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Abstract: Schistosomiasis caused by Schistosoma japonicum is one of the major neglected tropical
diseases worldwide. The snail Oncomelania hupensis is the only intermediate host of S. japonicum,
which is recognized as an indicator of the schistosomias occurrence. In order to evaluate the risk
of schistosomiasis in China, this work investigate the potential geographical distribution of host
snail habitus by developing an ensemble ecological niche model with reference to the suitable
environmental factors. The historical records of snail habitus were collected form the national
schistosomiasis surveillance program from the year of 2005 to 2014. A total of 25 environmental
factors in terms of the climate, geographic, and socioeconomic determinants of snail habitats were
collected and geographically coded with reference to the snail data. Based on the correlations among
snail habitats and the geographically associated environmental factors, an ensemble ecological niche
model was developed by integrating ten standard models, aiming for improving the predictive
accuracy. Three indexes are used for model performance evaluation, including receiver operating
characteristic curves, kappa statistics, and true skill statistics. The model was used for mapping
the risk of schistosomiasis in the middle and lower reaches of the Yangtze River. The results have
shown that the predicted risk areas were classified into low risk (4.55%), medium risk (2.01%), and
high risk areas (4.40%), accounting for 10.96% of the land area of China. This study demonstrated
that the developed ensemble ecological niche models was an effective tool for evaluating the risk
of schistosomiasis, particularly for the endemic regions, which were not covered by the national
schistosomiasis control program.

Keywords: Schistosoma japonica; snail habitat; ecological niche modeling

1. Introduction

Neglected tropical diseases (NTDs) are a diverse group of diseases that are mainly
prevalent in tropical areas, where they mostly affect impoverished communities [1]. Many
of NTDs are vector-borne, have animal reservoirs, and their epidemiology is complex and
often related to environmental conditions and climate changes. In 2015, the United Nations
set up the 2030 Agenda for Sustainable Development by adopting the 17 Sustainable
Development Goals (SDGs), which call for urgent action to deal with the impacts of climate
change to successfully achieve all Sustainable Development Goals (SDGs) [2]. Goal 3 of
SDGs has targeted the end of the epidemics of NTDs by 2030. In doing so, WHO launched
its road map for NTDs entitled “Ending the neglect to attain the Sustainable Development
Goals: a road map for NTDs 2021–2030” [3].
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Schistosomiasis is one of the NTDs, which is prevalent in 78 countries in tropical
and subtropical areas of the world. Current global infections are estimated at 240 million
people, with more than 700 million people at risk for infection [4]. The transmission of
schistosomiasis is associated with its intermedia host snail, the habitat of which is affected
by a series of climate environments, including meteorological, geographical, and ecological
factors. In China, Schistosoma japonicum is the main endemic species. Because of its wide
geographic distribution and large clinical case burden, S. japonicum is a major public health
and socioeconomic concern [5]. Since the initiation of the national schistosomiasis control
program in the 1950s, considerable progress has been made toward the control of S. japonica
in China [6,7]. China is moving toward the interruption of transmission and elimination of
schistosomiasis across the country by 2030 [8]. By the end of 2021, among the 12 endemic
provinces (municipality and autonomous region) for schistosomiasis in China, five of
them, i.e., the Shanghai, Zhejiang, Fujian, Guangdong, and Guangxi, have maintained the
criteria of elimination, the Sichuan and Jiangsu provinces achieved the goal of transmission
interruption, and the Yunnan, Hubei, Anhui, Jiangxi and Hunan provinces maintained the
criteria of transmission control [9].

Currently, schistosomiasis is characterized by low prevalence and low infection in-
tensity in areas where transmission is ongoing. The climate environment and socioe-
conomic factors associated with intermediate host snail distribution, however, remain
unchanged [10]. Consequently, several challenges remain for the interruption of trans-
mission and eventual elimination of schistosomiasis in China. These challenges include
the management of infected humans and livestock, a high seropositive infection rate in
humans in endemic areas, and host snail persistence in areas populated with infected
animals [11,12]. Furthermore, currently available detection and monitoring tools are inad-
equate for optimal control of schistosomiasis, resulting in an underestimate of incidence,
which increases the risk of schistosomiasis re-emergence [13]. A targeted assessment of
schistosomiasis prevalence is therefore needed to facilitate progress toward elimination.

Transmission of schistosomiasis is associated with variations in climate environments,
and climate changes will affect the spatial distribution and transmission intensity of infec-
tion [14]. Transmission is also indirectly affected by population movement and socioeco-
nomic development. These indirect risk factors and climate environmental changes impact
disease incidence and management. Examination of correlations between the climate and
social environment with the occurrence of schistosomiasis will provide a better under-
standing of schistosomiasis transmission. In this study, climate change factors, together
with geographic and socioeconomic factors, were evaluated in ecological niche models
that assessed schistosomiasis occurrence. In this manner, areas at high risk of infection
and transmission were identified, and with identification it will be possible to evaluate
the impact of climate changes and to implement schistosomiasis control and elimination
programs in China.

Ecological niche modeling integrates species point prevalence data with environmental
raster data to estimate the ecological suitability of vector distribution, thereby predicting the
actual or potential distribution of infection [15]. Ecological niche modeling has been widely
employed in infectious disease research [16] and it is useful for the analysis of associations
among environmental risk factors and infection prevalence as a means by which to predict
disease transmission [17,18]. To date, ecological niche modeling has been used to predict
the potential habitats of Oncomelania hupensis (the intermediate host of S. japonicum) [19–21]
and to predict schistosomiasis vectorial capacity based on future climate scenarios [22].
Previous studies have successfully used ecological niche modeling for the prediction of
schistosomiasis transmission, but few of these studies have assessed the direct risk of
schistosomiasis transmission by ecological niche modeling. In this study, an ensemble
ecological niche modeling approach was developed to extract the ecological elements
within endemic areas of schistosomiasis that predict potential risk for schistosomiasis
in China.
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2. Materials and Methods
2.1. Ethics

Ethics issues were not relevant to this study.

2.2. Study Area

Villages that reported schistosomiasis cases during the years 2005 to 2014 were se-
lected for analysis. In China, the national snail survey program is completed annually to
understand snail distribution and density, as well as the environmental characteristics of
snail habitats. Snail survey data for 92 villages at surveillance sites were obtained from
the national schistosomiasis surveillance database with the exclusion of repeated and
incomplete data. The latitude and longitude for each village were determined (Figure 1).
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Figure 1. The geographical locations of historical host snail records. A total of 92 villages were
selected as the sample sites due to their reported cases of schistosomiasis during the years 2005
to 2014. The snail records in each sample site were obtained from the National Schistosomiasis
Surveillance Program.

2.3. Environmental Factors
2.3.1. Environmental Dominants of Snail Habitus

The distribution of snails is related to geographical and ecological factors that include
submersion time during the flooding season, groundwater level, soil moisture, vegetation,
and light intensity. Prolonged submersion, high groundwater levels, and moist soil increase
snail density. Suitable snail habitats require a mild climate and abundant rainfall. Condi-
tions need to provide an annual average temperature of over 14 ◦C and an annual average
precipitation of over 750 mm. Potential ecological predictors for host snail distribution of
schistosomiasis were identified from the existing literature. The geographical distribution
of snails in marshlands and lake regions is related to ecological factors, including elevation,
soil type, rainfall pattern, proximity to human and livestock areas, and climate factors
related to temperature and precipitation. A series of environmental factors related to the
distribution of snail habitus can be divided into four categories, including meteorological,
bioclimatic, geographical, and socioeconomic variables.

2.3.2. Data Processing

As summarized in Table 1, a total of 25 environmental factors, in terms of climate,
geographical, and socioeconomic factors, were included in the environmental dataset.
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Specifically, climate factors were extracted from the Chinese Meteorological Background
dataset based on the meteorological data from 1950 to 1990, with a 500 m by 500 m spatial
resolution (six factors), created by the Resource and Environmental Science Data Center
of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on 1 October 2022).
The global climate dataset was based on the meteorological data of China from 1955 to
2000, with a 1 km by 1 km spatial resolution (19 bioclimatic factors) using WorldClim v.
2.0 (http://www.worldclim.org, accessed on 10 September 2022). Geographical factors
with a 1 km by 1 km spatial resolution included elevation (data from 2000), landform (data
from 2005), land use (data from 2005), soil texture (data from 1995), and annual NDVI
(data from 2004 to 2015) (ANDVI). Elevation, soil texture, and ANDVI data were obtained
from the Resource and Environmental Science Data Center of the Chinese Academy of
Sciences. Landform and land use data were downloaded from the National Earth System
Science Data Center (http://www.geodata.cn, accessed on 20 October 2022). Socioeconomic
factors were derived from 2010 data, including the density of the bovine population, gross
domestic product, and human population density. Bovine population density data with a
10 km by 10 km spatial resolution were captured by the Food and Agriculture Organization
of the United Nations (http://www.fao.org, accessed on 11 August 2022), while gross
domestic product and population density data with a 1 km by 1 km spatial resolution were
downloaded from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn) (accessed on 10 October 2022).

Table 1. Environmental factors affecting the distribution of snails.

Variable Categories Variable Definition

Meteorological factors

AR Aridity
IM Index of moisture

AAP Average annual precipitation
AAT Average annual temperature

AAT0 ≥0 ◦C annual accumulated temperature
AAT10 ≥10 ◦C annual accumulated temperature

Bioclimatic factors

BIO1 Annual mean air temperature
BIO2 Monthly mean diurnal temperature range
BIO3 Isothermality
BIO4 Temperature seasonality
BIO5 Maximum air temperature in the warmest month
BIO6 Minimum air temperature in the coldest month
BIO7 Temperature annual range
BIO8 Mean air temperature in the wettest quarter
BIO9 Mean air temperature in the driest quarter

BIO10 Mean air temperature in the warmest quarter
BIO11 Mean air temperature in the coldest quarter
BIO12 Annual precipitation
BIO13 Precipitation in the wettest month
BIO14 Precipitation in the driest month
BIO15 Precipitation seasonality
BIO16 Precipitation in the wettest quarter
BIO17 Precipitation in the driest quarter
BIO18 Precipitation in the warmest quarter
BIO19 Precipitation in the coldest quarter

Geographical factors

EL Elevation
LF Type of landform
LD Type of land use

Sand Soil texture classified as sand
Silt Soil texture classified as silt

Clay Soil texture classified as clay
ANDVI Annual normalized difference vegetation index

Socioeconomic factors
DBP The density of bovine populations
GDP Gross domestic product
DP Population density

The values of each environmental factor were clipped to a standard base map of
China in ArcGIS Version 10.6 (U.S. ESRI, Redlands, CA, USA) using the nearest neighbor

http://www.resdc.cn
http://www.worldclim.org
http://www.geodata.cn
http://www.fao.org
http://www.resdc.cn
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resampling algorithm (for categorical factors) or a bilinear resampling algorithm (for
continuous factors), with a 1 km by 1 km spatial resolution.

Collinearity diagnostics were carried out on all environmental factors, except for two
categorical variables (land use and landform). Collinearity was assessed using Pearson’s
correlation coefficient in Software Version 4.2.2 (U.S. EPA, Washington, DC, USA) with
pairwise correlation coefficients and a correlation coefficient matrix. An absolute correlation
coefficient of >0.90 represented a strong degree of correlation, with a value of zero indicating
no correlation. Collinear variables were removed based on biological significance, and the
remaining environmental variables were included in the ecological niche models.

The importance of environmental factors of the ensemble model was analyzed by using
the variable importance calculation function of the biomod2 package. The principle was
to shuffle a single data variable and then assess the predictive models with the “shuffled”
dataset. A simple Pearson’s correlation between the reference prediction and the “shuffled”
prediction was computed to measure the contribution rate of the variable to the model. The
contribution rate of the environmental factors to the ensemble model was assessed with
the biomod2 package. The percentage of different environmental factors was calculated
and sorted to identify the main influencing factors.

2.4. Ensemble Ecological Niche Modeling
2.4.1. Standard Ecological Niche Models

Ecological niche models (ENMs) that were originally developed for ecological and
conservation purposes are used increasingly to model spatial distribution and potential
risk of occurrence for a range of diseases and vector species. Ten standard ecological niche
models were used to examine associations of S. japonica occurrence with environmental,
geographic, climate, and socioeconomic risk factors using the biomod2 package [23].

As shown in Table 2, the selected standard models were classified into four categories
with reference the mechanism of their prediction mechanisms. They are surface range
envelope (SRE) models based on an environmental envelope (threshold-based) algorithm,
generalized linear models (GLM), generalized additive models (GAM), and multivariate
adaptive regression spline (MARS) models, based on a statistical regression algorithm,
generalized boosted models (GBM), classification tree analysis (CTA) models and flexible
discriminant analysis (FDA) models, based on a classification algorithm, artificial neural
network (ANN), random forest (RF), and maximum entropy (MaxEnt) models, based on a
machine learning algorithm.

Table 2. Ten standard ecological niche models.

Categories Model Definition

Environmental envelope algorithm SRE Surface range envelope

Statistical regression algorithm
GLM Generalized linear models
GAM Generalized additive models
MARS Multivariate adaptive regression spline

Classification algorithm
GBM Generalized boosted models model
CTA Classification tree analysis model
FDA Flexible discriminant analysis model

Machine learning algorithm
ANN Artificial neural network model

RF Random forest model
MaxEnt Maximum entropy model

Models were run using training datasets, with 10 runs completed for repeated models
using the same parameters, resulting in the creation of 100 ecological niche models.

2.4.2. Model Evaluation and Validation

Model performance was assessed with test datasets using threshold-independent and
threshold-dependent measures. In this study, the most commonly used indices in the
biomod2 package, which are, respectively, the receiver operating characteristic (ROC, the
threshold-independent index) [24], kappa statistic (threshold-dependent index), and true
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skill statistic (TSS, threshold-dependent index), were employed to assess the performance
of the single and the ensemble ecological niche models [25].

The receiver operating characteristic curve takes the false positive rate as the abscissa
and the true positive rate as the ordinate, which is widely used in all types of model
prediction accuracy evaluation. The area under the ROC curves (AUC) is used to reflect
the ability of the model to distinguish between positive and negative samples, that is, the
classification prediction ability of species distribution. The advantage of the ROC curve is
that it is not affected by the unbalanced distribution of positive and negative samples in
test data sets and the judgment threshold and can stably evaluate the model performance
under various data conditions. The value range is from 0 to 1, and the value size represents
the accuracy of the model prediction. The closer the value is to 1, the higher the model
accuracy is. A value less than 0.5 is generally defined as poor model performance and
even not necessarily better than the random prediction result. A value greater than 0.9 is
considered excellent prediction performance.

Kappa statistics can evaluate the overall prediction accuracy of the model after random
calibration, which is related to the distribution incidence and judgment threshold. Its value
is located in the interval from −1 to 1. When the value is less than 0, it indicates that the
prediction result of the model is not a strong and random prediction. The closer the value
is to 1, the more consistent the prediction result of the model is with the actual observation
result and the better the accuracy of the model is. A value greater than 0.85 is considered a
very good model performance.

TSS value is an improved index based on kappa statistics. Its result is not affected by
the incidence of distribution but by the judgment threshold, and it can make an accurate
judgment on the accuracy of the model. Its value range is as same as kappa. When the
TSS value is greater than 0.85, it can be considered that the prediction results of the model
are ideal.

All three of these indices may be used differently to evaluate the prediction accuracy
of ecological niche models. ROC statistics are used to assess the ability to distinguish the
presence or absence of species distribution of the model, while kappa statistics and TSS
measure the consistency between model prediction results and sample data [26]. Using a
combination of these three indices more accurately evaluates the predictive performance
of 10 ecological niche models and yields an optimal model. Table 3 shows the assessment
criteria for the prediction accuracy of ecological niche models.

Table 3. Criteria for the measurement of prediction accuracy for ecological niche models.

Parameter Failure Poor Fair Good Very Good

ROC 0.00–0.49 0.50–0.69 0.70–0.79 0.80–0.89 0.90–1.00
Kappa −1.00–0.39 0.40–0.54 0.55–0.69 0.70–0.84 0.85–1.00

TSS −1.00–0.39 0.40–0.54 0.55–0.69 0.70–0.84 0.85–1.00

To evaluate the developed models for snail-suitable habitat prediction, the ground
truth of the ecological niche modeling outputs was conducted by comparing the suitable
distribution of the snail population. Locations within the study area predicted different
habitat suitability values. Specifically, 25% of the total ground survey snail distribution sites
were selected as a validation dataset, which was used for comparison of model-predicted
suitable habitats. The ratio of such a comparison was interpreted as the accuracy of the
developed prediction model.

The model accuracy in terms of ROC, KAPPA, and TSS values was examined by the
standard deviations (X ± s), and the difference between these indexes was compared using
the Kruskal-Walis H test, a non-parametric test based on rank order, with a hypothesis test
level of α = 0.05.
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2.4.3. Ensemble Model and Risk Classification

Due to the uncertainty of predictions made using a basic ecological niche model, an
ensemble modeling approach was created by integrating the developed basic models to
improve the predictive accuracy of schistosomiasis transmission risk. The inclusion of
ecological niche models to build an ensemble model was based on a ROC threshold value
of >0.90 and a TSS value of >0.85. The prediction results of each ecological niche model
were normalized to account for raster data values ranging from 0 to 1. Following the
definition of the weight according to TSS values, prediction results of the ensemble model
were estimated using a weighted average method.

Schistosomiasis transmission risk among different regions was evaluated according to
four classifications based on the prediction of the ensemble model.

These included no-risk areas, low-risk areas, medium-risk areas, and high-risk areas
of transmission risk that were predicted by the ensemble model identified at a minimum
presence threshold.

• No-risk area: a presence probability ranging from 0 to the minimum presence threshold,
• Low-risk area: a presence probability ranging from the minimum presence threshold

to 0.70,
• Medium risk area: a presence probability ranged from 0.70 to 0.80,
• High-risk area: a presence probability of 0.80 to 1.00.

Geostatistical analysis of the distribution of areas at risk for schistosomiasis transmis-
sion was carried out in 12 endemic provinces, and the area proportion was calculated for
various levels of risk.

3. Results
3.1. Results of Collinearity Diagnostics

As demonstrated in Figure 2, correlation diagnostics of environmental factors showed
that most climate factors were highly correlated. To select the most predictive factors, we
take the following selection criteria: if the correlated factors belong to the same dataset, such
as the meteorological factors, bioclimatic factors, geographical factors, or socioeconomic
factors, the factor that with the largest correlation coefficients will be kept for modeling,
while the other correlated factors will be removed. Specifically, AAT had a strong correlation
with AAT0 and AAT10 in the same data set, as did BIO1, BIO6, BIO9, and BIO11 for the
bioclimatic factors. Because AAT correlates well with the other factors, AAT was selected
for model training. The other factors were deleted. AAP had a strong correlation with
annual precipitation BIO12, BIO13, and BIO16 for bioclimatic factors, and AAP was selected.
BIO4 was strongly correlated with BIO7, hence the former was deleted. BIO19 had a strong
correlation with BIO17 and BIO14, hence BIO19 was selected for model training. El, a
geographic environmental variable, was related to BIO8. Since El was stronger than other
climate factors, it was retained.

Finally, the factors included in the training model were four meteorological back-
ground factors, seven bioclimatic factors, seven geographic factors, and three socioeconomic
factors, for a total of 21 environmental factors.
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3.2. Performance of Single Ecological Niche Models and the Ensemble Model
3.2.1. Performance of Model-Based Risk Prediction

ROC, kappa value, and TSS for 10 ecological niche models are presented in Figure 3.
Based on mean ROC values (as measures of prediction accuracy), RF models were found to
have the highest performance followed by GBM, FDA, MARS, GLM, GAM, ANN, CTA,
MAXENT, and SRE models. Based on mean TSS values, RF models were found to have
the best performance followed by GBM, FDA, MARS, GLM, GAM, CTA, ANN, MAXENT,
and SRE models. Significant differences were observed between mean ROC (H = 60.363,
p < 0.05), kappa (H = 54.447, p < 0.05), and TSS values (H = 53.894, p < 0.05) among all
ecological niche models. Overall, the performance of the RF, GBM, FDA, MARS, and
GLM models was satisfactory as a means by which to predict schistosomiasis transmission
risk, with a mean ROC of >0.9 and a mean TSS of >0.85. Only the SRE model had poor
performance, with a mean ROC of 0.726 ± 0.064, a mean kappa statistic of 0.457 ± 0.13, and
a mean TSS of 0.452 ± 0.129. Two-way error scatter plots of mean ROC and TSS display
the SRE model in the lower left and the GBM and RF models in the upper right of the
coordinate system.
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3.2.2. Dominant Predictive Environmental Factors of the Ensemble Model

The major environmental factors included in each ecological niche model were mod-
eled (Figure 4). Environmental factors that made the greatest model contribution were
average annual temperature (22.58%), temperature annual range (4.44%), precipitation in
the warmest quarter (3.83%), index of moisture (3.30%), type of landform (3.15%), and
average annual precipitation (3.12%).
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3.3. Schistosomiasis Risk Prediction

The ensemble model predicted the greatest risk for schistosomiasis transmission in
China to be the middle and lower reaches of the Yangtze River, including southern Jiangsu
province, western Shanghai prefecture, northern Zhejiang province, central Anhui province,
the Poyang Lake areas of Jiangsu province, southern Hubei province, and the Dongting
Lake areas of Hunan Province. Local risk area clustering was identified in central Sichuan
province, with scattered risk areas predicted in central Yunnan province (Figure 5). Overall,
the risk areas appeared to be clustered in the main schistosomiasis endemic area of China,
with a scattered distribution pattern when evaluated at a larger scale. Schistosomiasis
transmission risk prediction, using ecological niche models, identified an area infection risk
of 10.96% for all of China, with a low risk of 4.55%, medium risk of 2.01%, and a high risk
of 4.40%. There was no risk for 89.04% of China. Infection clusters were identified as high
risk in southern Hubei Province, the Dongting Lake regions in northern Hunan province,
northern parts, Poyang Lake regions of Jiangxi Province, the Yangtze River basin in central
Anhui Province, and southern Jiangsu Province. Medium-risk areas were located in central
Sichuan Province and local regions of Yunnan Province.

Mapping of the 12 endemic provinces of China identified to be at risk for schisto-
somiasis transmission. High-risk areas for schistosomiasis transmission were found in
five provinces: Hubei (22.01%), Hunan (18.16%), Anhui (17.86%), Jiangsu (15.68%), and
Jiangxi (7.04%). Provinces with medium risk for schistosomiasis transmission were: Hunan
(21.35%), Sichuan (19.11%), Jiangxi (16.73%), Anhui (13.40%), and Hubei (11.66%). Multiple
schistosomiasis transmission risk areas were found in Zhejiang Province. High-risk areas
were also found in Shanghai Prefecture, medium and high-risk areas were found in Yunnan
Province, and Fujian, Guangdong, and Guangxi had little or no risk for transmission.
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4. Discussion

The epidemics of NTDs are sensitive in different ways to environmental and socioe-
conomic conditions [27–29], so the risk evaluation for NTDs requires data from multiple
sources and multiple aspects, such as the geographical distributions of the pathogens,
vectors, or host populations, as well as their related environmental determinants [30,31].
Ecological niche models integrate these datasets and utilize statistical approaches for pre-
dicting the potential distribution of vector species from survey-based observations [32].
In this study, climate, geographic, and socioeconomic factors were evaluated by devel-
oping an ensemble ecological niche model to predict the risk areas of schistosomiasis in
mainland China.

Currently, the estimation of the value of area under the ROC curves is the primary
method by which to evaluate the predictive performance of ecological niche models [33,34].
In this study, ROC in combination with Kappa and TSS were used to assess the predictive
accuracy of models, with significant differences observed in the prediction accuracy of each
of the 10 single ecological niche models. The result indicates most of the models worked
well with higher performance except the SRE model. Although GLM, MARS, and GAM
models were all generated based on a statistical regression algorithm, GLM and MARS
models were found to produce more reasonable prediction results than GAM models. GBM,
CTA, and FDA models, based on a classification algorithm, produced consistent predictions,
with risk areas predicted for almost all sampling sites. With those models, there was no
excessive risk area expansion, although a mild variation in the exact distribution of risk
areas was observed. Among the three models based on machine learning algorithms, the RF
model showed the highest prediction accuracy, with all high-risk areas accurately predicted
within the main endemic foci of China. RF models also produced a reasonable shift from
medium to low-risk areas, while the ANN model yielded loose predictive results. The
MaxEnt model had poor prediction accuracy with many predicted risk areas observed to
be outside of schistosomiasis endemic areas. These findings demonstrated that prediction
accuracy by different ecological models may vary significantly and that uncertainty may
exist in models created using the same algorithms.



Trop. Med. Infect. Dis. 2023, 8, 24 11 of 13

The standard ecological niche models can generate uncertainties in the spatial predic-
tions of disease transmission [35,36]. Although the accuracy of standard models can be
achieved for risk prediction with the selected training and testing datasets, the predicted
risk areas may not be in accord with the real-world situation. Multiple models using high
index values have been shown to produce consistent prediction results, but the integration
of these models will have better predictive accuracy and reduced spatial uncertainty [37].

In this study, the standard ecological niche models, which have high prediction accu-
racy, were integrated into an ensemble model. The results have shown that schistosomiasis
high-risk regions were found to be predominantly located in southern Hubei Province,
northern Hunan Province, central Anhui Province, northern Jiangxi Province, and southern
Jiangsu Province, where the epidemic of schistosomiasis is under control. These predictions
are in agreement with the distribution of transmission-controlled and -interrupted areas of
China in 2018 [9].

The snail habitus sampled and included in this study was predominantly located in
marshland, lake areas, and waterway networks. Models predicted potential high-risk areas
in Shanghai and Zhejiang. This result indicated that the climate and ecological conditions in
Shanghai and Zhejiang were environmentally suitable for schistosomiasis. Re-emergence of
schistosomiasis is extremely likely upon the importation of S. japonica. Based on the results
of the developed ensemble model, the risk of schistosomiasis transmission exists in the
areas where the host snail is suitable for the local climate, environment, and socioeconomic
conditions. The risk areas were classified, and high-risk areas were found to be mainly
concentrated in the middle and lower reaches of the Yangtze River.

As a limitation of this study, the factors related to the disease intervention were not
taken into account in the developed model. Therefore, the interpretation of prediction
results was based on information from schistosomiasis control programs. For example,
concerted control efforts over several decades have resulted in the elimination of schisto-
somiasis transmission in Shanghai and Zhejiang, where schistosomiasis was historically
hyper-endemic. To improve predictive accuracy, future studies should consider the inter-
ventions that targeted schistosomiasis transmission, including examination and treatment
of human schistosomiasis, bovine herd reduction, snail control with chemical treatment,
and environmental modifications.

5. Conclusions

In this study, the transmission risk of schistosomiasis in mainland China was eval-
uated by developing an ensemble ecological niche model, which integrated 10 standard
models. The risk areas predicted from this study provided a reference for schistosomiasis
surveillance in China, which promoted the application of ecological niche modeling to
the field of schistosomiasis transmission risk research. This study demonstrated that the
proposed ensemble ecological niche model can be used for schistosomiasis transmission
risk prediction and to inform schistosomiasis surveillance and control programs in risk
areas. The inclusion of the latest artificial intelligence and machine learning algorithms in
ecological niche models will broaden the field of schistosomiasis transmission risk research.
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