Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Ethical Aspects
2.3. Molecular Analysis of Schistosoma Eggs from Urine Samples
2.4. Schistosome Egg Digitalization and Measurements
2.5. Statistical Data and Analyses
3. Results
3.1. Genetic Characterization
3.1.1. Cox1 Rapid Diagnostic PCR
3.1.2. ITS rDNA Sequence Analysis
3.2. Phenotypic Characterization
3.2.1. Morphotypes of S. haematobium Eggs
3.2.2. Influence of the Geographical Origin of the Parasite on the Size of S. haematobium Eggs
3.2.3. Morphotypes and Biometric Variations in Relation to the Geographical Origin of the Parasite
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kincaid-Smith, J.; Mathieu-Bégné, E.; Chaparro, C.; Reguera-Gomez, M.; Mulero, S.; Allienne, J.F.; Toulza, E.; Boissier, J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl. Trop. Dis. 2021, 15, e0009363. [Google Scholar] [CrossRef] [PubMed]
- Boissier, J.; Grech-Angelini, S.; Webster, B.L.; Allienne, J.F.; Huyse, T.; Mas-Coma, S.; Toulza, E.; Barré-Cardi, H.; Rollinson, D.; Kincaid-Smith, J.; et al. Outbreak of urogenital schistosomiasis in Corsica (France): An epidemiological case study. Lancet Infect. Dis. 2016, 16, 971–979. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.L.; Diaw, O.T.; Seye, M.M.; Webster, J.P.; Rollinson, D. Introgressive hybridization of Schistosoma haematobium group species in Senegal: Species barrier break down between ruminant and human schistosomes. PLoS Negl. Trop. Dis. 2013, 7, e2110. [Google Scholar] [CrossRef] [Green Version]
- Gautret, P.; Cramer, J.P.; Field, V.; Caumes, E.; Jensenius, M.; Gkrania-Klotsas, E.; de Vries, P.J.; Grobusch, M.P.; Lopez-Velez, R.; Castelli, F.; et al. Infectious diseases among travellers and migrants in Europe, EuroTravNet 2010. Eurosurveillance 2012, 17, 20205. [Google Scholar] [CrossRef]
- Botros, S.S.; Hammam, O.A.; El-Lakkany, N.M.; El-Din, S.H.; Ebeid, F.A. Schistosoma haematobium (Egyptian strain): Rate of development and effect of praziquantel treatment. J. Parasitol. 2008, 94, 386–394. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 1–441. [Google Scholar]
- Lingscheid, T.; Kurth, F.; Clerinx, J.; Marocco, S.; Trevino, B.; Schunk, M.; Muñoz, J.; Gjørup, I.E.; Jelinek, T.; Develoux, M.; et al. Schistosomiasis in European Travelers and Migrants: Analysis of 14 Years TropNet Surveillance Data. Am. J. Trop. Med. Hyg. 2017, 97, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Salas-Coronas, J.; Vázquez-Villegas, J.; Lozano-Serrano, A.B.; Soriano-Pérez, M.J.; Cabeza-Barrera, I.; Cabezas-Fernández, M.T.; Villarejo-Ordóñez, A.; Sánchez-Sánchez, J.C.; Abad Vivas-Pérez, J.I.; Vázquez-Blanc, S.; et al. Severe complications of imported schistosomiasis, Spain: A retrospective observational study. Travel Med. Infect. Dis. 2020, 35, 101508. [Google Scholar] [CrossRef]
- Cnops, L.; Huyse, T.; Maniewski, U.; Soentjens, P.; Bottieau, E.; Van Esbroeck, M.; Clerinx, J. Acute Schistosomiasis with a Schistosoma mattheei × Schistosoma haematobium hybrid species in a cluster of 34 travelers infected in South Africa. Clin. Infect. Dis. 2021, 72, 1693–1698. [Google Scholar] [CrossRef]
- Boissier, J.; Moné, H.; Mitta, G.; Bargues, M.D.; Molyneux, D.; Mas-Coma, S. Schistosomiasis reaches Europe. Lancet Infect. Dis. 2015, 15, 757–758. [Google Scholar] [CrossRef] [PubMed]
- Artigas, P.; Reguera-Gomez, M.; Valero, M.A.; Osca, D.; da Silva Pacheco, R.; Rosa-Freitas, M.G.; Fernandes Silva-do-Nascimento, T.; Paredes-Esquivel, C.; Lucientes, J.; Mas-Coma, S.; et al. Aedes albopictus diversity and relationships in south-western Europe and Brazil by rDNA/mtDNA and phenotypic analyses: ITS-2, a useful marker for spread studies. Parasites Vectors 2021, 14, 333. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ortí, A.; Adam, S.; Garippa, G.; Boissier, J.; Bargues, M.D.; Mas-Coma, S. Morpho-anatomical characterization of the urogenital schistosomiasis vector Bulinus truncatus (Audoin, 1827) (Heterobranchia: Bulinidae) from Southwestern Europe. J. Conchol. 2022, 44, 355–372. [Google Scholar]
- Berry, A.; Moné, H.; Iriart, X.; Mouahid, G.; Aboo, O.; Boissier, J.; Fillaux, J.; Cassaing, S.; Debuisson, C.; Valentin, A.; et al. Schistosomiasis haematobium, Corsica, France. Emerg. Infect. Dis. 2014, 20, 1595–1597. [Google Scholar] [CrossRef]
- Rothe, C.; Zimmer, T.; Schunk, M.; Wallrauch, C.; Helfrich, K.; Gültekin, F.; Bretzel, G.; Allienne, J.F.; Boissier, J. Developing Endemicity of Schistosomiasis, Corsica, France. Emerg. Infect. Dis. 2021, 27, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Moné, H.; Holtfreter, M.C.; Allienne, J.F.; Mintsa-Nguéma, R.; Ibikounlé, M.; Boissier, J.; Berry, A.; Mitta, G.; Richter, J.; Mouahid, G. Introgressive hybridizations of Schistosoma haematobium by Schistosoma bovis at the origin of the first case report of schistosomiasis in Corsica (France, Europe). Parasitol. Res. 2015, 114, 4127–4133. [Google Scholar] [CrossRef]
- Salas-Coronas, J.; Bargues, M.D.; Lozano-Serrano, A.B.; Artigas, P.; Martínez-Ortí, A.; Mas-Coma, S.; Merino-Salas, S.; Abad Vivas-Pérez, J.I. Evidence of autochthonous transmission of urinary schistosomiasis in Almeria (southeast Spain): An outbreak analysis. Travel Med. Infect. Dis. 2021, 44, 102165. [Google Scholar] [CrossRef]
- Huyse, T.; Van den Broeck, F.; Hellemans, B.; Volckaert, F.A.M.; Polman, K. Hybridisation between the two major African schistosome species of humans. Int. J. Parasitol. 2013, 43, 687–689. [Google Scholar] [CrossRef]
- Léger, E.; Garba, A.; Hamidou, A.A.; Webster, B.L.; Pennance, T.; Rollinson, D.; Webster, J.P. Introgressed animal schistosomes Schistosoma curassoni and S. bovis naturally infecting humans. Emerg. Infect. Dis. 2016, 22, 2212–2214. [Google Scholar] [CrossRef] [Green Version]
- Oey, H.; Zakrzewski, M.; Gravermann, K.; Young, N.D.; Korhonen, P.K.; Gobert, G.N.; Nawaratna, S.; Hasan, S.; Martínez, D.M.; You, H.; et al. Whole-genome sequence of the bovine blood fuke Schistosoma bovis supports interspecifc hybridization with S. haematobium. PLoS Pathog. 2019, 15, e1007513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyekwere, A.M.; De Elias-Escribano, A.; Kincaid-Smith, J.; Dametto, S.; Allienne, J.-F.; Rognon, A.; Bargues, M.D.; Boissier, J. Mating interactions between Schistosoma bovis and S. mansoni and compatibility of their F1 progeny with Biomphalaria glabrata and Bulinus truncatus. Microorganisms 2022, 10, 1251. [Google Scholar] [CrossRef] [PubMed]
- Pennance, T.; Ame, S.M.; Amour, A.K.; Suleiman, K.R.; Allan, F.; Rollinson, D.; Webster, B.L. Occurrence of Schistosoma bovis on Pemba Island, Zanzibar: Implications for urogenital schistosomiasis transmission monitoring. Parasitology 2018, 145, 1727–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera-Gomez, M.; Valero, M.A.; Oliver-Chiva, M.C.; de Elias-Escribano, A.; Artigas, P.; Cabeza-Barrera, M.I.; Salas-Coronas, J.; Boissier, J.; Mas-Coma, S.; Bargues, M.D. First morphogenetic analysis of parasite eggs from Schistosomiasis haematobium infected sub-Saharan migrants in Spain and proposal for a new standardised study methodology. Acta Trop. 2021, 3, 106075. [Google Scholar] [CrossRef]
- Valero, M.A.; Panova, M.; Mas-Coma, S. Phenotypic analysis of adults and eggs of Fasciola hepatica by computer image analysis system. J. Helminthol. 2005, 79, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.A.; Perez-Crespo, I.; Periago, M.V.; Khoubbane, M.; Mas-Coma, S. Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Trop. 2009, 111, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Boon, N.A.M.; Fannes, W.; Rombouts, S.; Polman, K.; Volckaert, F.A.M.; Huyse, T. Detecting hybridization in African schistosome species: Does egg morphology complement molecular species identification? Parasitology 2017, 144, 954–964. [Google Scholar] [CrossRef]
- Van den Broeck, F.; Geldof, S.; Polman, K.; Volckaert, F.A.; Huyse, T. Optimal sample storage and extraction procotols for reliable multilocus genotyping of the human parasite Schistosoma mansoni. Infect. Genet. Evol. 2011, 11, 1413–1418. [Google Scholar] [CrossRef]
- Webster, B.L.; Rollinson, D.; Stothard, J.R.; Huyse, T. Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis. J. Helminthol. 2010, 84, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Bargues, M.D.; Gayo, V.; Sanchis, J.; Artigas, P.; Khoubbane, M.; Birriel, S.; Mas-Coma, S. DNA multigene characterization of Fasciola hepatica and Lymnaea neotropica and its fascioliasis transmission capacity in Uruguay, with historical correlation, human report review and infection risk analysis. PLoS Negl. Trop. Dis. 2017, 11, e0005352. [Google Scholar] [CrossRef]
- Chougar, L.; Mas-Coma, S.; Artigas, P.; Harhoura, K.; Aissi, M.; Agramunt, V.H.; Bargues, M.D. Genetically ‘pure’ Fasciola gigantica discovered in Algeria: DNA multimarker characterization, trans-Saharan introduction from a Sahel origin and spreading risk into north-western Maghreb countries. Transbound. Emerg. Dis. 2020, 67, 2190–2205. [Google Scholar] [CrossRef]
- Valero, M.A.; Bargues, M.D.; Calderón, L.; Artigas, P.; Mas-Coma, S. First phenotypic and genotypic description of Fasciola hepatica infecting highland cattle in the state of Mexico, Mexico. Infect. Genet. Evol. 2018, 64, 231–240. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Angora, E.K.; Allienne, J.F.; Rey, O.; Menan, H.; Toure, A.O.; Coulibaly, J.T.; Raso, G.; Yavo, W.; N’Goran, E.K.; Utzinger, J.; et al. High prevalence of Schistosoma haematobium x Schistosoma bovis hybrids in schoolchildren in Cote d’Ivoire. Parasitology 2020, 147, 287–294. [Google Scholar] [CrossRef]
- Savassi, B.; Mouahid, G.; Lasica, C.; Mahaman, S.K.; Garcia, A.; Courtin, D.; Allienne, J.F.; Ibikounlé, M.; Moné, H. Cattle as natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 x Schistosoma bovis Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. Parasitol. Res. 2020, 119, 2189–2205. [Google Scholar] [CrossRef]
- Ohnuma, K.; Yomo, T.; Asashima, M.; Kaneko, K. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining. BMC Cell Biol. 2006, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, T.W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 2010, 74, 1175–1178. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Marcus, L.F. A revolution morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016, 226, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Slice, D.E. Geometric Morphometrics. Ann. Rev. Anthropol. 2007, 36, 261–281. [Google Scholar] [CrossRef]
- Periago, M.V.; Valero, M.A.; El Sayed, M.; Ashrafi, K.; El Wakeel, A.; Mohamed, M.Y.; Desquesnes, M.; Curtale, F.; Mas-Coma, S. First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta, Egypt. Infect. Genet. Evol. 2008, 8, 51–58. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- Ashrafi, K.; Valero, M.A.; Peixoto, R.V.; Artigas, P.; Panova, M.; Mas-Coma, S. Distribution of Fasciola hepatica and F. gigantica in the endemic area of Guilan, Iran: Relationships between zonal overlap and phenotypic traits. Infect. Genet. Evol. 2015, 31, 95–109. [Google Scholar] [CrossRef]
- García-Sánchez, A.M.; Reguera-Gomez, M.; Valero, M.A.; Cutillas, C. Differentiation of Trichuris species eggs from non-human primates by geometric morphometric analysis. Int. J. Parasitol. Parasites Wildl. 2020, 12, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, M.C.; Reguera-Gomez, M.; Beldomenico, P.M.; Mas-Coma, S.; Bargues, M.D.; Valero, M.A. Variability of Calodium hepaticum eggs from sigmodontine host species through geometric morphometric analysis. J. Helminthol. 2022, 96, e75. [Google Scholar] [CrossRef] [PubMed]
- Dujardin, J.P. BAC and PAD Software [Computer Software]; Unité de Recherches 062-Unité Mixte de Recherches UMR9926; Institut de Recherches pour le Développement IRD: Montpellier, France, 2002. [Google Scholar]
- Dujardin, S.; Dujardin, J.P. Geometric morphometrics in the cloud. Infect. Genet. Evol. 2019, 70, 189–196. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, A.M.; Rivero, J.; Callejón, R.; Zurita, A.; Reguera-Gomez, M.; Valero, M.A.; Cutillas, C. Differentiation of Trichuris species using a morphometric approach. Int. J. Parasitol. Parasites Wildl. 2019, 9, 218–223. [Google Scholar] [CrossRef]
- Rollinson, D.; Southgate, V.R. The genus Schistosoma: A taxonomic appraisal. In The Biology of Schistosomes: From Genes to Latrines; Rollinson, D., Simpson, A.J.G., Eds.; Academic Press: London, UK, 1987; pp. 1–41. [Google Scholar]
- Leger, E.; Webster, J.P. Hybridizations within the genus Schistosoma: Implications for evolution, epidemiology and control. Parasitology 2017, 144, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.G. Hybridisation experiments on five species of African schistosomes. J. Helminthol. 1970, 44, 253–314. [Google Scholar] [CrossRef]
- Wright, C.A.; Southgate, V.R. Hybridisation of schistosomes and some of its implications. In Genetic Aspects of Host-Parasite Relationships; Taylor, A.E.R., Muller, R., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 51–55. [Google Scholar]
- Wright, C.A.; Southgate, V.R.; van Wijk, H.B.; Moore, P.J. Hybrids between Schistosoma haematobium and S. intercalatum in Cameroon. Trans. R. Soc. Trop. Med. Hyg. 1974, 68, 413–414. [Google Scholar] [CrossRef]
- Moné, H.; Minguez, S.; Ibikounlé, M.; Allienne, J.F.; Massougbodji, A.; Mouahid, G. Natural interactions between S. haematobium and S. guineensis in the Republic of Benin. Sci. World J. 2012, 2012, 793420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Govic, Y.; Kincaid-Smith, J.; Allienne, J.F.; Rey, O.; de Gentile, L.; Boissier, J. Schistosoma haematobium-Schistosoma mansoni hybrid parasite in migrant boy, France, 2017. Emerg. Infect. Dis. 2019, 25, 365–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzner, U.; Boissier, J. Natural intra- and interclade human hybrid schistosomes in Africa with considerations on prevention through vaccination. Microorganisms 2021, 9, 1465. [Google Scholar] [CrossRef] [PubMed]
- Théron, A. Polymorphisme des oeufs de Schistosoma mansoni dans le foyer Guadeloupéen (Antilles Françaises): Présence de «S. rodhaini-like» parasites? Acta Trop. 1986, 43, 335–342. [Google Scholar]
- Lengy, J. Studies on Schistosoma bovis (Sonsino, 1876) in Israel: II. The intra-mammalian phase of the life cycle. Bull. Res. Counc. Isr. 1962, 10E, 73–95. [Google Scholar]
- Pitchford, R.J. Differences in the egg morphology and certain biological characteristics of some African and Middle Eastern Schistosomes, genus Schistosoma with terminal-spined eggs. Bull. OMS 1965, 32, 105–120. [Google Scholar]
- Dinnik, J.A.; Dinnik, N.N. The Schistosomes of domestic ruminants in Eastern Africa. Bull. Epizoot. Dis. Afr. 1965, 13, 341–359. [Google Scholar]
- Kruger, F.J.; Schutte, C.H.J.; Visser, P.S.; Evans, C. Phenotypic differences in Schistosoma mattheei ova from populations sympatric and allopatric to S. haematobium. Onderstepoort J. Vet. Res. 1986, 53, 103–107. [Google Scholar]
- Touassem, R. Egg polymorphism of Schistosoma bovis. Vet. Parasitol. 1987, 23, 185–191. [Google Scholar] [CrossRef]
- Almeda, J.; Ascaso, C.; Marçal, G.; Corachan, M.; Southgate, V.; Rollinson, D. Morphometric variability of Schistosoma intercalatum eggs: A diagnostic dilemma. J. Helminthol. 1996, 70, 97–102. [Google Scholar] [CrossRef]
- Alves, W. The Eggs of Schistosoma bovis, S. mattheei and S. haematobium. J. Helminthol. 1949, 23, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ramalli, L.; Mulero, S.; Noël, H.; Chiappini, J.D.; Vincent, J.; Barré-Cardi, H.; Malfait, P.; Normand, G.; Busato, F.; Gendrin, V.; et al. Persistence of Schistosoma transmission linked to the Cavu river in southern Corsica since 2013. Eurosurveillance 2018, 23, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dujardin, J.P. Morphometrics applied to medical entomology. Infect. Genet. Evol. 2008, 8, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Mayr, E. Principles of Systematic Zoology; Mc Graw-Hill Book Company: New York, NY, USA, 1969; p. 428. [Google Scholar]
- Afshan, K.; Valero, M.A.; Qayyum, M.; Peixoto, R.V.; Magraner, A.; Mas-Coma, S. Phenotypes of intermediate forms of Fasciola hepatica and F. gigantica in buffaloes from Central Punjab, Pakistan. J. Helminthol. 2014, 88, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Ahasan, S.A.; Valero, M.A.; Chowdhury, E.H.; Islam, M.T.; Islam, M.R.; Hussain Mondal, M.M.; Peixoto, R.V.; Berinde, L.; Panova, M.; Mas-Coma, S. CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh. Acta Parasitol. 2016, 61, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Valero, M.A.; Perez-Crespo, I.; Khoubbane, M.; Artigas, P.; Panova, M.; Ortiz, P.; Maco, V.; Espinoza, J.R.; Mas-Coma, S. Fasciola hepatica phenotypic characterization in Andean human endemic areas: Valley versus altiplanic patterns analysed in liver flukes from sheep from Cajamarca and Mantaro, Peru. Infect. Genet. Evol. 2012, 12, 403–410. [Google Scholar] [CrossRef]
- Bargues, M.D.; Valero, M.A.; Trueba, G.A.; Fornasini, M.; Villavicencio, A.F.; Guamán, R.; De Elías-Escribano, A.; Pérez-Crespo, I.; Artigas, P.; Mas-Coma, S. A Multi-marker genotyping and CIAS morphometric phenotyping of Fasciola gigantica-sized flukes from Ecuador: Radix absence in the new world and the evolutionary lymnaeid snail vector filter. Animals 2021, 11, 2495. [Google Scholar] [CrossRef]
- Valero, M.A.; Marcos, M.D.; Comes, A.M.; Sendra, M.; Mas-Coma, S. Comparison of adult liver flukes from highland and lowland populations of Bolivian and Spanish sheep. J. Helminthol. 1999, 73, 341–345. [Google Scholar] [CrossRef]
- Dujardin, J.P.; Costa, J.; Bustamante, D.; Jaramillo, N.; Catala, S. Deciphering morphology in Triatominae: The evolutionary signals. Acta Trop. 2009, 110, 101–111. [Google Scholar] [CrossRef]
- Pages, J.R.; Théron, A. Schistosoma intercalatum: Variations morphologiques et biométriques des oeufs en relation avec la localisation chez l’hôte définitif et l’origine géographique du parasite (Cameroun et Zaïre). Ann. Parasitol. Hum. Comp. 1989, 64, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, F. Hybridization between different strains of Schistosoma intercalatum, Fisher, 1934, from Cameroun and Zaïre. J. Helminthol. 1978, 52, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kechemir, N.; Théron, A. Intraspecific variation in Schistosoma haematobium from Algeria. J. Helminthol. 1997, 71, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Aemero, M.; Boissier, J.; Climent, D.; Moné, H.; Mouahid, G.; Berhe, N.; Erko, B. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet. 2015, 16, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gower, C.M.; Gouvras, A.N.; Lamberton, P.H.L.; Deol, A.; Shrivastava, J.; Mutombo, P.N.; Mbuh, J.V.; Norton, A.J.; Webster, B.L.; Stothard, J.R.; et al. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: Implications for epidemiology, evolution and control. Acta Trop. 2013, 128, 261–274. [Google Scholar] [CrossRef]
- Glenn, T.; Lance, S.; McKee, A.; Webster, B.L.; Emery, E.; Zerlotini, A.; Oliveira, G.; Rollinson, D.; Faircloth, B. Significant variance in genetic diversity among populations of Schistosoma haematobium detected using microsatellite DNA loci from a genome-wide database. Parasites Vectors 2013, 6, 300. [Google Scholar] [CrossRef] [Green Version]
- Ezeh, C.; Yin, M.; Li, H.; Zhang, T.; Xu, B.; Sacko, M.; Feng, Z.; Hu, W. High genetic variability of Schistosoma haematobium in Mali and Nigeria. Korean J. Parasitol. 2015, 53, 129–134. [Google Scholar] [CrossRef]
- Webster, B.L.; Emery, A.M.; Webster, J.P.; Gouvras, A.; Garba, A.; Diaw, O.; Seye, M.M.; Tchuente, L.A.; Simoonga, C.; Mwangxa, J.; et al. Genetic diversity within Schistosoma haematobium: DNA barcoding reveals two distinct groups. PLoS Negl. Trop Dis. 2012, 6, e1882. [Google Scholar] [CrossRef]
- Rey, O.; Webster, B.L.; Huyse, T.; Rollinson, D.; Van den Broeck, F.; Kincaid-Smith, J.; Onyekwere, A.; Boissier, J. Population genetics of African Schistosoma species. Infect. Genet. Evol. 2021, 89, 104727. [Google Scholar] [CrossRef]
- Rollinson, R. A wake-up call for urinary schistosomiasis: Reconciling research effort with public health importance. Parasitology 2009, 136, 1801–1811. [Google Scholar] [CrossRef]
Country | Patient Code | No. Eggs Morphogenetically Analyzed |
---|---|---|
MALI | P-1 | 1 |
P-6 | 4 | |
P-7 | 5 | |
P-9 | 9 | |
P-11 | 5 | |
P-12 | 8 | |
P-13 | 7 | |
P-14 | 5 | |
P-17 | 4 | |
P-22 | 12 | |
P-23 | 6 | |
Total | 66 | |
MAURITANIA | P-15 | 3 |
P-30 | 9 | |
P-34 | 23 | |
P-49 | 20 | |
Total | 55 | |
SENEGAL | P-4 | 9 |
P-18 | 2 | |
P-19 | 7 | |
P-20 | 9 | |
P-21 | 14 | |
Total | 41 | |
Total | 162 |
Species | Country | Variable Positions 5.8S + ITS-2 Alignment | |
---|---|---|---|
5.8S | ITS-2 | ||
5 9 | 2234444 2830555 8333012 | ||
S. haematobium S. haematobium Sh-1 S. haematobium Sh-2 S. haematobium S. bovis S. haematobium x S. bovis | African countries 1 Mali, Mauritania and Senegal Mali, Mauritania and Senegal Ivory Coast and France Senegal Benin | C . Y Y . Y | GCGCCCC ....... ....... ....... ATAT--- RYRY--- |
Mali (N = 66) | Mauritania (N = 55) | Senegal (N = 41) | |
---|---|---|---|
Egg Area (EA) (µm2) | 5060 ± 922.37 (2921.43–7391) | 5175 ± 875.97 (2933–7231.93) | 5542 ± 704.62 (4393–7851) |
Radius maximum (ERmax) (µm) | 70.44 ± 6.95 (55.85–84.82) | 72.75 ± 5.83 (63.00–91.12) | 77.94 ± 4.68 (67.54–86.51) |
Radius minimum (Rmin) (µm) | 27.25 ± 2.93 (19.77–34.45) | 26.86 ± 3.25 (19.41–33.57) | 27.00 ± 2.53 (22.87–33.77) |
Egg Perimeter (EP) (µm) | 299.90 ± 29.09 (243.20–356.50) | 307.90 ± 22.99 (251.7–363.28) | 329.10 ± 17.98 (287.70–372.00) |
Egg Length (EL) (µm) | 132.30 ± 14.31 (106.29–163.61) | 137.50 ± 10.29 (116.30–164.36) | 148.7 ± 8.46 (128.10–164.00) |
Egg Width (EW) (µm) | 56.05 ± 5.80 (40.27–70.11) | 55.38 ± 6.37 (39.06–67.93) | 56.04 ± 4.77 (46.29–69.61) |
Egg Roundness (ER) | 1.43 ± 0.12 (1.22–1.75) | 1.48 ± 0.10 (1.31–1.81) | 1.57 ± 0.10 (1.35–1.82) |
Width at 20 µm from Blunt End (BE20) (µm) | 36.33 ± 4.48 (25.77–46.25) | 34.13 ± 3.37 (24.45–41.19) | 31.34 ± 2.89 (23.92–39.06) |
Width at 35 µm from Blunt End (BE35) (µm) | 46.52 ± 5.73 (33.75–58.47) | 43.67 ± 4.48 (33.22–54.22) | 39.97 ± 4.22 (31.88–52.09) |
Width at 50 µm from Blunt End (BE50) (µm) | 53.48 ± 6.06 (39.34–66.16) | 51.41 ± 5.42 (38.53–64.56) | 47.71 ± 5.20 (39.06–63.50) |
Width at 20 µm from Spine End (SE20) (µm) | 25.18 ± 5.20 (14.62–38.25) | 23.82 ± 5.10 (15.15–39.34) | 22.52 ± 4.07 (15.15–31.09) |
Width at 35 µm from Spine End (SE35) (µm) | 40.59 ± 5.89 (23.12–54.75) | 38.15 ± 5.32 (27.64–52.34) | 37.01 ± 4.80 (29.50–47.56) |
Width at 40 µm from Spine End (SE40) (µm) | 44.69 ± 5.88 (27.37–57.94) | 42.17 ± 5.41 (31.34–54.47) | 41.04 ± 4.94 (33.22–53.16) |
Spine Length (SL) (µm) | 7.71 ± 2.80 (3.24–15.94) | 7.45 ± 2.27 (3.18–12.53) | 8.62 ± 2.44 (3.98–16.15) |
Spine Base Width (SBW) (µm) | 4.87 ± 1.56 (2.39–10.10) | 4.64 ± 1.31 (2.12–7.86) | 4.73 ± 1.14 (2.65–7.44) |
Spine Medium Width (SMW) (µm) | 2.79 ± 0.64 (1.41–4.38) | 2.66 ± 0.69 (1.18–4.25) | 2.54 ± 0.57 (1.35–3.98) |
Spine End Width (SEW) (µm) | 1.73 ± 0.56 (0.59–3.18) | 1.61 ± 0.43 (0.75–2.45) | 1.61 ± 0.43 (1.06–2.45) |
Length/Width Ratio (LWR) | 2.37 ± 0.26 (1.91–3.06) | 2.50 ± 0.24 (2.08–3.30) | 2.66 ± 0.22 (2.12–3.25) |
Egg Shape Ratio (ESR) | 2.00 ± 0.26 (1.64–2.75) | 2.13 ± 0.09 (1.90–2.29) | 2.38 ± 0.17 (2.01–2.93) |
Elongation Ratio (ERatio) | 2.60 ± 0.30 (2.05–3.32) | 2.73 ± 0.30 (2.21–3.72) | 2.90 ± 0.29 (2.27–3.51) |
S. haematobium Mauritania | S. haematobium Senegal | |
---|---|---|
S. haematobium Mali | - | Rmax (p = 0.002), EP (p = 0.006) EL (p = 0.003), ER (p = 0.006) BE20 (p = 0.0007), BE35 (p = 0.001) BE50 (p = 0.010), LWR (p = 0.0004) ERatio (p = 0.019), ESR (p = 0.0006) |
S. haematobium Mauritania | - |
(a) | Mali | Mauritania | Senegal |
Mali | 0.00 | ||
Mauritania | 1.68 * | 0.00 | |
Senegal | 1.23 * | 1.71 * | 0.00 |
(b) | Mali | Mauritania | Senegal |
Mali | 0.00 | ||
Mauritania | 0.59 * | 0.00 | |
Senegal | 0.64 * | 0.62 | 0.00 |
Round | Elongated | Spindle | |
---|---|---|---|
Mali (N = 68) | 26 (39.4%) | 28 (42.4%) | 12 (18.2%) |
Mauritania (N = 55) | 19 (34.5%) | 20 (36.4%) | 16 (29.1%) |
Senegal (N = 41) | 10 (25.0%) | 14 (34.1%) | 17 (41.5%) |
(a) | Mali | Mauritania | Senegal | |
ROUND | Mali | 0.00 | ||
Mauritania | 3.19 * | 0.00 | ||
Senegal | 2.68 * | 3.43 * | 0.00 | |
ELONGATED | Mali | 0.00 | ||
Mauritania | 2.35 * | 0.00 | ||
Senegal | 1.71 | 2.50 * | 0.00 | |
SPINDLE | Mali | 0.00 | ||
Mauritania | 2.67 | 0.00 | ||
Senegal | 2.09 | 3.62 * | 0.00 | |
(b) | Mali | Mauritania | Senegal | |
ROUND | Mali | 0.00 | ||
Mauritania | 0.89 | 0.00 | ||
Senegal | 1.29* | 1.02 | 0.00 | |
ELONGATED | Mali | 0.00 | ||
Mauritania | 0.82 | 0.00 | ||
Senegal | 0.99 | 1.03 | 0.00 | |
SPINDLE | Mali | 0.00 | ||
Mauritania | 0.69 | 0.00 | ||
Senegal | 1.10 | 0.79 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reguera-Gómez, M.; Valero, M.A.; Artigas, P.; De Elías-Escribano, A.; Fantozzi, M.C.; Luzón-García, M.P.; Salas-Coronas, J.; Boissier, J.; Mas-Coma, S.; Bargues, M.D. Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Trop. Med. Infect. Dis. 2023, 8, 144. https://doi.org/10.3390/tropicalmed8030144
Reguera-Gómez M, Valero MA, Artigas P, De Elías-Escribano A, Fantozzi MC, Luzón-García MP, Salas-Coronas J, Boissier J, Mas-Coma S, Bargues MD. Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Tropical Medicine and Infectious Disease. 2023; 8(3):144. https://doi.org/10.3390/tropicalmed8030144
Chicago/Turabian StyleReguera-Gómez, Marta, Maria Adela Valero, Patricio Artigas, Alejandra De Elías-Escribano, Maria Cecilia Fantozzi, Maria Pilar Luzón-García, Joaquín Salas-Coronas, Jérôme Boissier, Santiago Mas-Coma, and Maria Dolores Bargues. 2023. "Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain" Tropical Medicine and Infectious Disease 8, no. 3: 144. https://doi.org/10.3390/tropicalmed8030144
APA StyleReguera-Gómez, M., Valero, M. A., Artigas, P., De Elías-Escribano, A., Fantozzi, M. C., Luzón-García, M. P., Salas-Coronas, J., Boissier, J., Mas-Coma, S., & Bargues, M. D. (2023). Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Tropical Medicine and Infectious Disease, 8(3), 144. https://doi.org/10.3390/tropicalmed8030144