First Isolation and Genome Sequence Analysis of West Nile Virus in Mosquitoes in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epidemiological Investigation of Arboviruses
2.2. Capture and Identification of Hematophagous Arthropods
2.3. Viral Isolation in Cell Culture and Indirect Immunofluorescence Test (IIF)
2.4. Viral Isolation in Swiss Albino Mice
2.5. Complement Fixation Test (CF)
2.6. Molecular Detection and Bioinformatics Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colpitts, T.M.; Conway, M.J.; Montgomery, R.R.; Fikrig, E. West Nile Virus: Biology, Transmission, and Human Infection. Clin. Microbiol. Rev. 2012, 25, 635. [Google Scholar] [CrossRef]
- Duguma, D.; Rueda, L.M.; Debboun, M. Mosquito-Borne Diseases. In Mosquitoes, Communities, and Public Health in Texas; Academic Press: Cambridge, MA, USA, 2020; pp. 319–337. ISBN 9780128145456. [Google Scholar]
- Kulasekera, V.L.; Kramer, L.; Nasci, R.S.; Mostashari, F.; Cherry, B.; Trock, S.C.; Glaser, C.; Miller, J.R. West Nile Virus Infection in Mosquitoes, Birds, Horses, and Humans, Staten Island, New York, 2000. Emerg. Infect. Dis. 2001, 7, 722. [Google Scholar] [CrossRef] [PubMed]
- Fall, G.; Di Paola, N.; Faye, M.; Dia, M.; Freire, C.C.d.M.; Loucoubar, C.; Zanotto, P.M.D.A.; Faye, O.; Sall, A.A. Biological and Phylogenetic Characteristics of West African Lineages of West Nile Virus. PLoS Negl. Trop. Dis. 2017, 11, e0006078. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Chang, G.-J.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the Genus Flavivirus. J. Virol. 1998, 72, 73. [Google Scholar] [CrossRef]
- Campbell, G.L.; Marfin, A.A.; Lanciotti, R.S.; Gubler, D.J. West Nile Virus. Lancet Infect. Dis. 2002, 2, 519–529. [Google Scholar] [CrossRef]
- Eidson, M.; Komar, N.; Sorhage, F.; Nelson, R.; Talbot, T.; Mostashari, F.; McLean, R.; Group, W.N.V.A.M.S. Crow Deaths as a Sentinel Surveillance System for West Nile Virus in the Northeastern United States, 1999. Emerg. Infect. Dis. 2001, 7, 615. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.T.; Pertel, P.E.; Jones, R.C.; Siston, A.M.; Paul, W.S.; Austin, C.C.; Gerber, S.I. Clinical Characteristics and Functional Outcomes of West Nile Fever. Ann. Intern. Med. 2004, 141, 360–365. [Google Scholar] [CrossRef]
- Lindsay, N.P.; Staples, J.E.; Lehman, J.A.; Ficher, M. Surveillance for Human West Nile Virus Disease—United Stated, 1999–2008. Morbibity Mortal. Wkly. Rep. 2010, 59, 1–17. [Google Scholar]
- Nash, D.; Mostashari, F.; Fine, A.; Miller, J.; O’Leary, D.; Murray, K.; Huang, A.; Rosenberg, A.; Greenberg, A.; Sherman, M.; et al. The Outbreak of West Nile Virus Infection in the New York City Area in 1999. N. Engl. J. Med 2001, 344, 1807–1814. [Google Scholar] [CrossRef]
- Nolan, M.S.; Schuermann, J.; Murray, K.O. West Nile Virus Infection among Humans, Texas, USA, 2002–2011. Emerg. Infect. Dis. 2013, 19, 137. [Google Scholar] [CrossRef]
- Solomon, T.; Ooi, M.H.; Beasley, D.W.C.; Mallewa, M. West Nile Encephalitis. BMJ 2003, 326, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Giordano, B.V.; Kaur, S.; Hunter, F.F. West Nile Virus in Ontario, Canada: A Twelve-Year Analysis of Human Case Prevalence, Mosquito Surveillance, and Climate Data. PLoS ONE 2017, 12, e0183568. [Google Scholar] [CrossRef] [PubMed]
- Deardorff, E.; Estrada-Franco, J.G.; Brault, A.C.; Navarro-Lopez, R.; Campomanes-Cortes, A.; Paz-Ramirez, P.; Solis-Hernandez, M.; Ramey, W.N.; Davis, C.T.; Beasley, D.W.C.; et al. Introductions of West Nile Virus Strains to Mexico. Emerg. Infect. Dis. 2006, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Franco, J.G.; Navarro-Lopez, R.; Beasley, D.W.C.; Coffey, L.; Carrara, A.S.; Da Rosa, A.T.; Clements, T.; Wang, E.; Ludwig, G.V.; Campomanes Cortes, A.; et al. West Nile Virus in Mexico: Evidence of Widespread Circulation since July 2002. Emerg. Infect. Dis. 2003, 9, 1604. [Google Scholar] [CrossRef]
- World Health Organization West Nile Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/west-nile-virus (accessed on 20 June 2022).
- Vieira, M.A.C.S.; Romano, A.P.M.; Borba, A.S.; Silva, E.V.P.; Chiang, J.O.; Eulálio, K.D.; Azevedo, R.S.S.; Rodrigues, S.G.; Almeida-Neto, W.S.; Vasconcelos, P.F.C. Case Report: West Nile Virus Encephalitis: The First Human Case Recorded in Brazil. Am. J. Trop. Med. Hyg. 2015, 93, 377. [Google Scholar] [CrossRef]
- Martins, L.C.; Da Silva, E.V.P.; Casseb, L.M.N.; Da Silva, S.P.; Cruz, A.C.R.; De Sousa Pantoja, J.A.; De Almeida Medeiros, D.B.; Filho, A.J.M.; Da Cruz, E.D.R.M.; De Araújo, M.T.F.; et al. First Isolation of West Nile Virus in Brazil. Mem. Inst. Oswaldo Cruz 2019, 114, 180332. [Google Scholar] [CrossRef]
- Chalhoub, F.L.L.; Maia de Queiroz-Júnior, E.; Holanda Duarte, B.; Eielson Pinheiro de Sá, M.; Cerqueira Lima, P.; Carneiro de Oliveira, A.; Medeiros Neves Casseb, L.; Leal Das Chagas, L.; Antônio de Oliveira Monteiro, H.; Sebastião Alberto Santos Neves, M.; et al. West Nile Virus in the State of Ceará, Northeast Brazil. Microorganisms 2021, 9, 1699. [Google Scholar] [CrossRef]
- Secretaria de Vigilância em Saúde. Boletim Epidemiológico Vol. 52—No 40; Secretaria de Vigilância em Saúde: Brasília, Brazil, 2021. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes/2021/boletim_epidemiologico_svs_40.pdf/view (accessed on 5 March 2023).
- Harbach, R.E. Culex Pipiens: Species versus Species Complex Taxonomic History and Perspective. J. Am. Mosq. Control Assoc. 2012, 28, 10–23. [Google Scholar] [CrossRef]
- Harbach, R.E. The Culicidae (Diptera): A Review of Taxonomy, Classification and Phylogeny. Zootaxa 2007, 1668, 591–638. [Google Scholar] [CrossRef]
- Ciota, A.T.; Kramer, L.D. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus. Viruses 2013, 5, 3021–3047. [Google Scholar] [CrossRef]
- Laporta, G.Z.; Urbinatti, P.R.; Natal, D. Aspectos Ecológicos Da População de Culex Quinquefasciatus Say (Diptera, Culicidae) Em Abrigos Situados No Parque Ecológico Do Tietê, São Paulo, SP. Rev. Bras. Entomol. 2006, 50, 125–127. [Google Scholar] [CrossRef]
- Zittra, C.; Flechl, E.; Kothmayer, M.; Vitecek, S.; Rossiter, H.; Zechmeister, T.; Fuehrer, H.P. Ecological Characterization and Molecular Differentiation of Culex Pipiens Complex Taxa and Culex Torrentium in Eastern Austria. Parasites Vectors 2016, 9, 197. [Google Scholar] [CrossRef]
- Barcellos, C.; Miguel, A.; Monteiro, V.; Corvalán, C.; Gurgel, H.C.; Carvalho, M.S.; Artaxo, P.; Hacon, S.; Ragoni, V. Mudanças Climáticas e Ambientais e as Doenças Infecciosas: Cenários e Incertezas Para o Brasil. Epidemiol. Serviços Saúde 2009, 18, 285–304. [Google Scholar] [CrossRef]
- Lopes, N.; Nozawa, C.; Linhares, R.E.C. Características Gerais e Epidemiologia Dos Arbovírus Emergentes No Brasil. Rev. Pan-Amazônica Saúde 2014, 5, 55–64. [Google Scholar] [CrossRef]
- Mesquita, T.C.R.; Rosa, A.P.; Borges, A.C. Mudanças Climáticas e Seu Impacto Na Incidência de Arboviroses: Uma Revisão Sistemática de Estudos Recentes. Rev. Bras. Geogr. Física 2021, 14, 3361–3377. [Google Scholar] [CrossRef]
- Ossa, D.P.S.; Melo, H.P.; Arouca, K.L.D.; Baldoino, F.R.R.; de Oliveira, E.M.; Silva, V.P.; Lopes, P.F.; de Andrade, A.R.O.; Garcês, T.C.D.C.S. Arbovírus Circulantes No Brasil: Fatores Associados Com a Disseminação e Estratégias Terapêuticas. Rev. Eletrônica Acervo Saúde 2019, 33, e1067. [Google Scholar] [CrossRef]
- Prophiro, J.S. Arboviroses e Mudanças Climáticas. Rev. Gestão Sustentabilidade Ambient. 2022, 11, 1–2. [Google Scholar]
- Brasil; Ministério da Saúde; Secretaria de Vigilância em Saúde; Departamento de Imunização e Doenças Transmissíveis. Guia Para o Planejamento Das Ações de Captura de Anofelinos Pela Técnica de Atração Por Humano Protegido (TAHP) e Acompanhamento Dos Riscos à Saúde Do Profissional Capturador, 1st ed.; Galardo, A.K.R., Costa, C., Lima, J.B.P., Sallum, M.A.M., Póvoa, M.M., Oliveira, R.L., Nakaoka, R.T., Coelho, R.R., Santos, R.L.C., Eds.; Ministério da Saúde: Brasília, Brazil, 2021; Volume 1, ISBN 978-65-5993-022-7. [Google Scholar]
- Cardoso, J.D.C. Vigilância Entomológica de Mosquitos (Diptera, Culicidae) Como Estratégia de Vigilância Ambiental Em Saúde No Rio Grande Do Sul, Brasil; Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo: São Paulo, Brazil, 2010. [Google Scholar]
- Chaves, L.S.M. Eficácia de Três Tipos de Armadilhas Para Captura de Culicídeos Em Área de Mata Atlântica No Sudeste Do Brasil; Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo: São Paulo, Brazil, 2012. [Google Scholar]
- Degefa, T.; Yewhalaw, D.; Zhou, G.; Atieli, H.; Githeko, A.K.; Yan, G. Evaluation of Human-Baited Double Net Trap and Human-Odour-Baited CDC Light Trap for Outdoor Host-Seeking Malaria Vector Surveillance in Kenya and Ethiopia. Malar. J. 2020, 19, 174. [Google Scholar] [CrossRef]
- Hutchings, R.S.G.; Hutchings, R.W.; Menezes, I.S.; Sallum, M.A.M. Mosquitoes (Diptera: Culicidae) From the Southwestern Brazilian Amazon: Liberdade and Gregório Rivers. J. Med. Entomol. 2020, 57, 1793–1811. [Google Scholar] [CrossRef]
- Sudia, W.D.; Chamberlain, R.W. Battery-Operated Light Trap, an Improved Model. Mosq. News. 1962, 22, 126–129. [Google Scholar]
- Vazeille, M.; Mousson, L.; Martin, E.; Failloux, A.B. Orally Co-Infected Aedes Albopictus from La Reunion Island, Indian Ocean, Can Deliver Both Dengue and Chikungunya Infectious Viral Particles in Their Saliva. PLoS Negl. Trop. Dis. 2010, 4, e706. [Google Scholar] [CrossRef]
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; Volume 1, ISBN 978-0801882210. [Google Scholar]
- Igarashi, A. Isolation of a Singh’s Aedes Albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. J. Gen. Virol. 1978, 40, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Beaty, B.J.; Calisher, C.H.; Shope, R.E. Arboviruses. In Diagnostic Procedures for viral Rickettsial and Chlamydial infections; Schmidt, N.J., Lennette, D.A., Lennette, E.T., Lennette, E.H., Emmons, R.W., Eds.; American Public Health Association: Washington, DC, USA, 1995; pp. 189–212. ISBN 0875532209. [Google Scholar]
- Gubler, F. Immunofluorescence Localisation of Microtubules in Plant Root Tips Embedded in Butyl-Methyl Methacrylate. Cell Biol. Int. Rep. 1989, 13, 137–145. [Google Scholar] [CrossRef]
- Rosa, A.P.d.A.T.d.; da Rosa, E.S.T.; da Rosa, J.F.S.T.; Dégallier, N.; Vasconcelos, P.F.d.C.; Rodrigues, S.G.; Cruz, A.C.R. Os Arbovírus No Brasil: Generalidades, Métodos e Técnicas de Estudo: Documento Técnico No 2, 1st ed.; Instituto Evandro Chagas: Belém, Brazil, 1998; Volume 2. [Google Scholar]
- Fulton, F.; Dumbell, K.R. The Serological Comparison of Strains of Influenza Virus. J. Gen. Microbiol. 1949, 3, 97–111. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kerst, A.J.; Nasci, R.S.; Godsey, M.S.; Mitchell, C.J.; Savage, H.M.; Komar, N.; Panella, N.A.; Allen, B.C.; Volpe, K.E.; et al. Rapid Detection of West Nile Virus from Human Clinical Specimens, Field-Collected Mosquitoes, and Avian Samples by a TaqMan Reverse Transcriptase-PCR Assay. J. Clin. Microbiol. 2000, 38, 4066–4071. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de Novo Assembler for Single-Cell and Metagenomic Sequencing Data with Highly Uneven Depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783. [Google Scholar] [CrossRef] [PubMed]
- Brasil; Ministério da Saúde; Secretaria de Vigilância em Saúde. Capítulo 6—Febre Do Nilo Ocidental. In Guia de Vigilância em Saúde: Volume único; Oliveira, W.K., Rohlfs, D.B., Macário, E.M., Pereira, G.F.M., Croda, J.H., Brito, S.M.F., Eds.; Ministério da Saúde: Brasília, Brazil, 2019; Volume 1, pp. 389–400. ISBN 978-85-334-2706-8. [Google Scholar]
- Melandri, V.; Guimarães, A.É.; Komar, N.; Nogueira, M.L.; Mondini, A.; Fernandez-Sesma, A.; Alencar, J.; Bosch, I. Serological Detection of West Nile Virus in Horses and Chicken from Pantanal, Brazil. Mem. Inst. Oswaldo Cruz 2012, 107, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Ometto, T.; Durigon, E.L.; de Araujo, J.; Aprelon, R.; de Aguiar, D.M.; Cavalcante, G.T.; Melo, R.M.; Levi, J.E.; de Azevedo Júnior, S.M.; Petry, M.V.; et al. West Nile Virus Surveillance, Brazil, 2008-2010. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 723–730. [Google Scholar] [CrossRef]
- Silva, J.R.; de Medeiros, L.C.; dos Reis, V.P.; Chávez, J.H.; Munhoz, T.D.; Borges, G.P.; Soares, O.A.B.; de Campos, C.H.C.; Machado, R.Z.; Baldani, C.D.; et al. Serologic Survey of West Nile Virus in Horses from Central-West, Northeast and Southeast Brazil. Mem. Inst. Oswaldo Cruz 2013, 108, 921–923. [Google Scholar] [CrossRef]
- De Siqueira, R.F.; Hansen, V.S.; de Fátima Monteiro Martins, M.; do Rêgo Leal, M.L.; Bondan, E.F. West Nile Fever Virus Infection in Horses in São Paulo State, Brazil. Acta Sci. Vet. 2022, 50, 1–6. [Google Scholar] [CrossRef]
- Siconelli, M.J.L.; Jorge, D.M.d.M.; de Castro-Jorge, L.A.; Fonseca-Júnior, A.A.; Nascimento, M.L.; Floriano, V.G.; de Souza, F.R.; de Queiroz-Júnior, E.M.; Camargos, M.F.; Costa, E.D.L.; et al. Evidence for Current Circulation of an Ancient West Nile Virus Strain (NY99) in Brazil. Rev. Soc. Bras. Med. Trop. 2021, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Hernández, J.M.; Podbilewicz, B. The Hallmarks of Cell-Cell Fusion. Development 2017, 144, 4481–4495. [Google Scholar] [CrossRef] [PubMed]
- Podbilewicz, B. Virus and Cell Fusion Mechanisms. Annu. Rev. Cell Dev. Biol. 2014, 30, 111–139. [Google Scholar] [CrossRef]
- Brukman, N.G.; Uygur, B.; Podbilewicz, B.; Chernomordik, L.V. How Cells Fuse. J. Cell Biol. 2019, 218, 1436–1451. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, T.; Hubálek, Z.; Rudolf, I.; Nowotny, N. Novel Flavivirus or New Lineage of West Nile Virus, Central Europe. Emerg. Infect. Dis. 2005, 11, 225. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J.; Fischer, M. West Nile Virus Infection. Viral Infections of the Human Nervous System; Springer: Basel, Switzerland, 2013; pp. 237–269. [Google Scholar] [CrossRef]
- The Center for Food Security & Public Health (CFSPH). West Nile Virus Infection. Cent. Food Secur. Public Health 2013, 1, 19. [Google Scholar]
- Barrett, A.D.T. West Nile in Europe: An Increasing Public Health Problem. J. Travel Med. 2018, 25, tay096. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention—CDC West Nile Virus: Mosquito Control. Available online: https://www.cdc.gov/westnile/vectorcontrol/index.html (accessed on 18 November 2022).
- Ciota, A.T. West Nile Virus and Its Vectors. Curr. Opin. Insect Sci. 2017, 22, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, R.S.; Schrama, M.; Van Den Berg, T.; Morren, J.; Munger, E.; Krol, L.; Van DerBeek, J.G.; Blom, R.; Chestakova, I.; Van Der Linden, A.; et al. Detection of West Nile Virus in a Common Whitethroat (Curruca Communis) and Culex Mosquitoes in the Netherlands, 2020. Eurosurveillance 2020, 25, 2001704. [Google Scholar] [CrossRef]
- Kampen, H.; Tews, B.A.; Werner, D. First Evidence of West Nile Virus Overwintering in Mosquitoes in Germany. Viruses 2021, 13, 2463. [Google Scholar] [CrossRef]
- Rochlin, I.; Faraji, A.; Healy, K.; Andreadis, T.G. West Nile Virus Mosquito Vectors in North America. J. Med. Entomol. 2019, 56, 1475–1490. [Google Scholar] [CrossRef]
- Almeida, L.S.; Costa, A.L.S.; Rodrigues, D.F. Saneamento, Arboviroses e Determinantes Ambientais: Impactos Na Saúde Urbana. Cien. Saude Colet. 2020, 25, 3857–3868. [Google Scholar] [CrossRef]
- Degallier, N.; Rosa, A.P.A.T.; Vasconcelos, P.F.C. O Impacto Das Atividades Humanas Na Transmissão Dos Arbovírus Silvestres Na Amazônia Brasileira. Contacto 1994, 6, 31–34. [Google Scholar]
- Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate Change and Vector-Borne Diseases: A Regional Analysis. Bull. World Health Organ. 2000, 78, 1136. [Google Scholar] [PubMed]
- Patz, J.A.; McGeehin, M.A.; Bernard, S.M.; Ebi, K.L.; Epstein, P.R.; Grambsch, A.; Gubler, D.J.; Reiter, P.; Romieu, I.; Rose, J.B.; et al. The Potential Health Impacts of Climate Variability and Change for the United States: Executive Summary of the Report of the Health Sector of the U.S. National Assessment. Environ. Health Perspect. 2000, 108, 367. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, N.L., Jr.; Mation, L.F.; Sakowski, P.A.M. Impacto Do Desmatamento Sobre a Incidência de Doenças Na Amazônia, 1st ed.; Instituto de Pesquisa Econômica Aplicada (IPEA): Brasília, Brazil, 2015; Volume 1. [Google Scholar]
Degree of Hemolysis (%) | Reaction Result | Test Value |
---|---|---|
0% | Positive (+) | 4 |
25% | Positive (+) | 3 |
50% | Negative (−) | 2 |
75% | Negative (−) | 1 |
100% | Negative (−) | 0 |
Collection Modalities | Ground | Treetop | CDC Ground | CDC Treetop | Total | Percent | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Nº | Pools | Nº | Pools | Nº | Pools | Nº | Pools | Nº | Pools | % |
Ae. (Stg.) albopictus | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0.16 |
Ae. (How.) species | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.03 |
Ae. (Och.) species | 7 | 1 | 0 | 0 | 7 | 1 | 0 | 0 | 14 | 2 | 0.44 |
Ae. (Och.) fulvus | 16 | 1 | 0 | 0 | 19 | 1 | 1 | 1 | 36 | 3 | 1.14 |
Ae. (Och.) scapularis | 229 | 11 | 0 | 0 | 34 | 1 | 4 | 1 | 267 | 13 | 8.45 |
Ae. (Och.) serratus | 28 | 1 | 0 | 0 | 6 | 1 | 0 | 0 | 34 | 2 | 1.08 |
An. (Ano.) species | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 3 | 1 | 0.1 |
An. (Ano.) intermedius | 0 | 0 | 0 | 0 | 13 | 1 | 1 | 1 | 14 | 2 | 0.44 |
An. (Ano.) mediopunctatus | 2 | 1 | 0 | 0 | 12 | 1 | 0 | 0 | 14 | 2 | 0.44 |
An. (Nys.) species | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 3 | 3 | 0.1 |
An. (Nys.) nuneztovari | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0.03 |
An. (Nys.) triannulatus | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0.03 |
Cq. (Rhy.) species | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 4 | 2 | 0.13 |
Cq. (Rhy.) albicosta | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0.03 |
Cq. (Rhy.) venezuelensis | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 3 | 1 | 0.1 |
Cx. (Cux.) species | 69 | 2 | 0 | 0 | 945 | 26 | 335 | 10 | 1349 | 38 | 42.72 |
Cx. (Cux.) coronator | 19 | 1 | 0 | 0 | 99 | 3 | 7 | 1 | 125 | 5 | 3.96 |
Cx. (Mel.) species | 11 | 1 | 0 | 0 | 646 | 19 | 5 | 1 | 662 | 21 | 20.96 |
Hg. (Hag.) janthinomys | 1 | 1 | 5 | 1 | 0 | 0 | 0 | 0 | 6 | 2 | 0.19 |
Li. species | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0.06 |
Li. durhamii | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0.19 |
Li. flavisetosus | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0.16 |
Ma. (Man.) species | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 3 | 2 | 0.1 |
Ma. (Man.) titillans | 8 | 1 | 0 | 0 | 1 | 1 | 10 | 1 | 19 | 3 | 0.6 |
Ps. species | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0.06 |
Ps. (Gra.) species | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 7 | 1 | 0.22 |
Ps. (Jan.) species | 130 | 6 | 0 | 0 | 4 | 1 | 0 | 0 | 134 | 7 | 4.24 |
Ps. (Jan.) albipes | 61 | 2 | 7 | 1 | 9 | 1 | 1 | 1 | 78 | 5 | 2.47 |
Ps. (Jan.) ferox | 125 | 5 | 1 | 1 | 4 | 1 | 0 | 0 | 130 | 7 | 4.12 |
Ps. (Jan.) lutzii | 31 | 1 | 0 | 0 | 7 | 1 | 0 | 0 | 38 | 2 | 1.2 |
Ps. (Pso.) species | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0.03 |
Sa. (Sab.) belisarioi | 1 | 1 | 11 | 1 | 0 | 0 | 0 | 0 | 12 | 2 | 0.38 |
Sa. (Sab.) tarsopus | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0.06 |
Sa. (Sbo.) chloropterus | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 8 | 1 | 0.25 |
Sa. (Sbo.) glaucodaemon | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0.13 |
Ur. (Ura.) calosomata | 0 | 0 | 0 | 0 | 100 | 3 | 0 | 0 | 100 | 3 | 3.17 |
Wy. species | 63 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 64 | 3 | 2.03 |
Total of Culicidae | 823 | 46 | 39 | 8 | 1930 | 73 | 366 | 19 | 3158 | 146 | 100% |
% Culicidae | 68.43% | ||||||||||
Ceratopogonidae | 130 | 1 | 0 | 0 | 205 | 1 | 87 | 1 | 422 | 3 | |
% Ceratopogonidae | 9.14% | ||||||||||
Flebotominae ♀ | 0 | 0 | 0 | 0 | 394 | 4 | 354 | 3 | 748 | 7 | |
Flebotominae ♂ | 0 | 0 | 0 | 0 | 147 | 1 | 140 | 1 | 287 | 2 | |
Psychodidae | 0 | 0 | 0 | 0 | 541 | 5 | 494 | 4 | 1035 | 9 | |
% Psychodidae | 22.43% | ||||||||||
Grand total | 953 | 47 | 39 | 8 | 2676 | 79 | 947 | 24 | 4615 | 158 | 100% |
Flavivírus | WNV | ROCV | |||||||
---|---|---|---|---|---|---|---|---|---|
Diluition | 8 | 16 | 32 | 8 | 16 | 32 | 8 | 16 | 32 |
Pure | 4 | 4 | 3 | 4 | 4 | 2 | 4 | 4 | 4 |
1/2 | 4 | 3 | 1 | 4 | 3 | 2 | 4 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, J.P.N.; Reis, L.A.M.; Freitas, M.N.O.; do Nascimento, B.L.S.; das Chagas, L.L.; da Costa, H.H.M.; Rodrigues, J.C.P.; Braga, C.M.; da Silva, E.V.P.; Silva, S.P.; et al. First Isolation and Genome Sequence Analysis of West Nile Virus in Mosquitoes in Brazil. Trop. Med. Infect. Dis. 2023, 8, 237. https://doi.org/10.3390/tropicalmed8040237
Neto JPN, Reis LAM, Freitas MNO, do Nascimento BLS, das Chagas LL, da Costa HHM, Rodrigues JCP, Braga CM, da Silva EVP, Silva SP, et al. First Isolation and Genome Sequence Analysis of West Nile Virus in Mosquitoes in Brazil. Tropical Medicine and Infectious Disease. 2023; 8(4):237. https://doi.org/10.3390/tropicalmed8040237
Chicago/Turabian StyleNeto, Joaquim Pinto Nunes, Lúcia Aline Moura Reis, Maria Nazaré Oliveira Freitas, Bruna Laís Sena do Nascimento, Liliane Leal das Chagas, Hernan Hermes Monteiro da Costa, Jéssica Cecília Pinheiro Rodrigues, Camila Margalho Braga, Eliana Vieira Pinto da Silva, Sandro Patroca Silva, and et al. 2023. "First Isolation and Genome Sequence Analysis of West Nile Virus in Mosquitoes in Brazil" Tropical Medicine and Infectious Disease 8, no. 4: 237. https://doi.org/10.3390/tropicalmed8040237
APA StyleNeto, J. P. N., Reis, L. A. M., Freitas, M. N. O., do Nascimento, B. L. S., das Chagas, L. L., da Costa, H. H. M., Rodrigues, J. C. P., Braga, C. M., da Silva, E. V. P., Silva, S. P., & Martins, L. C. (2023). First Isolation and Genome Sequence Analysis of West Nile Virus in Mosquitoes in Brazil. Tropical Medicine and Infectious Disease, 8(4), 237. https://doi.org/10.3390/tropicalmed8040237