Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Specimen Collection
2.3. AFB Smear and MTB Culture Assays
2.4. Xpert MTB/RIF
2.5. Nanopore Sequencing
2.6. Statistical Analysis
3. Results
3.1. General Clinical Data of Study Participants
3.2. PTB-Detection Rates of Smear, Culture, Xpert MTB/RIF and Nanopore Sequencing Assays
3.3. Comparison of Diagnostic Efficacies of Smear, Culture, Xpert MTB/RIF and Nanopore Sequencing Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Shapiro, A.E.; Ross, J.M.; Yao, M.; Schiller, I.; Kohli, M.; Dendukuri, N.; Steingart, K.R.; Horne, D.J. Xpert MTB/RIF and Xpert Ultra assays for screening for pulmonary tuberculosis and rifampicin resistance in adults, irrespective of signs or symptoms. Cochrane Database Syst. Rev. 2021, 3, CD13694. [Google Scholar]
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Colman, R.E.; Anderson, J.; Lemmer, D.; Lehmkuhl, E.; Georghiou, S.B.; Heaton, H.; Wiggins, K.; Gillece, J.D.; Schupp, J.M.; Catanzaro, D.G.; et al. Rapid drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates directly from clinical samples by use of amplicon sequencing: A proof-of-concept study. J. Clin. Microbiol. 2016, 54, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Walzl, G.; McNerney, R.; du Plessis, N.; Bates, M.; McHugh, T.D.; Chegou, N.N.; Zumla, A. Tuberculosis: Advances and challenges in development of new diagnostics and biomarkers. Lancet Infect. Dis. 2018, 18, e199–e210. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Fang, L.; Ye, B.; Xu, X.; Yu, G.; Zhou, L. The role of core needle biopsy pathology combined with molecular tests in the diagnosis of lymph node tuberculosis. Infect. Drug Resist. 2022, 15, 335–345. [Google Scholar] [CrossRef]
- Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075. [Google Scholar] [CrossRef]
- MacLean, E.; Kohli, M.; Weber, S.F.; Suresh, A.; Schumacher, S.G.; Denkinger, C.M.; Pai, M. Advances in molecular diagnosis of tuberculosis. J. Clin. Microbiol. 2020, 58, e01582-19. [Google Scholar] [CrossRef]
- Xpert MTB/RIF Implementation Manual: Technical and Operational ‘How-To’; Practical Considerations; World Health Organization: Geneva, Switzerland, 2014.
- Hanrahan, C.F.; Haguma, P.; Ochom, E.; Kinera, I.; Cobelens, F.; Cattamanchi, A.; Davis, L.; Katamba, A.; Dowdy, D. Implementation of Xpert MTB/RIF in Uganda: Missed opportunities to improve diagnosis of tuberculosis. Open Forum Infect. Dis. 2016, 3, ofw68. [Google Scholar] [CrossRef]
- Chakravorty, S.; Simmons, A.M.; Rowneki, M.; Parmar, H.; Cao, Y.; Ryan, J.; Banada, P.P.; Deshpande, S.; Shenai, S.; Gall, A.; et al. The new Xpert MTB/RIF Ultra: Improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio 2017, 8, e00812-17. [Google Scholar] [CrossRef]
- Langley, I.; Lin, H.H.; Egwaga, S.; Doulla, B.; Ku, C.C.; Murray, M.; Cohen, T.; Squire, S.B. Assessment of the patient, health system, and population effects of Xpert MTB/RIF and alternative diagnostics for tuberculosis in Tanzania: An integrated modelling approach. Lancet Glob. Health 2014, 2, e581–e591. [Google Scholar] [CrossRef]
- Liang, M.; Fan, Y.; Zhang, D.; Yang, L.; Wang, X.; Wang, S.; Xu, J.; Zhang, J. Metagenomic next-generation sequencing for accurate diagnosis and management of lower respiratory tract infections. Int. J. Infect. Dis. 2022, 122, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Y.; Ouyang, H.; Liu, J.; Luo, X.; Huang, Y.; Chen, Y.; Ma, J.; Xia, J.; Ding, L. Tuberculosis diagnosis by metagenomic next-generation sequencing on bronchoalveolar lavage fluid: A cross-sectional analysis. Int. J. Infect. Dis. 2021, 104, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Cates, L.; Codreanu, A.; Ciobanu, N.; Fosburgh, H.; Allender, C.J.; Centner, H.; Engelthaler, D.M.; Crudu, V.; Cohen, T.; Menzies, N.A. Budget impact of next-generation sequencing for diagnosis of TB drug resistance in Moldova. Int. J. Tuberc. Lung Dis. 2022, 26, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Cao, Y.; Wan, X.; Wang, B.; Sun, A.; Wang, H.; Wang, Y.; Wang, H.; Gu, H. Nanopore-based metagenomic sequencing for the rapid and precise detection of pathogens among immunocompromised cancer patients with suspected infections. Front. Cell. Infect. Microbiol. 2022, 12, 943859. [Google Scholar] [CrossRef]
- Luo, W.; He, Y.; Xu, J.; Zhang, S.; Li, C.; Lv, J.; Shen, Y.; Ou, Z.; Dong, H. Comparison of third-generation sequencing technology and traditional microbiological detection in pathogen diagnosis of lower respiratory tract infection. Discov. Med. 2023, 35, 332–342. [Google Scholar] [CrossRef]
- Dippenaar, A.; Goossens, S.N.; Grobbelaar, M.; Oostvogels, S.; Cuypers, B.; Laukens, K.; Meehan, C.J.; Warren, R.M.; Van Rie, A. Nanopore sequencing for Mycobacterium tuberculosis: A critical review of the literature, new developments, and future opportunities. J. Clin. Microbiol. 2022, 60, e64621. [Google Scholar] [CrossRef]
- American Thoracic Society and the Centers for Disease Control and Prevention. Diagnostic standards and classification of tuberculosis in adults and children. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- George, S.; Xu, Y.; Rodger, G.; Morgan, M.; Sanderson, N.D.; Hoosdally, S.J.; Thulborn, S.; Robinson, E.; Rathod, P.; Walker, A.S.; et al. DNA thermo-protection facilitates whole-genome sequencing of mycobacteria direct from clinical samples. J. Clin. Microbiol. 2020, 58, 00670-20. [Google Scholar] [CrossRef]
- Votintseva, A.A.; Bradley, P.; Pankhurst, L.; del Ojo Elias, C.; Loose, M.; Nilgiriwala, K.; Chatterjee, A.; Smith, E.G.; Sanderson, N.; Walker, T.M.; et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 2017, 55, 1285–1298. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Wu, D.C.; Averbukh, L.D.; Wu, G.Y. Diagnostic and therapeutic strategies for peritoneal tuberculosis: A review. J. Clin. Transl. Hepatol. 2019, 7, 140–148. [Google Scholar] [PubMed]
- Awofeso, N. Anti-tuberculosis medication side-effects constitute major factor for poor adherence to tuberculosis treatment. Bull. World Health Organ. 2008, 86, B–D. [Google Scholar] [CrossRef]
- Jarvie, T. Next generation sequencing technologies. Drug Discov. Today Technol. 2005, 2, 255–260. [Google Scholar] [CrossRef]
- Cabibbe, A.M.; Spitaleri, A.; Battaglia, S.; Colman, R.E.; Suresh, A.; Uplekar, S.; Rodwell, T.C.; Cirillo, D.M. Application of targeted next-generation sequencing assay on a portable sequencing platform for culture-free detection of drug-resistant tuberculosis from clinical samples. J. Clin. Microbiol. 2020, 58, e00632-20. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, J.; Yokobori, N.; Hong, B.Y. Genetic identification and drug-resistance characterization of Mycobacterium tuberculosis using a portable sequencing device. A Pilot Study. Antibiotics 2020, 9, 548. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, Y.; Wang, Q.; Wang, L.; Nie, W.; Chu, N. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in pulmonary tuberculosis. BMC Pulm. Med. 2023, 23, 77. [Google Scholar] [CrossRef]
- Yu, G.; Shen, Y.; Zhong, F.; Zhou, L.; Chen, G.; Fang, L.; Zhu, P.; Sun, L.; Zhao, W.; Yu, W.; et al. Diagnostic accuracy of nanopore sequencing using respiratory specimens in the diagnosis of pulmonary tuberculosis. Int. J. Infect. Dis. 2022, 122, 237–243. [Google Scholar] [CrossRef]
- Light, R.W. Clinical practice. Pleural effusion. N. Engl. J. Med. 2002, 346, 1971–1977. [Google Scholar] [CrossRef]
- Vorster, M.J.; Allwood, B.W.; Diacon, A.H.; Koegelenberg, C.F. Tuberculous pleural effusions: Advances and controversies. J. Thorac. Dis. 2015, 7, 981–991. [Google Scholar]
- Segala, F.V.; Papagni, R.; Cotugno, S.; De Vita, E.; Susini, M.C.; Filippi, V.; Tulone, O.; Facci, E.; Lattanzio, R.; Marotta, C.; et al. Stool Xpert MTB/RIF as a possible diagnostic alternative to sputum in Africa: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1117709. [Google Scholar]
Characteristics | Total (n = 172) | PTB (n = 129) | Non-PTB (n = 43) |
---|---|---|---|
Gender (n, %) | |||
Male | 103 | 77 | 26 |
Female | 69 | 52 | 17 |
Age (n, %) | |||
<18 years | 9 | 8 | 1 |
18–64 years | 137 | 101 | 36 |
≥65 years | 26 | 20 | 6 |
Smoking | |||
No | 140 | 106 | 34 |
Yes | 32 | 23 | 9 |
Drinking | |||
No | 160 | 118 | 42 |
Yes | 12 | 11 | 1 |
Comorbidity | |||
No | 48 | 36 | 12 |
Yes | 124 | 93 | 31 |
Diabetes | 15 | 13 | 2 |
Hypertension | 18 | 14 | 4 |
Bronchiectasis | 7 | 5 | 2 |
Anemia | 29 | 22 | 7 |
Hypoproteinemia | 32 | 28 | 4 |
Abnormal liver function | 11 | 10 | 1 |
Leukocytopenia | 15 | 12 | 3 |
Other | 39 | 27 | 12 |
Sample | Test | Num. Positive/Tested | Positive Rate (%) | p Value |
---|---|---|---|---|
Sputum | Smear | 5/8 | 62.5 | 0.500 a |
Culture | 5/8 | 62.5 | 0.500 b | |
Xpert MTB/RIF | 5/8 | 62.5 | 0.500 c | |
Nanopore sequencing | 7/8 | 87.5 | ||
BALF | Smear | 4/151 | 2.6 | <0.001 a |
Culture | 17/151 | 11.3 | <0.001 b | |
Xpert MTB/RIF | 29/151 | 19.2 | <0.001 c | |
Nanopore sequencing | 94/151 | 62.3 | ||
Pleural fluid | Smear | 0/13 | 0.0 | 0.001 a |
Culture | 2/13 | 15.4 | 0.004 b | |
Xpert MTB/RIF | 1/13 | 7.7 | 0.002 c | |
Nanopore sequencing | 11/13 | 84.6 |
Test | Sensitivity (%, 95% CI) | Specificity (%, 95% CI) | PPV (%, 95% CI) | NPV (%, 95% CI) | AUC (95% CI) |
---|---|---|---|---|---|
Smear | 5.4 (2.2–10.9) | 95.3 (84.2–99.4) | 77.8 (43.0–94.2) | 25.2 (23.7–26.6) | 0.504 (0.427–0.581) |
Culture | 18.6 (12.3–26.4) | 100.0 (91.8–100.0) | 100.0 (/) | 29.1 (27.4–30.8) | 0.593 (0.516–0.667) |
Xpert MTB/RIF | 26.4 (19.0–4.8) | 97.7 (87.7–99.9) | 97.1 (82.7–99.6) | 30.7 (28.3–33.1) | 0.620 (0.543–0.693) |
Nanopore sequencing | 85.3 (78.0–90.9) | 95.4 (84.2–99.4) | 98.2 (93.4–99.5) | 68.3 (58.6–76.7) | 0.903 (0.849–0.943) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ye, W.; Zhang, C.; Lin, W.; Mei, L.; Liu, S.; Liu, J. Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison. Trop. Med. Infect. Dis. 2023, 8, 441. https://doi.org/10.3390/tropicalmed8090441
Yang J, Ye W, Zhang C, Lin W, Mei L, Liu S, Liu J. Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison. Tropical Medicine and Infectious Disease. 2023; 8(9):441. https://doi.org/10.3390/tropicalmed8090441
Chicago/Turabian StyleYang, Juan, Wei Ye, Chao Zhang, Wenhong Lin, Lin Mei, Shengsheng Liu, and Jie Liu. 2023. "Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison" Tropical Medicine and Infectious Disease 8, no. 9: 441. https://doi.org/10.3390/tropicalmed8090441
APA StyleYang, J., Ye, W., Zhang, C., Lin, W., Mei, L., Liu, S., & Liu, J. (2023). Accuracy of Nanopore Sequencing as a Diagnostic Assay for Pulmonary Tuberculosis versus Smear, Culture and Xpert MTB/RIF: A Head-to-Head Comparison. Tropical Medicine and Infectious Disease, 8(9), 441. https://doi.org/10.3390/tropicalmed8090441