, K.; Barker, L.; George, S.; Kavanagh, J.; Davies, T.; Vaughan, A.; Andersson, M.; Jeffery, K.; et al. Ten-Year Longitudinal Molecular Epidemiology Study of Escherichia Coli and Klebsiella Species Bloodstream Infections in Oxfordshire, UK. Genome Med. 2021, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, M.; Fu, X.; Cai, J.; Chen, S.; Lin, Y.; Jiang, N.; Chen, S.; Lin, Z. Escherichia Coli Causing Neonatal Meningitis During 2001-2020: A Study in Eastern China. Int. J. Gen. Med. 2021, 14, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.-M.; Liu, W.-E.; Meng, Q.; Li, Y. Escherichia Coli O25b-ST131 and O16-ST131 Causing Urinary Tract Infection in Women in Changsha, China: Molecular Epidemiology and Clinical Characteristics. Infect. Drug Resist. 2019, 12, 2693–2702. [Google Scholar] [CrossRef]
- Ouchenir, L.; Renaud, C.; Khan, S.; Bitnun, A.; Boisvert, A.-A.; McDonald, J.; Bowes, J.; Brophy, J.; Barton, M.; Ting, J.; et al. The Epidemiology, Management, and Outcomes of Bacterial Meningitis in Infants. Pediatrics 2017, 140, e20170476. [Google Scholar] [CrossRef]
- Choi, C. Bacterial Meningitis in Aging Adults. Clin. Infect. Dis. 2001, 33, 1380–1385. [Google Scholar] [CrossRef]
- van de Beek, D.; Drake, J.M.; Tunkel, A.R. Nosocomial Bacterial Meningitis. N. Engl. J. Med. 2010, 362, 146–154. [Google Scholar] [CrossRef]
- Croxen, M.A.; Finlay, B.B. Molecular Mechanisms of Escherichia Coli Pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Kim, K.S. Acute Bacterial Meningitis in Infants and Children. Lancet Infect. Dis. 2010, 10, 32–42. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Chen, L.; DeVinney, R.; Matsumura, Y. Escherichia Coli ST1193: Following in the Footsteps of E. Coli ST131. Antimicrob. Agents Chemother. 2022, 66, e0051122. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Zheng, B.; Wei, Z.; Shen, P.; Li, S.; Li, L.; Xiao, Y. Molecular Epidemiology and Genetic Diversity of Fluoroquinolone-Resistant Escherichia Coli Isolates from Patients with Community-Onset Infections in 30 Chinese County Hospitals. J. Clin. Microbiol. 2015, 53, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Oh, T.; Nam, Y.S.; Cho, S.Y.; Lee, H.J. Prevalence of ST131 and ST1193 Among Bloodstream Isolates of Escherichia Coli Not Susceptible to Ciprofloxacin in a Tertiary Care University Hospital in Korea, 2013–2014. Clin. Lab. 2017, 63, 1541–1543. [Google Scholar] [CrossRef]
- Platell, J.L.; Trott, D.J.; Johnson, J.R.; Heisig, P.; Heisig, A.; Clabots, C.R.; Johnston, B.; Cobbold, R.N. Prominence of an O75 Clonal Group (Clonal Complex 14) among Non-ST131 Fluoroquinolone-Resistant Escherichia Coli Causing Extraintestinal Infections in Humans and Dogs in Australia. Antimicrob. Agents Chemother. 2012, 56, 3898–3904. [Google Scholar] [CrossRef]
- Tchesnokova, V.L.; Rechkina, E.; Larson, L.; Ferrier, K.; Weaver, J.L.; Schroeder, D.W.; She, R.; Butler-Wu, S.M.; Aguero-Rosenfeld, M.E.; Zerr, D.; et al. Rapid and Extensive Expansion in the United States of a New Multidrug-Resistant Escherichia Coli Clonal Group, Sequence Type 1193. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 334–337. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, J.; Yao, K.; Gao, W.; Wang, Y. Molecular Characteristics of the New Emerging Global Clone ST1193 among Clinical Isolates of Escherichia Coli from Neonatal Invasive Infections in China. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 833–840. [Google Scholar] [CrossRef]
- Oldendorff, F.; Linnér, A.; Finder, M.; Eisenlauer, P.; Kjellberg, M.; Giske, C.G.; Nordberg, V. Case Report: Fatal Outcome for a Preterm Newborn With Meningitis Caused by Extended-Spectrum β-Lactamase-Producing Escherichia Coli Sequence Type 1193. Front. Pediatr. 2022, 10, 866762. [Google Scholar] [CrossRef]
- Lin, C.; Zhao, X.; Sun, H. Analysis on the Risk Factors of Intracranial Infection Secondary to Traumatic Brain Injury. Chin. J. Traumatol. 2015, 18, 81–83. [Google Scholar] [CrossRef]
- da Silva, L.P.A.; Cavalheiro, L.G.; Queirós, F.; Nova, C.V.; Lucena, R. Prevalence of Newborn Bacterial Meningitis and Sepsis during the Pregnancy Period for Public Health Care System Participants in Salvador, Bahia, Brazil. Braz. J. Infect. Dis. 2007, 11, 272–276. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia Coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standars for Antimicrial Susceptiblity Testing, 26th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for Rapid Detection of Genes Encoding CTX-M Extended-Spectrum β-Lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef]
- Kim, J.; Lim, Y.-M.; Jeong, Y.-S.; Seol, S.-Y. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 Extended-Spectrum β-Lactamases in Enterobacteriaceae Clinical Isolates in Korea. Antimicrob. Agents Chemother. 2005, 49, 1572–1575. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Tchesnokova, V.; Johnston, B.; Clabots, C.; Roberts, P.L.; Billig, M.; Riddell, K.; Rogers, P.; Qin, X.; Butler-Wu, S.; et al. Abrupt Emergence of a Single Dominant Multidrug-Resistant Strain of Escherichia Coli. J. Infect. Dis. 2013, 207, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Park, C.H.; Kim, C.J.; Kim, E.-C.; Jacoby, G.A.; Hooper, D.C. Prevalence of Plasmid-Mediated Quinolone Resistance Determinants over a 9-Year Period. Antimicrob. Agents Chemother. 2009, 53, 639–645. [Google Scholar] [CrossRef]
- Berman, H.; Barberino, M.G.; Moreira, E.D.; Riley, L.; Reis, J.N. Distribution of Strain Type and Antimicrobial Susceptibility of Escherichia Coli Isolates Causing Meningitis in a Large Urban Setting in Brazil. J. Clin. Microbiol. 2014, 52, 1418–1422. [Google Scholar] [CrossRef]
- Zhong, Y.-M.; Liu, W.-E.; Liang, X.-H.; Li, Y.-M.; Jian, Z.-J.; Hawkey, P.M. Emergence and Spread of O16-ST131 and O25b-ST131 Clones among Faecal CTX-M-Producing Escherichia Coli in Healthy Individuals in Hunan Province, China. J. Antimicrob. Chemother. 2015, 70, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ji, S.; Chen, Y.; Zhou, W.; Wei, Z.; Li, L.; Ma, Y. Resistance of Strains Producing Extended-Spectrum β-Lactamases and Genotype Distribution in China. J. Infect. 2007, 54, 53–57. [Google Scholar] [CrossRef]
- Zeng, Q.; Xiao, S.; Gu, F.; He, W.; Xie, Q.; Yu, F.; Han, L. Antimicrobial Resistance and Molecular Epidemiology of Uropathogenic Escherichia Coli Isolated From Female Patients in Shanghai, China. Front. Cell. Infect. Microbiol. 2021, 11, 653983. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lan, F.; Lu, Y.; He, Q.; Li, B. Molecular Characteristics of ST1193 Clone among Phylogenetic Group B2 Non-ST131 Fluoroquinolone-Resistant Escherichia Coli. Front. Microbiol. 2017, 8, 2294. [Google Scholar] [CrossRef]
- Xia, L.; Liu, Y.; Xia, S.; Kudinha, T.; Xiao, S.; Zhong, N.; Ren, G.; Zhuo, C. Prevalence of ST1193 Clone and IncI1/ST16 Plasmid in E-Coli Isolates Carrying BlaCTX-M-55 Gene from Urinary Tract Infections Patients in China. Sci. Rep. 2017, 7, 44866. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Molecular Epidemiology of Escherichia Coli Producing CTX-M Beta-Lactamases: The Worldwide Emergence of Clone ST131 O25:H4. Int. J. Antimicrob. Agents. 2010, 35, 316–321. [Google Scholar] [CrossRef]
- Poirel, L. Biochemical Analysis of the Ceftazidime-Hydrolysing Extended-Spectrum Beta-Lactamase CTX-M-15 and of Its Structurally Related Beta-Lactamase CTX-M-3. J. Antimicrob. Chemother. 2002, 50, 1031–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Po, K.H.L.; Chan, E.W.C.; Chen, S. Functional Characterization of CTX-M-14 and CTX-M-15 β-Lactamases by In Vitro DNA Shuffling. Antimicrob. Agents Chemother. 2017, 61, e00891-17. [Google Scholar] [CrossRef]
- Chang, J.; Yu, J.; Lee, H.; Ryu, H.; Park, K.; Park, Y.-J. Prevalence and Characteristics of Lactose Non-Fermenting Escherichia Coli in Urinary Isolates. J. Infect. Chemother. 2014, 20, 738–740. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Johnston, B.; Kuskowski, M.A.; Sokurenko, E.V.; Tchesnokova, V. Intensity and Mechanisms of Fluoroquinolone Resistance within the H 30 and H 30Rx Subclones of Escherichia Coli Sequence Type 131 Compared with Other Fluoroquinolone-Resistant E. Coli. Antimicrob. Agents Chemother. 2015, 59, 4471–4480. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Dufendach, K.R.; Wellons, J.C.; Kuba, M.G.; Nickols, H.H.; Gómez-Duarte, O.G.; Wynn, J.L. Lethal Neonatal Meningoencephalitis Caused by Multi-Drug Resistant, Highly Virulent Escherichia Coli. Infect. Dis. 2016, 48, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MLST | Allelic Profile | Phylogenetic Group | No. (%) of Strains | ||||||
---|---|---|---|---|---|---|---|---|---|
adk | fumC | gyrB | icd | mdh | purA | recA | |||
ST1193 | 14 | 14 | 10 | 200 | 17 | 7 | 10 | B2 | 8 (28.6) |
ST131 | 53 | 40 | 47 | 13 | 36 | 28 | 29 | B2 | 6 (21.4) |
ST648 | 92 | 4 | 87 | 96 | 70 | 58 | 2 | F | 3 (10.7) |
ST354 | 85 | 88 | 78 | 29 | 59 | 58 | 62 | F | 2 (7.1) |
ST38 | 4 | 26 | 2 | 25 | 5 | 5 | 19 | D | 2 (7.1) |
ST457 | 101 | 88 | 97 | 108 | 26 | 79 | 2 | F | 2 (7.1) |
ST58 | 6 | 4 | 4 | 16 | 24 | 8 | 14 | B1 | 1 (3.6) |
ST69 | 21 | 35 | 27 | 6 | 5 | 5 | 4 | D | 1 (3.6) |
ST23 | 6 | 4 | 12 | 1 | 20 | 13 | 7 | C | 1 (3.6) |
ST95 | 37 | 38 | 19 | 37 | 17 | 11 | 26 | B2 | 1 (3.6) |
ST394 | 21 | 35 | 61 | 52 | 5 | 5 | 4 | E | 1 (3.6) |
Antimicrobial Resistance | No. (%) of Strains (n = 28) | No. (%) of Strains | p-Value * | |
---|---|---|---|---|
ST1193 (n = 8) | Non-ST1193 (n = 20) | |||
Ampicillin | 26 (92.9) | 7 (87.5) | 19 (95.0) | 0.497 |
Cefazolin | 22 (78.6) | 5 (62.5) | 17 (85.0) | 0.311 |
Ceftriaxone | 19 (67.9) | 4 (50.0) | 15 (75.0) | 0.371 |
Ampicillin/sulbactam | 21 (75.0) | 6 (75.0) | 15 (75.0) | 1.000 |
Piperacillin/tazobactam | 1 (3.6) | 1 (12.5) | 0 (0) | 0.286 |
Imipenem | 1 (3.6) | 0 (0) | 1 (5.0) | 1.000 |
Gentamicin | 19 (67.9) | 5 (62.5) | 14 (70.0) | 1.000 |
Ciprofloxacin | 17 (60.7) | 8 (100) | 9 (45.0) | 0.010 |
Aztreonam | 12 (42.9) | 3 (37.5) | 9 (45.0) | 1.000 |
Trimethoprim/sulfamethoxazole | 22 (78.6) | 7 (87.5) | 15 (75.0) | 0.640 |
ESBLs | 17 (60.7) | 4 (50.0) | 13 (65.0) | 0.671 |
Clinical Characteristics | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | Patient 8 |
---|---|---|---|---|---|---|---|---|
Age (days) | 85 | 26 | 12 | 61 | 6 | 92 | 13 | 79 |
Gender | Male | Female | Male | Female | Female | Female | Female | Female |
Fever | + | + | + | + | + | + | + | + |
Convulsion | - | - | + | - | - | + | - | - |
Meningitis | + | + | + | + | + | + | + | + |
Subdural effusion | - | + | - | - | - | + | - | + |
Laboratory test (CSF) | ||||||||
WBC (×106/L) | 7250 | 1280 | 2220 | 1020 | 2100 | 12820 | 2900 | 1310 |
Glucose (mmol/L) | 0.20 | 0.43 | 0.24 | 0.25 | 0.71 | 0.06 | 0.02 | 0.14 |
Protein (mg/L) | 2880 | 2140 | 2660 | 3370 | 2370 | 3520 | 2840 | 3010 |
Treatment | MEM, TZP | MEM, CRO, AMC | MEM, SAM, CRO | MEM | MEM, CRO, AMC | MEM, CRO | MEM | MEM, CRO |
Length of stay (days) | 38 | 30 | 56 | 26 | 29 | 8 | 38 | 43 |
Outcome | Survived | Survived | Survived | Survived | Survived | Death | Survived | Survived |
CTX-M genotype | CTX-M-27 | - | - | CTX-M-55 | - | CTX-M-55 | CTX-M-55 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.-M.; Zhang, X.-H.; Ma, Z.; Liu, W.-E. Prevalence of Escherichia coli ST1193 Causing Intracranial Infection in Changsha, China. Trop. Med. Infect. Dis. 2022, 7, 217. https://doi.org/10.3390/tropicalmed7090217
Zhong Y-M, Zhang X-H, Ma Z, Liu W-E. Prevalence of Escherichia coli ST1193 Causing Intracranial Infection in Changsha, China. Tropical Medicine and Infectious Disease. 2022; 7(9):217. https://doi.org/10.3390/tropicalmed7090217
Chicago/Turabian StyleZhong, Yi-Ming, Xiao-He Zhang, Zheng Ma, and Wen-En Liu. 2022. "Prevalence of Escherichia coli ST1193 Causing Intracranial Infection in Changsha, China" Tropical Medicine and Infectious Disease 7, no. 9: 217. https://doi.org/10.3390/tropicalmed7090217
APA StyleZhong, Y. -M., Zhang, X. -H., Ma, Z., & Liu, W. -E. (2022). Prevalence of Escherichia coli ST1193 Causing Intracranial Infection in Changsha, China. Tropical Medicine and Infectious Disease, 7(9), 217. https://doi.org/10.3390/tropicalmed7090217