Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement for All In Vitro and In Vivo Experiments
2.2. Reagents
2.3. Mycobacterial ELISA
2.3.1. Bacterial Culture
2.3.2. Single-Cell Suspension
2.3.3. Whole Bacteria ELISA
2.4. Extract Preparation and ELISA
2.5. LFIA
2.5.1. Colloidal Gold Conjugation
2.5.2. LFIA Manufacture and Testing
2.6. Guinea Pig Serum
2.7. Human Serum
2.8. Data Analysis and LFIA Signal Quantitation
3. Results
3.1. Whole Mycobacterial Detection via MA Antigen
3.2. Characterisation of Gallibody Binding Specificities
3.3. Displacement of Bound Gallibodies by Guinea Pig Antibodies to MA
3.4. Reduction in MA Signal by a TB-Positive Patient’s Serum Sample
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbaraman, R.; Nathavitharana, R.R.; Satyanarayana, S.; Pai, M.; Thomas, B.E.; Chadha, V.K.; Rade, K.; Swaminathan, S.; Mayer, K.H. The Tuberculosis Cascade of Care in India’s Public Sector: A Systematic Review and Meta-Analysis. PLoS Med. 2016, 13, e1002149. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Dewan, P.K.; Swaminathan, S. Transforming Tuberculosis Diagnosis. Nat. Microbiol. 2023, 8, 756–759. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Branigan, D. Pipeline Report 2023 Tuberculosis Diagnostics; Treatment Action Group: New York, NY, USA, 2023. [Google Scholar]
- World Health Organization. High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of A Consensus Meeting; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. Target Product Profile for Tuberculosis Diagnosis and Detection of Drug Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- World Health Organization. Special Programme for Research and Training in Tropical Diseases Laboratory-Based Evaluation of 19 Commercially Available Rapid Diagnostic Tests for Tuberculosis; Diagnostics Evaluation Series, 2; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Steingart, K.R.; Henry, M.; Laal, S.; Hopewell, P.C.; Ramsay, A.; Menzies, D.; Cunningham, J.; Weldingh, K.; Pai, M. Commercial Serological Antibody Detection Tests for the Diagnosis of Pulmonary Tuberculosis: A Systematic Review. PLoS Med. 2007, 4, e202. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Commercial Serodiagnostic Tests for Diagnosis of Tuberculosis: Policy Statement; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Halliday, A.; Masonou, T.; Tolosa-Wright, M.; Mandagere, V.; Lalvani, A. Immunodiagnosis of Active Tuberculosis. Expert Rev. Respir. Med. 2019, 13, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Branigan, D.; Deborggraeve, S.; Kohli, M.; MacLean, E.; McKenna, L.; Ruhwald, M. Pipeline Report 2020 Tuberculosis Diagnostics; Treatment Action Group: New York, NY, USA, 2020. [Google Scholar]
- Land, K.J.; Boeras, D.I.; Chen, X.-S.; Ramsay, A.R.; Peeling, R.W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.G.; Zijenah, L.S.; Chanda, D.; Clowes, P.; Lesosky, M.; Gina, P.; Mehta, N.; Calligaro, G.; Lombard, C.J.; Kadzirange, G.; et al. Effect on Mortality of Point-of-Care, Urine-Based Lipoarabinomannan Testing to Guide Tuberculosis Treatment Initiation in HIV-Positive Hospital Inpatients: A Pragmatic, Parallel-Group, Multicountry, Open-Label, Randomised Controlled Trial. Lancet Lond. Engl. 2016, 387, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Use of Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis and Screening of Active Tuberculosis in People Living with HIV: Policy Guidance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Broger, T.; Basu Roy, R.; Filomena, A.; Greef, C.H.; Rimmele, S.; Havumaki, J.; Danks, D.; Schneiderhan-Marra, N.; Gray, C.M.; Singh, M.; et al. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents. Clin. Infect. Dis. 2017, 64, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y. Diverse humoral immune responses and changes in IgG antibody levels against mycobacterial lipid antigens in active tuberculosis. Microbiology 2005, 151, 2065–2074. [Google Scholar] [CrossRef]
- Goodridge, A.; Cueva, C.; Lahiff, M.; Muzanye, G.; Johnson, J.L.; Nahid, P.; Riley, L.W. Anti-Phospholipid Antibody Levels as Biomarker for Monitoring Tuberculosis Treatment Response. Tuberculosis 2012, 92, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Thanyani, S.T.; Roberts, V.; Siko, D.G.R.; Vrey, P.; Verschoor, J.A. A Novel Application of Affinity Biosensor Technology to Detect Antibodies to Mycolic Acid in Tuberculosis Patients. J. Immunol. Methods 2008, 332, 61–72. [Google Scholar] [CrossRef]
- Ndlandla, F. Diagnostic Antibody Biomarkers of Tuberculosis Characterized By Natural and Chemically Synthetic Mycolic Acid Antigens. Ph.D. Thesis, University of Pretoria, Pretoria, Gauteng, South Africa, 2016. [Google Scholar]
- Beckman, E.M.; Porcelli, S.A.; Morita, C.T.; Behar, S.M.; Furlong, S.T.; Brenner, M.B. Recognition of a Lipid Antigen by CD1-Restricted (Alpha)(Beta)(Positive) T Cells. Nature 1994, 372, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Wong-Baeza, C.; Reséndiz-Mora, A.; Donis-Maturano, L.; Wong-Baeza, I.; Zárate-Neira, L.; Yam-Puc, J.C.; Calderón-Amador, J.; Medina, Y.; Wong, C.; Baeza, I.; et al. Anti-lipid Igg Antibodies are Produced Via Germinal Centers in a Murine Model Resembling Human Lupus. Front. Immunol. 2016, 7, 396. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, G.K.; Feldman, C.; Vermaak, Y.; Verschoor, J.A. Prevalence of Anti-Mycolic Acid Antibodies in Patients with Pulmonary Tuberculosis Co-Infected with HIV. Clin. Chem. Lab. Med. 2002, 40, 882–887. [Google Scholar] [CrossRef]
- Korf, J.; Stoltz, A.; Verschoor, J.; De Baetselier, P.; Grooten, J. The Mycobacterium tuberculosis Cell Wall Component Mycolic Acid Elicits Pathogen-Associated Host Innate Immune Responses. Eur. J. Immunol. 2005, 35, 890–900. [Google Scholar] [CrossRef]
- Jones, A.; Pitts, M.; Al Dulayymi, J.R.; Gibbons, J.; Ramsay, A.; Goletti, D.; Gwenin, C.D.; Baird, M.S. New Synthetic Lipid Antigens for Rapid Serological Diagnosis of Tuberculosis. PLoS ONE 2017, 12, e0181414. [Google Scholar] [CrossRef]
- Lemmer, Y.; Thanyani, S.T.; Vrey, P.J.; Driver, C.H.S.; Venter, L.; Van Wyngaardt, S.; Ten Bokum, A.M.C.; Ozoemena, K.I.; Pilcher, L.A.; Fernig, D.G.; et al. Chapter Five-Detection of Anti-Mycolic Acid Antibodies by Liposomal Biosensors. Methods Enzymol. 2009, 464, 79–104. [Google Scholar] [CrossRef]
- Bührer-Sékula, S.; Smits, H.L.; Gussenhoven, G.C.; Van Leeuwen, J.; Amador, S.; Fujiwara, T.; Klatser, P.R.; Oskam, L. Simple and Fast Lateral Flow Test for Classification of Leprosy Patients and Identification of Contacts with High Risk of Developing Leprosy. J. Clin. Microbiol. 2003, 41, 1991–1995. [Google Scholar] [CrossRef]
- Bulterys, M.A.; Wagner, B.; Redard-Jacot, M.; Suresh, A.; Pollock, N.R.; Moreau, E.; Denkinger, C.M.; Drain, P.K.; Broger, T. Point-of-Care Urine LAM Tests for Tuberculosis Diagnosis: A Status Update. J. Clin. Med. 2019, 9, 111. [Google Scholar] [CrossRef]
- Julián, E.; Matas, L.; Pérez, A.; Alcaide, J.; Lanéelle, M.-A.; Luquin, M. Serodiagnosis of Tuberculosis: Comparison of Immunoglobulin a (IgA) Response to Sulfolipid I with IgG and IgM Responses to 2,3-Diacyltrehalose, 2,3,6-Triacyltrehalose, and Cord Factor Antigens. J. Clin. Microbiol. 2002, 40, 3782–3788. [Google Scholar] [CrossRef] [PubMed]
- Ranchod, H.; Ndlandla, F.; Lemmer, Y.; Beukes, M.; Niebuhr, J.; Al Dulayymi, J.R.; Wemmer, S.; Fehrsen, J.; Baird, M.S.; Verschoor, J.A. The Antigenicity and Cholesteroid Nature of Mycolic Acids Determined by Recombinant Chicken Antibodies. PLoS ONE 2018, 13, e0200298. [Google Scholar] [CrossRef]
- Greunke, K.; Spillner, E.; Braren, I.; Seismann, H.; Kainz, S.; Hahn, U.; Grunwald, T.; Bredehorst, R. Bivalent Monoclonal IgY Antibody Formats by Conversion of Recombinant Antibody Fragments. J. Biotechnol. 2006, 124, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, J.A.; Beukes, M. Method of Detecting Surrogate Markers in a Serum Sample. U.S. Patent 20130137598A1, 30 May 2013. [Google Scholar]
- Beukes, M.; Lemmer, Y.; Deysel, M.; Al Dulayymi, J.R.; Baird, M.S.; Koza, G.; Iglesias, M.M.; Rowles, R.R.; Theunissen, C.; Grooten, J.; et al. Structure-Function Relationships of the Antigenicity of Mycolic Acids in Tuberculosis Patients. Chem. Phys. Lipids 2010, 163, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Leisching, G.; Pietersen, R.-D.; Mpongoshe, V.; van Heerden, C.; van Helden, P.; Wiid, I.; Baker, B. The Host Response to a Clinical Mdr Mycobacterial Strain Cultured in a Detergent-Free Environment: A global Transcriptomics Approach. PLoS ONE 2016, 11, e0153079. [Google Scholar] [CrossRef] [PubMed]
- Bragg, R.R.; Coetzee, L.; Verschoor, J.A. Effects of Growth Conditions and Incubation Times on the Expression of Antigens of Haemophilus Paragallinarum Which Are Detected by Monoclonal Antibodies. Onderstepoort J. Vet. Res. 1997, 64, 57–63. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R, Version 2023.12.1.402; Posit Software, PBS: Boston, MA, USA, 2023. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the {tidyverse}. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; Bryan, J. Readxl: Read Excel Files, R package version 1.4.3; 2023. Available online: https://CRAN.R-project.org/package=readxl (accessed on 21 June 2024).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Oberholzer, A.; Korvink, J.G.; Mager, D.; Land, K. Wireless Colorimetric Readout to Enable Resource-Limited Point-of-Care. Lab Chip 2019, 19, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Rasband, W. ImageJ User Guide: Analyze Menu. Available online: https://imagej.net/ij/docs/menus/analyze.html#gels (accessed on 25 March 2024).
- Anti-Mycobacterium Tuberculosis Antibody (ab905). Available online: https://www.abcam.com/products/primary-antibodies/mycobacterium-tuberculosis-antibody-ab905.html (accessed on 17 May 2024).
- Minnikin, D.E.; Minnikin, S.M.; Parlett, J.H.; Goodfellow, M.; Magnusson, M. Mycolic Acid Patterns of Some Species of Mycobacterium. Arch. Microbiol. 1984, 139, 225–231. [Google Scholar] [CrossRef]
- Elkayam, O.; Segal, R.; Lidgi, M.; Caspi, D. Positive Anti-Cyclic Citrullinated Proteins and Rheumatoid Factor during Active Lung Tuberculosis. Ann. Rheum. Dis. 2006, 65, 1110–1112. [Google Scholar] [CrossRef]
- Gehin, J.E.; Klaasen, R.A.; Norli, E.S.; Warren, D.J.; Syversen, S.W.; Goll, G.L.; Bjøro, T.; Kvien, T.K.; Mjaavatten, M.D.; Bolstad, N. Rheumatoid Factor and Falsely Elevated Results in Commercial Immunoassays: Data from an Early Arthritis Cohort. Rheumatol. Int. 2021, 41, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Stop TB Partnership The Global Plan to End TB 2023-2030 2023. Available online: https://omnibook.com/embedview/dc664b3a-14b4-4cc0-8042-ea8f27e902a6/page-en.html#z-64bf (accessed on 21 June 2024).
- Ndlandla, F.; Ejoh, V.; Stoltz, A.; Naicker, B.; Cromarty, A.; van Wyngaardt, S.; Khati, M.; Rotherham, L.; Lemmer, Y.; Niebuhr, J.; et al. Standardization of Natural Mycolic Acid Antigen Composition and Production for Use in Biomarker Antibody Detection to Diagnose Active Tuberculosis. J. Immunol. Methods 2016, 435, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Dulberger, C.L.; Rubin, E.J.; Boutte, C.C. The Mycobacterial Cell Envelope-a Moving Target. Nat. Rev. Microbiol. 2020, 18, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Sigal, G.B.; Pinter, A.; Lowary, T.L.; Kawasaki, M.; Li, A.; Mathew, A.; Tsionsky, M.; Zheng, R.B.; Plisova, T.; Shen, K.; et al. A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO’s Performance Target for Tuberculosis Diagnosis. J. Clin. Microbiol. 2018, 56, e01338-18. [Google Scholar] [CrossRef]
- Villeneuve, M.; Kawai, M.; Kanashima, H.; Watanabe, M.; Minnikin, D.E.; Nakahara, H. Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1715, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Perl-Treves, D.; Kessler, N.; Izhaky, D.; Addadi, L. Monoclonal Antibody Recognition of Cholesterol Monohydrate Crystal Faces. Chem. Biol. 1996, 3, 567–577. [Google Scholar] [CrossRef]
- Horváth, A.; Füst, G.; Horváth, I.; Vallus, G.; Duba, J.; Harcos, P.; Prohászka, Z.; Rajnavölgyi, É.; Jánoskuti, L.; Kovács, M.; et al. Anti-Cholesterol Antibodies (ACHA) in Patients with Different Atherosclerotic Vascular Diseases and Healthy Individuals. Characterization of human ACHA. Atherosclerosis 2001, 156, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Bíró, A.; Cervenak, L.; Balogh, A.; Lőrincz, A.; Uray, K.; Horváth, A.; Romics, L.; Matkó, J.; Füst, G.; László, G. Novel Anti-Cholesterol Monoclonal Immunoglobulin G Antibodies as Probes and Potential Modulators of Membrane Raft-Dependent Immune Functions. J. Lipid Res. 2007, 48, 19–29. [Google Scholar] [CrossRef]
- Benadie, Y.; Deysel, M.; Siko, D.G.R.; Roberts, V.V.; Van Wyngaardt, S.; Thanyani, S.T.; Sekanka, G.; Ten Bokum, A.M.; Collett, L.A.; Grooten, J.; et al. Cholesteroid Nature of Free Mycolic Acids from M. Tuberculosis. Chem. Phys. Lipids 2008, 152, 95–103. [Google Scholar] [CrossRef]
- World Health Organization. HIV Assays: Laboratory Performance and Other Operational Characteristics; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Bishop, J.D.; Hsieh, H.V.; Gasperino, D.J.; Weigl, B.H. Sensitivity Enhancement in Lateral Flow Assays: A Systems Perspective. Lab Chip 2019, 19, 2486–2499. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truyts, A.; Du Preez, I.; Maesela, E.M.; Scriba, M.R.; Baillie, L.; Jones, A.T.; Land, K.J.; Verschoor, J.A.; Lemmer, Y. Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis. Trop. Med. Infect. Dis. 2024, 9, 269. https://doi.org/10.3390/tropicalmed9110269
Truyts A, Du Preez I, Maesela EM, Scriba MR, Baillie L, Jones AT, Land KJ, Verschoor JA, Lemmer Y. Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis. Tropical Medicine and Infectious Disease. 2024; 9(11):269. https://doi.org/10.3390/tropicalmed9110269
Chicago/Turabian StyleTruyts, Alma, Ilse Du Preez, Eldas M. Maesela, Manfred R. Scriba, Les Baillie, Arwyn T. Jones, Kevin J. Land, Jan A. Verschoor, and Yolandy Lemmer. 2024. "Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis" Tropical Medicine and Infectious Disease 9, no. 11: 269. https://doi.org/10.3390/tropicalmed9110269
APA StyleTruyts, A., Du Preez, I., Maesela, E. M., Scriba, M. R., Baillie, L., Jones, A. T., Land, K. J., Verschoor, J. A., & Lemmer, Y. (2024). Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis. Tropical Medicine and Infectious Disease, 9(11), 269. https://doi.org/10.3390/tropicalmed9110269