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Abstract: Echinococcosis, one of the most serious and life-threatening parasitic forms of zoonosis world-
wide, is caused by the larvae of Echinococcus granulosus (E. granulosus) and Echinococcus multilocularis
(E. multilocularis). Various drugs are being applied clinically to treat zoonosis; however, their ther-
apeutic efficacy remains a great challenge, especially with albendazole as the preferred drug of
choice. Receptor tyrosine kinase (RTK) signaling controls normal cellular proliferation, differentia-
tion, and metabolism in humans and mammals, which are intermediate hosts of E. granulosus and
E. multilocularis. Disruption of RTK signaling can cause various forms of carcinogenesis and exacer-
bate the progression of certain forms of parasitic disease. As a result, a significant number of studies
on tyrosine kinase inhibitors (TKIs) have been conducted for the treatment of cancer and parasitic
infection, with some TKIs already approved for clinical use for cancer. Notably, RTK signaling
has been identified in the parasites E. granulosus and E. multilocularis; however, the mechanisms of
RTK signaling response in Echinococcus–host intercommunication are not fully understood. Thus,
understanding the RTK signaling response in Echinococcus–host intercommunication and the potential
effect of RTK signaling is crucial for identifying new drug targets for echinococcosis. The present
review illustrates that RTK signaling in the host is over-activated following infection by E. granulosus
or E. multilocularis and can further facilitate the development of metacestodes in vitro. In addition,
some TKIs exert strong parasitostatic effects on E. granulosus or E. multilocularis, both in vitro and/or
in vivo, through downregulation of RTK signaling molecules. The summarized findings suggest that
RTK signaling may be a promising drug target and that TKIs could be potential anti-Echinococcus
drugs warranting further research.

Keywords: drug target; echinococcosis; Echinococcus metacestodes; receptor tyrosine kinase; tyrosine
kinase inhibitor

1. Introduction

Echinococcosis, a parasitic form of zoonosis, is caused by the larval stage of the
tapeworm of the genus Echinococcus [1,2]. The two main types of the disease prevalent in
humans are cystic echinococcosis (CE), caused by Echinococcus granulosus (E. granulosus),
and alveolar echinococcosis (AE), caused by Echinococcus multilocularis (E. multilocularis),
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which pose a substantial threat to public health globally [3,4]. Of these two prevalent
forms, CE has a global distribution, while AE is predominantly distributed in the cooler
and temperate latitudes of the northern hemisphere [4–7], particularly in the Qinghai–
Tibetan Plateau area of China [8,9]. AE causes a more significant economic and public
health burden for humans than CE due to the cancer-like invasive growth manner of
E. multilocularis metacestodes [10,11]. Upon infection, the parasite larvae reside most
commonly in the liver of humans and mammals, with the latter serving as intermediate
hosts in transmission [12,13]. Growing metacestodes lead to liver fibrosis and cirrhosis
in the host, particularly E. multilocularis metacestodes, which are fatal if left untreated
or inadequately treated because of their cancer-like invasive growth manner, earning
them the title “parasitic cancer” [14,15]. At present, the main options for the treatment of
liver echinococcosis include drug treatment, surgical resection, and liver transplantation
(mainly for AE patients) [16,17]. Among the available chemotherapies, albendazole (ABZ), a
benzimidazole derivative, is the preferred drug of choice [18,19]. However, the effectiveness
of ABZ, the severe adverse effects caused by long-term application, and clinical recurrence
remain significant challenges [18,19]. Thus, finding new drug targets and therapeutic
agents is urgently required.

Receptor tyrosine kinase (RTK)-mediated signaling regulates essential cellular phys-
iological processes, such as cell proliferation and migration, glucose uptake, and energy
metabolism in humans and mammals [20,21], with the latter often acting as the intermediate
host of E. granulosus and E. multilocularis. Published data show that the disruption of RTK
signaling can cause various forms of carcinogenesis and promote cancer progression [22,23],
indicating RTK signaling as a potential and promising therapeutic target in cancer. More
importantly, an increasing number of tyrosine kinase inhibitors (TKIs) are in development
for the treatment of cancer [23–25], such as linifanib, targeting vascular endothelial growth
factor (VEGF), which induces excessive angiogenesis in solid cancers; gefitinib and cetux-
imab, targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung
cancer and metastatic colon cancer; and some that act on chronic diseases, such as imatinib,
targeting platelet-derived growth factor (PDGF) signaling in pulmonary hypertension and
respiratory dysfunction. More importantly, some of these TKIs have been approved for the
clinical treatment of certain types of cancer [23–25]. Thus, RTK signaling is a potential and
promising therapeutic target for the treatment of cancer and other forms of chronic disease.
Interestingly, RTK signaling has also been found to play an important regulatory role in
the progression of many forms of parasitic diseases, such as schistosomiasis [26,27] and
echinococcosis [28,29]. For example, a study by Brehm and Koziol demonstrates that the
activation of RTK signaling can facilitate the development of E. granulosus germinative cells
and protoscoleces [30]. In comparison, in other studies, some TKIs have been shown to
inhibit E. multilocularis metacestode development in vitro and/or in vivo [31–33]. Herein,
we summarize and discuss the recent studies (from January 2001 to April 2024) focusing
on the RTK signaling response in the host after Echinococcus infection, the role of RTK
signaling in E. granulosus and E. multilocularis metacestode development, and its anti-
echinococcal effect in vitro and in vivo to provide information referring to potential drug
targets for echinococcosis.

2. RTK Signaling in Humans and Mammals

RTKs, a family of evolutionarily conserved transmembrane proteins, govern cellu-
lar pathological processes in humans and mammals [20], such as sheep, goats, cattle,
camels, mice, and pikas, which are intermediate hosts of E. granulosus and E. multilocularis
larvae [13]. In these hosts, the RTK family contains a variety of essential receptors, such as
EGFR, fibroblast growth factor receptor (FGFR), VEGF receptor (VEGFR), platelet-derived
growth factor receptor (PDGFR), insulin receptor (IR) or insulin-like growth factor re-
ceptor (IGFR), hepatocyte growth factor receptor (HGFR or C-Met), and ephrin receptor
(Ephr) [34,35]. As is widely acknowledged, distinct RTK classes can recognize different
growth factors and hormone ligands, which include EGF, fibroblast growth factors (FGFs),
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VEGF, PDGF, insulin and insulin-like growth factor (IGF), hepatocyte growth factor (HGF),
and nerve growth factor (NGF) [24,35]. Interestingly, different receptors in RTK signaling
show some common structural characteristics, including an extracellular ligand-binding
region (ELR), a membrane-spanning helix, and a tyrosine kinase-containing intracellu-
lar region [36]. In general, each of these receptors carries catalytic kinases that remain
inactive as monomers but are promptly activated when the ELR binds to a specific lig-
and that is a soluble polypeptide, small-molecule protein, or hormone [35,36]. Once the
ligand–receptor conjugation forms, leading to dimerization or oligomerization, it facili-
tates trans-autophosphorylation and relieves autoinhibition of the intracellular tyrosine
kinase domain, promoting cell growth and proliferation by initiating downstream signaling
cascades [37–39], such as Src homology-2 (SH2), mitogen-activated protein kinases/protein
kinase B (MAPK/Akt), phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin
(mTOR), and c-Jun N-terminal kinase (JNK).

3. RTK Signaling Identification in E. granulosus and E. multilocularis

It is recognized that genome-wide analyses have shown that RTK signaling is widely
present in many parasite species, such as Trypanosoma cruzi [40], Toxoplasma gondii [41],
Plasmodium falciparum [42], Schistosoma [43,44], and even E. granulosus and E. multilocularis [28,45]
and the model invertebrate organism Caenorhabditis elegans [46]. In E. granulosus and
E. multilocularis, some encoding genes for not only growth factor ligands but also their
receptors in RTK signaling, such as EGFR and EGF, FGFR, IGF receptor (IGFR, e.g., EmIR1
and EmIR2), and insulin-like ligands (e.g., EmILP1 and EmILP2), excluding FGF, PDGF,
PDGFR, VEGF, and VEGFR, have been identified [28,45,47] (Table 1). Interestingly, E.
granulosus and E. multilocularis show a high degree of sequence homology with the re-
ceptors involved in RTK signaling that are derived from humans and mammals [28,45].
Furthermore, the sequence analyses indicate that these receptors and ligands in the RTK
family have a high degree of similarity within the conserved motifs between the parasite
and its intermediate hosts, respectively [28,45,48].

Table 1. Receptor tyrosine kinase signaling in E. granulosus and E. multilocularis and the
parasite hosts.

Receptor Ligand (Growth Factors
and Hormones)

Receptor/Ligand in
Humans and Mammals

(the Parasite Host)

Receptor/Ligand in
E. granulosus and
E. multilocularis

References

EGFR EGF +/+ +/+ [28,33,45]
FGFRs FGFs (FGF1 and FGF2) +/+ +/− [28,45]
PDGFR PDGF +/+ −/− [28,45]

IR and IGF-Rs Insulin and IGFs
(IGF1 and IGF2) +/+ +/+ [28,45,47]

VEGFRs (VEGFR1,
VEGFR2, and VEGFR3)

VEGFs (VEGF1, VEGF2, VEGF3,
VEGf4, and VEGF5), PIGF +/+ −/− [28,45]

HGFR or C-Met HGF +/+ −/− [28,45]
Trk receptor NGF +/+ −/− [28,45]

Abbreviations: E. multilocularis, Echinococcus multilocularis; E. granulosus, Echinococcus granulosus; EGF, epidermal
growth factor; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IGF, insulin-like growth factor;
IR, insulin receptor; NGF, nerve growth factor; PDGF, platelet-derived growth factor; PIGF, placental growth factor;
PSC, protoscolece; RTKs, receptor tyrosine kinases; TKI, tyrosine kinase inhibitor; TRK, tropomyosin-related
kinase; VEGF, vascular endothelial growth factor; +, present; −, absent.

The results of the above studies indicate that RTK signaling may play important roles
in Echinococcus–host intercommunication, although the detailed molecular mechanisms
underlying the activation of RTK signaling in Echinococcus metacestode growth remain
unclear. Further discussion should be conducted to provide clues as to the development of
new anti-echinococcal drugs targeting RTK signaling.
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4. RTK Signaling Response in Echinococcus Infected Hosts

Following Echinococcus metacestode infection, the host liver, as the primary organ
of infection [49], undergoes a chronic, continuous, and gradual damaging progression,
mainly exhibiting liver fibrosis and cirrhosis [50,51]. Simultaneously, the host shows a
significant response in RTK signaling after infection of E. granulosus and E. multilocularis
larvae [50,52,53]. For example, in Echinococcus-infected mice, a significant increase in VEGF
mRNA/protein expression was observed in the liver around the parasite metacestodes,
accompanied by a rise in VEGF content in the serum [52,54,55]. In studies conducted by our
research group, excessive VEGF-induced pathological angiogenesis was found to occur in
the liver around the parasite metacestodes in mice following intraperitoneal infection with
E. multilocularis metacestodes [52,56]. However, whether this phenomenon was caused by
excessive expression of VEGF and VEGFR in the infected hosts remains unclear and thus
necessitates further investigation.

Insulin, a regulatory molecule involved in RTK signaling, has been studied ex-
tensively in humans and mammals, with high concentrations mainly found in the
liver [30]. Beyond this, insulin signaling has been studied in Caenorhabditis elegans and
Drosophila melanogaster [57,58] because in the two model organisms, cell metabolic pro-
cesses, growth, proliferation, and reproduction are controlled by conserved insulin sig-
naling. Interestingly, insulin signaling has been shown to play an important role in many
helminths, such as Schistosoma japonicum and Schistosoma mansoni [59,60], in addition to
Echinococcus spp. [30,61]. Organ tropism toward the host liver has been demonstrated in
E. granulosus and E. multilocularis larvae [30,62]. In an in vitro study, human insulin
showed a growth-promoting effect on E. multilocularis metacestodes in vitro, indicating
that insulin or IGF-mediated signaling is closely related to Echinococcus metacestode
growth [31]. However, how RTK signaling is involved in the host response to E. granulosus
and E. multilocularis metacestode infection remains unclear.

Moreover, the expression of FGF was significantly increased in the host liver after
infection with E. granulosus and E. multilocularis metacestodes [50]. Similarly, Förster’s
study demonstrated that human FGF, which is widely expressed in the fibrotic liver but
not in the normal liver, can stimulate the development of E. granulosus and E. multilocularis
protoscoleces in vitro [32]. This finding indirectly indicates the over-activation of FGF
signaling in the host after infection with the parasite; however, the response of FGF signaling
following E. granulosus and E. multilocularis metacestode infection is not fully clarified.

Overall, E. granulosus and E. multilocularis metacestode infection can cause an exces-
sive activation state of RTK signaling with a significant increase in growth factors in the
parasite’s host. However, whether these growth factors in the infected host could promote
E. granulosus and E. multilocularis metacestodes development remains unclear and thus
necessitates further investigation.

5. Activation of RTK Signaling Involves Echinococcus Metacestode Development

Since human- or mammalian-derived growth factors or hormone ligands in RTK
signaling have been found to promote the entry, survival, and replication of intracellular
pathogens [63,64], an increasing number of investigators have begun to explore whether
extracellular parasites can utilize these growth factors or hormones to maintain their
survival and growth [32,33,65]. For example, Jin’s study showed that a putative EGFR-like
kinase in Toxoplasma Gondii was activated under the stimuli of human EGF or rNcMIC3,
which contains four EGF domains [64]. Similarly, in vitro, human EGF was shown to
promote the growth and development of Planaria, which is a free-living cestode [66], and
Schistosoma mansoni [43]. Therefore, understanding whether the ligand molecules in host
RTK signaling could promote E. granulosus and E. multilocularis metacestode development
is important for developing effective anti-echinococcal drugs.

The results of Feng’s study showed that EGFR signaling in E. multilocularis may be
activated by human EGF in vitro, and human EGF could promote the development of
E. multilocularis protoscoleces into microcysts [65]. Furthermore, evidence from in vitro
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studies indicates that the concentration of 10 ng/mL or higher of human recombinant
EGF could significantly facilitate the growth and development of germinative cells of
E. multilocularis metacestodes; in comparison, a physiological concentration of 1 ng/mL
only exhibited a modest effect on E. multilocularis metacestode growth and development [33]
(Table 2). This finding indicates that in humans and the intermediate host, under the
stimuli of the physiological concentration of host EGF, the development of E. multilocularis
metacestodes occurs over long periods spanning several years or decades, rather than as a
swift or transitory process.

Table 2. Activation of RTK signaling for E. multilocularis metacestode development by host growth
factors in vitro.

Stimulus Optimal Dose Effects Possible Mechanisms References

Human EGF 100 ng/mL Promotes MCs growth Activating EGFR/EGF signaling [33]
Human FGF 10 nM–100 nM Promotes MCs proliferation Activating FGFR/FGF signaling in E. mutilocularis [32]

Human insulin 100 nM Promotes GC, PSC, and
MC development Activating insulin/IR signaling [31,61]

Abbreviations: E. multilocularis, Echinococcus multilocularis; E. granulosus, Echinococcus granulosus; EGF, epidermal
growth factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; IR, insulin receptor; MCs, microcysts;
PDGF, platelet-derived growth factor; PSC, protoscolece; RTKs, receptor tyrosine kinases; TKI, tyrosine kinase
inhibitor; VEGF, vascular endothelial growth factor.

As is widely acknowledged, FGFR signaling, one of the conserved RTK signaling sys-
tems in humans and mammals, may be activated by FGF binding to FGFR, promoting cell
homeostasis and persistent differentiation [63,67,68]. In E. granulosus and E. multilocularis,
the FGFR encoding gene was identified through the use of high-throughput sequencing
analysis; however, the FGF ligand was absent [28,45]. In Forster’s study, under the stimuli
of different concentrations of mammalian FGF in vitro, ranging from 10 nM to 100 nM, the
growth and development of E. multilocularis metacestode vesicles and primary cells were
significantly boosted [32]. Notably, physiological concentrations of mammalian FGF lower
than 10 nM showed only a moderate effect on the growth promotion of E. multilocularis
metacestodes in vitro [32]. It is suggested that, with the support of physiological concen-
trations of host FGF, inapparent E. multilocularis metacestode infection in the infected host
progresses for a longer duration.

IR/IGFR signaling is widely distributed in humans and mammals (e.g., rodents,
artiodactyls, and Canidae) [69,70] and even in some parasites, such as Schistosoma as a
helminth [59], and E. granulosus [63]. In IGF-R/IR signaling, there are three ligands (includ-
ing IGF-I, IGF-II, and insulin) and three receptors (including IGF-IR, IGF-IIR, and insulin
receptor) [70]. Evidently, IGFs, which are structurally and functionally similar to insulin,
regulate longer-term glucose homeostasis by controlling insulin sensitivity [30,70]. Interest-
ingly, the genes encoding IR (e.g., Em1 and Em2) and insulin-like ligands (e.g., EmILP1 and
EmILP2) in E. granulosus and E. multilocularis show high structural and functional homology
to those in humans and mammals (e.g., Canidae, artiodactyls, and rodents) [30]. Thus, we
speculate that, in the infected host, IGFR/IR signaling in E. granulosus and E. multilocularis
could be activated by host IGF and insulin. Furthermore, in vitro cultivation suggests that
a continuous supply of glucose is crucial for nutrient uptake and energy metabolism in
the parasite, depending on the activation of IGFR signaling supported by host-derived
IGFs [61]. In summary, IGFR/IR signaling plays an important role in Echinococcus–host
interaction and is a potential drug target for the treatment of liver echinococcosis in
the future.

In both in vivo mouse models and humans, VEGF and VEGFR mRNA and/or protein
levels in a number of studies were found to significantly increase following Echinococcus
metacestode infection [52,56,71], indicating that abundant pathological angiogenesis or
neovascularization in the liver around E. granulosus and E. multilocularis metacestodes
may be caused by the excessive expression of VEGF and VEGFR. Angiogenesis is a crucial
contributory factor in exacerbating liver fibrosis [72], which is the most typical process of
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Echinococcus–host intercommunication [31,73]. Thus, VEGF/VEGFR-induced angiogenesis
is an important regulator in Echinococcus–host intercommunication; however, how the
VEGF/VEGFR-induced angiogenesis promotes parasite growth and metastasis to other
organs is not well understood.

HGF, a growth factor in RTK signaling secreted by stromal cells, can bind the specific
receptor (c-Met) to regulate cellular proliferation and apoptosis, extracellular matrix inva-
sion, and angiogenesis in the liver [74,75]. The dysregulation of the HGF/c-Met axis leads
to the invasion and progression of solid cancers by initiating the downstream PI3K/Akt
and p38/MAPK signaling cascades [76,77]. In addition, it has been demonstrated that the
activation of HGF/c-Met signaling can not only boost the growth and development of
Plasmodium berghei and Plasmodium falciparum [78,79] but also induce angiogenesis [80,81],
which contributes to E. granulosus and E. mutilocularis metacestode development and metas-
tasis [30,73]. However, the detailed role of HGF/c-Met signaling in Echinococcus–host
interaction remains unclear and thus necessitates further investigation.

Overall, infection with E. granulosus and E. multilocularis metacestodes can cause liver
fibrosis in humans and intermediate hosts, and the fibrotic liver often shows hyperactiva-
tion of RTK signaling, with excessive expression of growth factor ligands in RTK signaling.
Simultaneously, the increased number of growth factors can promote E. granulosus and
E. mutilocularis growth and development in vitro. Thus, in Echinococcus–host intercom-
munication, RTK signaling plays important roles in E. granulosus and E. mutilocularis
development, implying that RTK signaling is an important and promising drug target
for echinococcosis.

6. Targeting RTK Signaling Implies Potential Drug Target for Echinococcosis

The expression of growth factors or hormone ligands in RTK signaling is significantly
increased in the host liver following infection caused by E. granulosus and E. mutilocularis
larvae [82,83]. Host growth factors in RTK signaling can promote E. granulosus and
E. mutilocularis metacestode growth and development in vitro [31–33], indicating that
treatment of echinococcosis through the inhibition of RTK signaling is possible.

In Cheng’s study, EGFR inhibitors (BIBW2992 and CI-1033) and the MEK/ERK in-
hibitor (U0126) displayed strong inhibitory effects on the viability of E. multilocularis
metacestode germinal cells in vitro [33]. Concurrently, BIBW2992 showed strong protoscol-
icidal activities for E. multilocularis metacestodes in the infected mice used in the study [33].
Furthermore, the results of Forster’s study demonstrate that BIBF 1120, a tyrosine ki-
nase inhibitor, has a clear concentration-dependent parasiticidal effect on E. multilocularis
metacestode vesicles in vitro by inhibiting the activity of three Echinococcus-derived FGF re-
ceptors [32]. Thus, we speculate that the excessive expression of EGF and FGF in the fibrotic
liver caused by E. granulosus and E. multilocularis infection is indispensable for E. granulosus
and E. multilocularis metacestode growth and development. This finding further suggests
that EGFR and FGFR signaling are potential drug targets for the treatment of echinococcosis.
However, further exploration of new methods for screening anti-Echinococcus drugs using
EGFR and FGFR signaling as target molecules is required.

Additionally, in in vitro cultivation systems of E. multilocularis larvae, the addition
of human insulin can promote the phosphorylation of two insulin receptor-like kinases
(EmIR1 and EmIR2), which are mainly distributed in Echinococcus’s glycogen storage cells,
thereby boosting the increase in glucose uptake in E. multilocularis metacestode germinal
cells [31,63]. However, the insulin receptor inhibitor HNMPA(AM)3 was shown to prevent
E. multilocularis germinal cells from developing into metacestodes by inhibiting insulin
signaling in the parasite [31]. Moreover, data from Yuan’s study show that anacardic acid,
a natural product isolated from Brazilian cashew nutshell liquid, inhibited E. granulosus
and E. multilocularis metacestode development in vitro and in infected mice, accompanied
by the suppression of angiogenesis in the liver around E. multilocularis metacestodes and
the downregulation of the expression of VEGF in the mice [52]. This finding indicates that
inhibiting excessive vascularization caused by E. multilocularis metacestode infection in the
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host liver for the treatment of echinococcosis seems feasible. Therefore, the results of Jiang’s
study show that the tyrosine kinase inhibitor sunitinib not only damaged E. multilocularis
metacestode vesicles in vitro but also inhibited the development of E. multilocularis metaces-
todes in mice [84], accompanied by the inhibition of pathological angiogenesis. More
importantly, anti-Echinococcus trials involving more inhibitors of RTK signaling should be
initiated in vitro and in vivo to prove the efficacy of screening anti-Echinococcus drugs for
RTK signaling in the future.

Overall, many putative RTK signaling inhibitors have been shown to suppress the
larval growth and development of E. granulosus and E. multilocularis in vitro and/or in vivo,
accompanied by a significant decrease in the expression of RTK signaling molecules
(Table 3). Thus, the results of such investigations support RTK signaling as a potential and
important drug target for the treatment of echinococcosis, and RTK signaling inhibitors
represent promising anti-echinococcal drugs. However, the clinical use of RTK signaling
inhibitors in in vivo trials still requires further exploration, although the results of the
majority of the published studies conducted in vitro support this finding.

Table 3. TKR signaling inhibitors for the potential treatment of echinococcosis.

Compound Structure Parasite Effects Possible Mechanism Reference

Nintedanib
(BIBF1120)
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Abbreviations: EGF, epidermal growth factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; PDGF,
platelet-derived growth factor; RTKs, receptor tyrosine kinases; TKI, tyrosine kinase inhibitor; VEGF, vascular
endothelial growth factor.

7. Conclusions and Outlook

E. granulosus and E. multilocularis metacestode infection can cause excessive activation
of RTK signaling pathways in the host, significantly increasing the expression of growth
factors and hormone ligands. Furthermore, the over-expression of these growth factors and
hormones in RTK signaling pathways in the host can stimulate the growth and development
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of E. granulosus and E. multilocularis metacestodes in vitro, possibly by activating the
specific receptors of RTK signaling in the parasite, as the receptors from the parasite and its
intermediate hosts have highly homologous protein sequences. Additionally, some putative
RTK signaling pathway inhibitors block the growth and development of E. granulosus and
E. multilocularis metacestodes, which is performed by downregulating RTK signaling
pathways (Figure 1).
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stimulate the growth and development of E. granulosus and E. multilocularis metacestodes by acti-
vating the specific receptors of RTK signaling in the parasite, indicating that RTK signaling may be 
an important drug target for the treatment of echinococcosis. In addition, the putative inhibitors of 
RTK signaling can block the development of E. granulosus and E. multilocularis metacestodes by 
decreasing the expression of RTK signaling molecules, indicating that TKIs are potential drugs for 
the treatment of echinococcosis. The red arrows indicates the upregulation of RTK siganling mole-
cules expression, and the red question mark indictates that whether other host growth factors can 
combinate some Echinococcus receptors in RTK signaling to regulate Echinococcus spp. develop-
ment remains unknown. Abbreviations: EGF, epidermal growth factor; FGF, fibroblast growth 
factor; IGF, insulin-like growth factor; IR, insulin receptor; IGF, insulin-like growth factor; PDGF, 

Figure 1. RTK signaling as a potential drug target for the treatment of echinococcosis. The findings
indicate that the growth factors and hormone ligands involved in RTK signaling in the host are over-
activated by E. granulosus and E. multilocularis infection. These over-expressed ligands can stimulate
the growth and development of E. granulosus and E. multilocularis metacestodes by activating the
specific receptors of RTK signaling in the parasite, indicating that RTK signaling may be an important
drug target for the treatment of echinococcosis. In addition, the putative inhibitors of RTK signaling
can block the development of E. granulosus and E. multilocularis metacestodes by decreasing the
expression of RTK signaling molecules, indicating that TKIs are potential drugs for the treatment of
echinococcosis. The red arrows indicates the upregulation of RTK siganling molecules expression,
and the red question mark indictates that whether other host growth factors can combinate some
Echinococcus receptors in RTK signaling to regulate Echinococcus spp. development remains unknown.
Abbreviations: EGF, epidermal growth factor; FGF, fibroblast growth factor; IGF, insulin-like growth
factor; IR, insulin receptor; PDGF, platelet-derived growth factor; RTKs, receptor tyrosine kinases;
TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor.

Therefore, RTK signaling plays an important contributory role in Echinococcus–host
interactions, and it is an important drug target for echinococcosis. RTK signaling pathway
inhibitors stand as promising future anti-echinococcal drugs. However, future efforts
toward drug exploration for echinococcosis should focus on RTK signaling in vitro and
in vivo. In addition, some lead compounds targeting RTK signaling need in-depth investi-
gation before clinical trials are conducted.
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