Integrated Strategies for Aedes aegypti Control Applied to Individual Houses: An Approach to Mitigate Vectorial Arbovirus Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tool for Monitoring Mosquitoes
2.2. Tools for the Mosquitoes’ Control in Different Phases
3. Results
3.1. Integrated Surveillance and Control Actions
3.2. Vectorial Infection Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Focks, D.A.; Daniels, E.; Haile, D.G.; Keesling, J.E. A Simulation Model of the Epidemiology of Urban Dengue Fever: Literature Analysis, Model Development, Preliminary Validation, and Samples of Simulation Results. Am. J. Trop. Med. Hyg. 1995, 53, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Aruna, P.; Panneerselvam, C.; Madhiyazhagan, P.; Paulpandi, M.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Alsalhi, M.S.; Devanesan, S.; et al. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 2016, 115, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Donalisio, M.R.; Freitas, A.R.R.; Zuben, A.P.B.V. Arboviruses emerging in Brazil: Challenges for clinic and implications for public health. Revista de Saúde Pública 2017, 51, 30. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.R.R.; Paiva, M.H.S.; Farias, P.C.S.; Silva Júnior, J.V.J. Arbovirus control: What is the (real) stone in the way? Revista do Instituto de Medicina Tropical de São Paulo 2019, 61, e15. [Google Scholar] [CrossRef]
- Comissão de Epidemiologia da Abrasco. Zika vírus: Desafios da saúde pública no Brasil. Revista Brasileira de Epidemiologia 2016, 19, 225–228. [Google Scholar] [CrossRef]
- Costa, F.; Carvalho-Pereira, T.; Begon, M.; Riley, L.; Childs, J. Zoonotic and Vector-Borne Diseases in Urban Slums: Opportunities for Intervention. Trends Parasitol. 2017, 33, 660–662. [Google Scholar] [CrossRef]
- Heukelbach, J.; Werneck, G.L. Surveillance of Zika virus infection and microcephaly in Brazil. Lancet 2016, 388, 846–847. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef]
- Brito, A.F.; Machado, L.C.; Siconelli, M.J.L.; Oidtman, R.J.; Fauver, J.R.; de Oliveira Carvalho, R.D.; Dezordi, F.Z.; Pereira, M.R.; de Castro-Jorge, L.A.; Minto, E.C.M.; et al. Lying in wait: The resurgence of dengue virus after the Zika epidemic in Brazil. medRxiv 2020. [Google Scholar] [CrossRef]
- Ribeiro, G.S.; Hamer, G.L.; Diallo, M.; Kitron, U.; Ko, A.I.; Weaver, S.C. Influence of herd immunity in the cyclical nature of arboviruses. Curr. Opin. Virol. 2020, 40, 1–10. [Google Scholar] [CrossRef]
- Pérez-Guzmán, E.X.; Pantoja, P.; Serrano-Collazo, C.; Hassert, M.A.; Ortiz-Rosa, A.; Rodríguez, I.V.; Giavedoni, L.; Hodara, V.; Parodi, L.; Cruz, L.; et al. Time elapsed between Zika, and dengue virus infections affects antibody and T cell responses. Nat. Commun. 2019, 10, 4316. [Google Scholar] [CrossRef] [PubMed]
- Secretaria de Vigilância em Saúde e Ambiente. Boletim Epidemiológico–SVS–38. Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes aegypti (dengue, chikungunya e Zika), semanas epidemiológicas 1 a 36, 2020. Boletins Epidemiológicos 2020, 38, 14–20. [Google Scholar]
- Secretaria de Vigilância em Saúde e Ambiente. Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes Aegypti (dengue, chikungunya e zika), semanas epidemiológicas 1 a 50, 2020. Boletins Epidemiológicos 2020, 51, 1–15. [Google Scholar]
- Consoli, R.A.; Oliveira, R.L.D. Principais Mosquitos de Importância Sanitária no Brasil; Editora FIOCRUZ: Rio de Janeiro, Brazil, 1994; Available online: http://books.scielo.org/id/th (accessed on 9 September 2019).
- Natal, D. Bioecologia do Aedes Aegypti. Biológico 2002, 64, 205–207. [Google Scholar]
- Powell, J.R.; Tabachnick, W.J.; Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti—A Review. Memórias do Instituto Oswaldo Cruz 2013, 108, 11–17. [Google Scholar] [CrossRef]
- Carvalho, F.D.; Moreira, L.A. Why is Aedes aegypti Linnaeus so Successful as a Species? Neotrop. Entomol. 2017, 46, 243–255. [Google Scholar] [CrossRef]
- Brackney, D.E.; Pesko, K.N.; Brown, I.K.; Deardorff, E.R.; Kawatachi, J.; Ebel, G.D. West Nile Virus Genetic Diversity is Maintained during Transmission by Culex pipiens quinquefasciatus Mosquitoes. PLoS ONE 2011, 6, e24466. [Google Scholar] [CrossRef]
- Regis, L.; Furtado, A.F.; de Oliveira, C.M.F.; da Silva, L.R.F.; Araújo, J.; Maciel, A.; Silva-Filha, M.H.; Silva, S.B. Controle integrado do vetor da filariose com participação comunitária, em uma área urbana do Recife, Brasil. Cadernos de Saúde Pública 1996, 12, 473–482. [Google Scholar] [CrossRef]
- Downs, J.; Vaziri, M.; Deskins, G.; Kellner, W.; Miley, K.; Unnasch, T.R. Optimizing arbovirus surveillance using risk mapping and coverage modelling. Ann. GIS 2020, 26, 13–23. [Google Scholar] [CrossRef]
- Medeiros, A.S. Araújo Dengue virus in Aedes aegypti and Aedes albopictus in urban areas in the state of Rio Grande do Norte, Brazil: Importance of virological and entomological surveillance. PLoS ONE 2018, 13, e0194108. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.-J.J. Biological Transmission of Arboviruses: Reexamination of and New Insights into Components, Mechanisms, and Unique Traits as well as Their Evolutionary Trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.L.; Carvalho, D.O.; Capurro, M.L. Transgenic mosquito: From paper to reality. Rev. Biol. 2011, 6, 38–43. [Google Scholar] [CrossRef]
- Ministério da Saúde. Programa Nacional de Controle da Dengue—PNCD. 34. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/pncd_2002.pdf (accessed on 15 May 2019).
- Rocha, A.; Marcondes, M.; Nunes, J.R.V.; Miranda, T.; Veiga, J.; Araújo, P.; Tenório, W.; Aguiar-Santos, A. Programa de Controle e eliminação da filariose linfática: uma parceria da secre taria de saúde de olinda-pe, brasil, com o serviço de referência nacional em filarioses. Rev. Pathol. Trop. J. Trop. Pathol. 2010, 39, 233–249. [Google Scholar]
- Regis, L.N.; Acioli, R.V.; Silveira, J.C., Jr.; Melo-Santos, M.A.V.; Souza, W.V.; Ribeiro, C.M.N.; da Silva, J.C.S.; Monteiro, A.M.V.; Oliveira, C.M.F.; Furtado, A.F.; et al. Sustained Reduction of the Dengue Vector Population Resulting from an Integrated Control Strategy Applied in Two Brazilian Cities. PLoS ONE 2013, 8, e67682. [Google Scholar] [CrossRef] [PubMed]
- Barrera, R.; Amador, M.; Acevedo, V.; Hemme, R.R.; Félix, G. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps. Am. J. Trop. Med. Hyg. 2014, 91, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Fay, R.W.; Eliason, D. A prefered oviposition sit as a surveillance method for Aedes aegypti. Mosq. News 1966, 26, 531–535. Available online: https://www.biodiversitylibrary.org/content/part/JAMCA/MN_V26_N4_P531-535.pdf (accessed on 11 May 2022).
- Xavier, M.D.N.; Xavier, M.D.N.; de Melo, D.C.T.V.; de Mendonça Santos, E.M.; Barbosa, R.M.R.; de Oliveira, C.M.F. Double BR-OVT: A new trap model for collecting eggs and adult mosquitoes from Culex quinquefasciatus and Aedes spp. Revista do Instituto de Medicina Tropical de São Paulo 2020, 8. [Google Scholar] [CrossRef]
- Santos, S.R.A.; Melo-Santos, M.A.V.; Albuquerque, C. Field Evaluation of Ovitraps Consociated with Grass Infusion and Bacillus thuringiensis var. israelensis to determine Oviposition Rates of Aedes aegypti. Dengue Bull. 2003, 27, 156–162. [Google Scholar]
- Stoops, C.A. Influence of Bacillus thuringiensis var. israelensis on oviposition of Aedes albopictus (Skuse). J. Vector Ecol. 2005, 30, 41–44. [Google Scholar]
- Regis, L.; Monteiro, A.M.; de Melo-Santos, M.A.V.; Silveira, J.C., Jr.; Furtado, A.F.; Acioli, R.V.; Santos, G.M.; Nakazawa, M.; Carvalho, M.S.; Ribeiro, P.J., Jr.; et al. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: Basis for surveillance, alert and control system. Memórias do Instituto Oswaldo Cruz 2008, 103, 50–59. [Google Scholar] [CrossRef]
- Moise, I.; Zulu, L.; Fuller, D.; Beier, J. Current Topics in Neglected Tropical Diseases; BoD—Books on Demand: Norderstedt, Germany, 2019; 166p. [Google Scholar]
- de Melo Santos, M.A.V.; de Melo Santos, M.A.V.; de Melo Santos, M.A.V.; de Melo Santos, M.A.V.; Barbosa, R.M.R.; Guedes, D.R.D.; Lima, K.F.A.; da Silva, L.M.I.; de Mendonça, C.M.; Rodrigues, M.P.; et al. Tecnologias integradas para controle biológico, mecânico e genético de Aedes aegypti. Comunicação em Ciências da Saúde 2017, 28, 58–63. [Google Scholar] [CrossRef]
- de Mendonça Santos, E.M.; Regis, L.N.; Silva-Filha, M.H.N.L.; Barbosa, R.M.R.; de Melo-Santos, M.A.V.; Gomes, T.C.S.; de Oliveira, C.M.F. The effectiveness of a combined bacterial larvicide for mosquito control in an endemic urban area in Brazil. Biol. Control 2018, 121, 190–198. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Bouyer, J.; Facknath, S.; Bheecarry, A. Pilot Suppression trial of Aedes albopictus mosquitoes through an Integrated Vector Management strategy including the Sterile Insect Technique in Mauritius. bioRxiv 2020. [Google Scholar] [CrossRef]
- Horst. Available online: http://www.horstarmadilhas.com.br/Produtos.php (accessed on 21 August 2022).
- Forattini, O.P. Entomologia Médica: 3o Volume. University of São Paulo: São Paulo, Brazil, 1965; p. 4416. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/mis-13214 (accessed on 12 May 2023).
- Melo, D.C.T.V. Avaliação do Impacto de Ações Integradas de Controle Vetorial Sobre A Infestação de Aedes Aegypti E Culex Quinquefasciatus em recife-pe.: [s.n.], 2020. 101 p.: Il., graf.; 30 cm. Available online: https://www.arca.fiocruz.br/bitstream/handle/icict/55532/danielle_melo_iam_mest_2019.pdf?sequence=2&isAllowed=y (accessed on 5 May 2022).
- Tenywa, F.C.; Kambagha, A.; Saddler, A.; Maia, M.F. The development of an ivermectin-based attractive toxic sugar bait (ATSB) to target Anopheles arabiensis. Malar. J. 2017, 16, 338. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Single Rapid TaqMan Fluorogenic Probe-Based PCR Assay That Detects All Four Dengue Serotypes-Warrilow-2002-Journal of Medical Virology-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.2176 (accessed on 5 July 2022).
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya Virus in US Travelers Returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.T.; Chan, Y.C.; Yong, R.; Lee, K.M.; Lim, L.K.; Chung, Y.K.; Lam-Phua, S.G.; Tan, B.T. Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am. J. Trop. Med. Hyg. 1998, 5, 578–586. [Google Scholar] [CrossRef]
- Fontoura, P.S.; da Costa, A.S.; Ribeiro, F.S.; Ferreira, M.S.; Castro, M.C.; Ferreira, M.U. Field Efficacy of VectoMax FG and VectoLex CG Biological Larvicides for Malaria Vector Control in Northwestern Brazil. J. Med. Entomol. 2020, 57, 942–946. [Google Scholar] [CrossRef]
- Dritz, D.A.; Lawler, S.P.; Evkhanian, C.; Graham, P.; Baracosa, V.; Dula, G. Control of Mosquito Larvae in Seasonal Wetlands on a Wildlife Refuge Using VectomaxTM CG. J. Am. Mosq. Control Assoc. 2011, 27, 398–403. [Google Scholar] [CrossRef]
- Acioli, R.V. The Use of Oviposition Traps (ovitrampas) as a Tool for Population Monitoring of Aedes spp. in Neighborhoods of Recife. 2006. Available online: https://www.arca.fiocruz.br/handle/icict/3956 (accessed on 10 June 2022).
- Barbosa, R.M.R.; de Melo-Santos, M.A.V.; Silveira, J.C., Jr.; Silva-Filha, M.H.N.L.; Souza, W.V.; de Oliveira, C.M.F.; Ayres, C.F.J.; Xavier, M.D.N.; Rodrigues, M.P.; Santos, S.A.D.; et al. Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Memórias do Instituto Oswaldo Cruz 2020, 115, e190437. [Google Scholar] [CrossRef]
- Morato, V.C.G.; Teixeira, M.G.; Gomes, A.C.; Bergamaschi, D.P.; Barreto, M.L. Infestation of Aedes aegypti estimated by oviposition traps in Brazil. Revista de Saúde Pública 2005, 39, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Donalísio, M.R.; Glasser, C.M. Vigilância entomológica e controle de vetores do dengue. Revista Brasileira de Epidemiologia 2002, 5, 259–279. [Google Scholar] [CrossRef]
- Barata, E.A.F.; da Costa, A.I.P.; Chiaravalloti Neto, F.; Glasser, C.M.; Barata, J.M.S.; Natal, D. População de Aedes aegypti (l.) em área endêmica de dengue, Sudeste do Brasil. Revista de Saúde Pública 2001, 35, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Lea, A.O. Sugar-baited insecticide residues against mosquitoes. Mosq. News 1965, 25, 65–66. [Google Scholar]
- Müller, G.C.; Junnila, A.; Qualls, W.; Revay, E.E.; Kline, D.L.; Allan, S.; Schlein, Y.; Xue, R.D. Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar baits. Med. Vet. Entomol. 2010, 24, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Bogoch, I.I.; Brady, O.J.; Kraemer, M.U.G.; German, M.; Creatore, M.I.; Kulkarni, M.A.; Brownstein, J.S.; Mekaru, S.R.; Hay, S.I.; Groot, E.; et al. Anticipating the international spread of Zika virus from Brazil. Lancet 2016, 387, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.R.D.; Paiva, M.H.S.; Donato, M.M.A.; Barbosa, P.P.; Krokovsky, L.; Rocha, S.W.D.S.; Saraiva, K.L.A.; Crespo, M.M.; Rezende, T.M.T.; Wallau, G.L.; et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-X.; Li, C.-X.; Deng, Y.-Q.; Xing, D.; Liu, Q.-M.; Wu, Q.; Sun, A.-J.; Dong, Y.-D.; Cao, W.-C.; Qin, C.-F.; et al. Culex pipiens quinquefasciatus: A potential vector to transmit Zika virus. Emerg. Microbes Infect. 2016, 5, 1–5. [Google Scholar] [CrossRef]
- Kenney, J.L.; Romo, H.; Duggal, N.K.; Tzeng, W.-P.; Burkhalter, K.L.; Brault, A.C.; Savage, H.M.; Zhao, T.-Y. Transmission Incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika Virus. Am. J. Trop. Med. Hyg. 2017, 96, 1235–1240. [Google Scholar] [CrossRef]
- Huang, Y.-J.S.; Ayers, V.B.; Lyons, A.C.; Unlu, I.; Alto, B.W.; Cohnstaedt, L.W.; Higgs, S.; Vanlandingham, D.L. Culex Species Mosquitoes and Zika Virus. Vector-Borne Zoonotic Dis. 2016, 16, 673–676. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Campos, S.S.; Ferreira-de-Brito, A.; de Miranda, R.M.; da Silva, K.A.B.; de Castro, M.G.; Raphael, L.M.S.; Brasil, P.; Failloux, A.-B.; Bonaldo, M.C.; et al. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004993. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Azmi, R.A.; Ahmad, N.W.; Hadi, A.A.; Muhamed, K.A.; Rasli, R.; Ling, C.Y.; Chua, H.A.; Wan, K.L.; Lee, H.L. Entomological Surveillance Associated with Human Zika Cases in Miri Sarawak, Malaysia. Am. J. Trop. Med. Hyg. 2020, 102, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Phumee, A.; Buathong, R.; Boonserm, R.; Intayot, P.; Aungsananta, N.; Jittmittraphap, A.; Joyjinda, Y.; Wacharapluesadee, S.; Siriyasatien, P. Molecular Epidemiology and Genetic Diversity of Zika Virus from Field-Caught Mosquitoes in Various Regions of Thailand. Pathogens 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Calzolari, M.; Angelini, P.; Bolzoni, L.; Bonilauri, P.; Cagarelli, R.; Canziani, S.; Cereda, D.; Cerioli, M.P.; Chiari, M.; Galletti, G.; et al. Enhanced West Nile Virus Circulation in the Emilia-Romagna and Lombardy Regions (Northern Italy) in 2018 Detected by Entomological Surveillance. Front. Vet. Sci. 2020, 7, 243. [Google Scholar] [CrossRef]
- Zanluca, C.; de Melo, V.C.A.; Mosimann, A.L.P.; Dos Santos, G.I.V.; dos Santos, C.N.D.; dos Luz, K. First report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz 2015, 110, 569–572. [Google Scholar] [CrossRef]
- Díaz-Menéndez, M.; de la Calle-Prieto, F.; Montero, D.; Antolín, E.; Vazquez, A.; Arsuaga, M.; Trigo, E.; García-Bujalance, S.; de la Calle, M.; Seco, P.S.; et al. Initial experience with imported Zika virus infection in Spain. Enfermedades Infecciosas y Microbiologia Clinica (Engl. Ed.) 2018, 36, 4–8. [Google Scholar]
- Rodó, C.; Suy, A.; Sulleiro, E.; Soriano-Arandes, A.; Maiz, N.; García-Ruiz, I.; Arévalo, S.; Rando, A.; Anton, A.; Méndez, É.V.; et al. Pregnancy outcomes after maternal Zika virus infection in a non-endemic region: Prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 633.e5–633.e9. [Google Scholar] [CrossRef]
- Ciota, A.T.; Bialosuknia, S.M.; Ehrbar, D.J.; Kramer, L.D. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes. Emerg. Infect. Dis. 2017, 23, 880–882. [Google Scholar] [CrossRef]
- Barbosa, R.R.; Regis, L. Monitoring temporal fluctuations of Culex quinquefasciatus using oviposition traps containing attractant and larvicide in an urban environment in Recife, Brazil. Memórias do Instituto Oswaldo Cruz 2011, 106, 451–455. [Google Scholar] [CrossRef]
Intervention Plans/Species | Monitoring Cycle of Adult Mosquitoes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Single Actions Group 1 | ||||||||||||
Aedes aegypti | ||||||||||||
N of properties | 20 | 17 | 17 | 16 | 11 | 15 | 14 | 16 | 16 | 16 | 16 | 19 |
N of positive properties | 12 | 12 | 7 | 11 | 5 | 4 | 8 | 10 | 7 | 6 | 4 | 6 |
Total number of mosquitoes | 86 | 27 | 13 | 22 | 13 | 5 | 28 | 31 | 12 | 5 | 6 | 8 |
Mean number | 4.3 | 1.6 | 0.8 | 1.4 | 1.2 | 0.3 | 2.0 | 1.9 | 0.8 | 0.3 | 0.4 | 0.4 |
Standard Deviation | 13.9 | 1.7 | 1.1 | 2.4 | 1.8 | 0.6 | 3.3 | 3.2 | 1 | 1.3 | 0.7 | 0.8 |
Culex quinquefasciatus | ||||||||||||
N of properties | 20 | 17 | 17 | 16 | 11 | 15 | 14 | 16 | 16 | 16 | 16 | 19 |
N of positive properties | 17 | 16 | 17 | 15 | 11 | 11 | 11 | 15 | 14 | 14 | 7 | 14 |
Total number of mosquitoes | 168 | 145 | 98 | 432 | 124 | 122 | 137 | 520 | 327 | 155 | 64 | 26 |
Mean number | 8.4 | 8.5 | 5.8 | 27.0 | 11.3 | 8.1 | 9.8 | 32.5 | 20.4 | 9.7 | 4.0 | 1.4 |
Standard Deviation | 7.4 | 4.5 | 4.5 | 48.6 | 9.7 | 16.3 | 13.7 | 68.7 | 45.2 | 38.6 | 6.2 | 1.3 |
Double Actions Group 2 | ||||||||||||
Aedes aegypti | ||||||||||||
N of properties | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 18 | 19 | 19 | 19 | 19 |
N of positive properties | 18 | 16 | 10 | 11 | 6 | 11 | 8 | 5 | 11 | 3 | 6 | 1 |
Total number of mosquitoes | 42 | 37 | 23 | 34 | 8 | 23 | 11 | 6 | 13 | 4 | 7 | 1 |
Mean number | 2.1 | 1.9 | 1.2 | 1.7 | 0.4 | 1.2 | 0.6 | 0.3 | 0.7 | 0.2 | 0.4 | 0.05 |
Standard Deviation | 1.5 | 1.9 | 1.4 | 2.2 | 0.7 | 1.4 | 0.9 | 0.6 | 0.7 | 0.5 | 0.6 | 0.2 |
Culex quinquefasciatus | ||||||||||||
N of properties | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 18 | 19 | 19 | 19 | 19 |
N of positive properties | 19 | 19 | 16 | 19 | 14 | 15 | 16 | 15 | 16 | 19 | 16 | 15 |
Total number of mosquitoes | 99 | 148 | 95 | 225 | 58 | 103 | 83 | 133 | 104 | 120 | 57 | 43 |
Mean number | 5.0 | 7.4 | 4.8 | 11.3 | 2.9 | 5.2 | 4.2 | 7.4 | 5.5 | 6.3 | 3.0 | 2.3 |
Standard Deviation | 4.0 | 5.6 | 5.7 | 9.1 | 4.2 | 5.1 | 4.7 | 7.1 | 7.7 | 8.6 | 3.6 | 3.5 |
Species | MONTH 2018 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | |||||||||||||||||||
♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | |
Ae. aegypti | 24 | 10 | 0 | 0 | 21 | 10 | 0 | 0 | 16 | 10 | 0 | 0 | 28 | 10 | 6 | 214.2 | 17 | 7 | 3 | 176.4 | 27 | 10 | 5 | 185.2 |
Cx. quinquefasciatus | 79 | 10 | 6 | 76.0 | 74 | 10 | 3 | 40.5 | 65 | 10 | 0 | 0 | 72 | 10 | 0 | 0 | 70 | 10 | 0 | 0 | 71 | 10 | 0 | 0 |
July | August | September | October | November | December | |||||||||||||||||||
♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | ♀ | NP | P+ | MIR | |
A aegypti | 24 | 10 | 0 | 0 | 26 | 10 | 6 | 230.7 | 17 | 10 | 7 | 411.7 | 14 | 6 | 0 | 0 | 11 | 7 | 2 | 182 | 0 | 0 | 0 | 0 |
Cx. quinquefasciatus | 67 | 10 | 0 | 0 | 54 | 10 | 0 | 0 | 32 | 10 | 0 | 0 | 55 | 10 | 2 | 36.36 | 49 | 10 | 0 | 0 | 33 | 10 | 1 | 30.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, D.C.T.V.d.; Santos, E.M.d.M.; Xavier, M.N.; Nascimento, J.d.; Barbosa, V.A.; Oliveira, A.L.d.S.; Meiado, M.V.; Melo-Santos, M.A.V.d.; Paiva, M.H.S.; Wallau, G.d.L.; et al. Integrated Strategies for Aedes aegypti Control Applied to Individual Houses: An Approach to Mitigate Vectorial Arbovirus Transmission. Trop. Med. Infect. Dis. 2024, 9, 53. https://doi.org/10.3390/tropicalmed9030053
Melo DCTVd, Santos EMdM, Xavier MN, Nascimento Jd, Barbosa VA, Oliveira ALdS, Meiado MV, Melo-Santos MAVd, Paiva MHS, Wallau GdL, et al. Integrated Strategies for Aedes aegypti Control Applied to Individual Houses: An Approach to Mitigate Vectorial Arbovirus Transmission. Tropical Medicine and Infectious Disease. 2024; 9(3):53. https://doi.org/10.3390/tropicalmed9030053
Chicago/Turabian StyleMelo, Danielle Cristina Tenório Varjal de, Eloína Maria de Mendonça Santos, Morgana Nascimento Xavier, Josimara do Nascimento, Victor Araújo Barbosa, André Luiz de Sá Oliveira, Marcos Vinícius Meiado, Maria Alice Varjal de Melo-Santos, Marcelo Henrique Santos Paiva, Gabriel da Luz Wallau, and et al. 2024. "Integrated Strategies for Aedes aegypti Control Applied to Individual Houses: An Approach to Mitigate Vectorial Arbovirus Transmission" Tropical Medicine and Infectious Disease 9, no. 3: 53. https://doi.org/10.3390/tropicalmed9030053
APA StyleMelo, D. C. T. V. d., Santos, E. M. d. M., Xavier, M. N., Nascimento, J. d., Barbosa, V. A., Oliveira, A. L. d. S., Meiado, M. V., Melo-Santos, M. A. V. d., Paiva, M. H. S., Wallau, G. d. L., & Oliveira, C. M. F. d. (2024). Integrated Strategies for Aedes aegypti Control Applied to Individual Houses: An Approach to Mitigate Vectorial Arbovirus Transmission. Tropical Medicine and Infectious Disease, 9(3), 53. https://doi.org/10.3390/tropicalmed9030053