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Abstract: Double-Wall Effusion Cooling schemes present an opportunity for aeroengine designers
to achieve high overall cooling effectiveness and convective cooling efficiency in High-Pressure
Turbine blades with reduced coolant usage compared to conventional cooling technologies. This is
accomplished by combining impingement, pin-fin and effusion cooling. Optimising these cooling
schemes is crucial to ensuring that cooling is achieved sufficiently at high-heat-flux regions and
not overused at low-heat-flux ones. Due to the high number of design variables employed in these
systems, optimisation through the use of Computational Fluid Dynamics (CFD) simulations can be a
computationally costly and time-consuming process. This study makes use of a Low-Order Flow
Network Model (LOM), developed, validated and presented previously, which quickly assesses the
pressure, temperature, mass flow and heat flow distributions through a Double-Wall Effusion Cooling
scheme. Results generated by the LOM are used to rapidly produce an ideal cooling system design
through the use of an Evolutionary Genetic Algorithm (GA) optimisation process. The objective is to
minimise the coolant mass flow whilst maintaining acceptable metal cooling effectiveness around
the external surface of the blade and ensuring that the Backflow Margin for all film holes is above a
selected threshold. For comparison, a Genetic Aggregation model-based optimisation using CFD
simulations in ANSYS Workbench is also conducted. Results for both the reduction of coolant mass
flow and the total optimisation runtime are analysed alongside those from the LOM, demonstrating
the benefit of rapid low-order solving techniques.

Keywords: flow networks; double-wall effusion cooling; genetic algorithms; optimisation; hot
gas ingestion

1. Introduction

This paper is an extended version of [1]. As the demand for improved aeroengine fuel
efficiency has soared over recent decades, designers have pushed for increased Turbine
Entry Temperatures which have produced greater values of thermal efficiency through-
out the turbine. Today, TETs in modern aeroengines are well in excess of the softening
temperatures of the nickel superalloys used to manufacture turbine components—this
necessitates the use of cooling systems to keep component temperatures at safe values. To
provide the high-pressure air required to effectively cool turbine components, compressed
air is siphoned off from the compressor’s core flow. This means that less core flow passes
through the combustor; limiting the power output of the engine [2] found that for every 5%
of compressor air diverted for cooling, a 1% penalty in fuel burn was suffered. Coolant air
must also be ejected from turbine components back into the mainstream flow, which creates
mixing losses that reduce the turbine’s aerodynamic efficiency. As such, designers look to
optimise cooling systems to use as little coolant as possible whilst meeting the required
cooling performance.
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One cooling scheme with great promise for tackling this problem is Double-Wall
Effusion Cooling, which combines the commonly used cooling techniques of impingement
cooling, pin-fin (pedestal) cooling, and film/effusion cooling. An example of it being
employed in a blade is shown in Figure 1. The combination of these cooling techniques
produces an overall system with high convective cooling efficiency ηconv and overall
cooling effectiveness εo (1). Double-Wall Effusion Cooling is yet to be implemented in any
commercial application to the author’s knowledge, despite having been researched since
the 1970s. This has been primarily due to two factors—manufacturing difficulty, for which
great progress has been made in the last decade or so, and high thermomechanical stresses
due to the high temperature gradient across the pedestals—This issue has been the subject
of extensive research in recent times (e.g., [3,4]).

ηconv =
Tc,e − Tc,i

Tm,ave − Tc,i
, εo =

T∞ − Tm,ave

T∞ − Tc,i
, BFM =

Pf ,in

Pf ,e
, M =

ρc,eUc,e

ρ∞U∞
(1)
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Figure 1. Turbine Blade using Double-Wall Effusion Cooling Scheme [5].

Additionally, the combination of three cooling techniques (particularly impingement)
leads to high pressure losses through Double-Wall Effusion Cooling Schemes. These losses
make said schemes susceptible to coolant migration—‘the movement of coolant in the
pedestal cavity toward low pressure regions under the influence of an external pressure
gradient’ [6]. The vulnerability is greatest for the High-Pressure NGV, where mainstream
stagnation pressure is only ~3% less than that of the coolant supplied. This can have
severe effects in multiple regions—high-pressure areas, such as the Leading Edge, will
suffer a loss of coolant such that what remains is insufficient for effective external cooling.
In extreme circumstances, high coolant migration can starve high-pressure regions of
coolant, drastically reducing the Backflow Margin BFM (1) of film holes and risking hot
gas ingestion. In low-pressure regions that the coolant migrates to, film holes can become
oversupplied, raising the Blowing Ratio M (1) and causing jet lift-off, again reducing the
external cooling performance.

This study makes use of the previously developed and validated LOM (see [6,7])
to examine how select geometric features can be optimised to minimise coolant mass
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flow through a High-Pressure Nozzle Guide Vane whilst maintaining acceptable cooling
performance and ensuring that a minimum BFM is achieved for all effusion holes. Results
from the LOM are used with MATLAB R2021b’s inbuilt Genetic Algorithm capability to
give optimal diameters for 15 rows of impingement holes and 15 rows of effusion holes.
For comparison, a study is conducted using a Genetic Aggregation-based optimisation
with CFD results with the same objective.

2. Related Work
2.1. Double-Wall Effusion Cooling Systems

The three cooling systems that make up Double-Wall Effusion Cooling schemes are
used in a large number of applications, so they have been the subjects of extensive research.
The first, impingement cooling, is generally known to be the most ‘powerful’ in terms
of cooling ability, which is governed by the impingement jet Reynolds number, the wall-
spacing-to-hole-diameter ratio, and the impingement area. Numerous correlations for
impingement Nusselt number have been developed, e.g., [8,9]. Impingement cooling also
dominates the pressure losses when combined with other cooling systems, as was observed
by Andrews et al. [10].

A similar conundrum plagues pedestal cooling, where higher HTCs are almost univer-
sally accompanied by higher pressure losses—this was demonstrated by Chyu et al. [11]
where diamond-shaped pedestals were seen to have greater HTCs and friction factors when
compared to cylinders.

Murray et al. [12] explained the difference between effusion cooling and film cooling
as the use of low spacing and smaller holes to create a higher porosity skin, which has
been seen to lead to exceptional film cooling performance [13]. Courtis et al. [14] used a
flat plate experiment to demonstrate that reducing the spanwise spacing of effusion holes
could lead to a greater increase in average film cooling effectiveness than reducing their
streamwise spacing.

Courtis and Ireland [15] conducted an extensive computational study for high outer-
skin porosity Double-Wall Effusion Cooling systems and noted that the higher effusion
hole area meant that effusion in-hole cooling replaced impingement cooling as the most
dominant internal cooling feature. The outer-skin porosity increases were seen to have
three key benefits when compared to less porous designs: improved film effectiveness (and
thus more uniform outer-skin temperatures), increased overall cooling effectiveness, and a
reduced thermal gradient over the pedestals which would alleviate some thermomechanical
stress. The authors noted that these benefits came at the cost of reduced BFM and a greater
risk of hot gas ingestion at low coolant flow rates.

Combined impingement and effusion systems (without pedestals) are also often
applied for Combustor Liner cooling. Jackowski et al. [16] experimentally investigated the
performance of such a cooling system, varying the cavity height and longitudinal specimen
alignments. In engine-representative conditions, total cooling effectiveness values of 90%
were reached. Notably, the influence of the impingement cooling within this system was
minor at best.

2.2. Flow Networks

The flow networks developed for this work were based on those first presented by
Rose [17] and by Kutz and Speer [18]. In each, networks are made up of nodes, each
representing a point in the flow or solid domains, and links, which represent the pathways
over which mass or energy is transferred. Static pressure and temperature are evaluated
at each node, allowing the calculation of fluxes between them along links—each link will
have some inherent compliance which determines the mass or energy flux as a function of
the pressure or temperature difference across it. To solve a network, conditions for mass
flow continuity and energy conservation must be satisfied to a reasonable tolerance at
each node.
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Flow networks have been successfully applied to numerous aeroengine applications.
Ebenhoch and Speer [19] applied flow network modelling to a multipass blade cooling
system, a hypersonic vehicle nozzle, and coolant in a rotating HP blade, in each case
achieving ‘sufficient’ accuracy. Jin et al. [20] constructed a flow network solver for the
Trailing Edge of an HP Turbine Blade. The results of mass flow distributions showed how
design choices could be changed to reduce the risk of hot gas ingestion.

2.3. Genetic Algorithm Optimisation

Genetic Algorithm Optimisation is a method of optimisation that looks to evoke
the process of natural selection in biological evolution, as the best ‘traits’ in a subset of
a population are allowed to survive and are passed on to the next generation, whilst
disadvantageous traits in other subsets of the population lead to their ‘deaths’, and said
traits are not passed on. GA Optimisation studies are relatively common in turbine cooling
research. Muller et al. [21] used two evolutionary algorithms to optimise the film cooling
performance of a blade, looking to minimise the total coolant mass flow whilst maintaining
adequate cooling performance. An evaluation was carried out using a 2D CFD domain.
Both algorithms gave similar results, showing that the objective could be better met by
clustering film hole rows around the Leading Edge and evenly spacing them around the
Suction Surface.

Johnson et al. [22] used a 2D RANS solver in concert with a Genetic Algorithm to
optimise the Nozzle Guide Vane Mid-Span geometry for minimal heat load. Compared to
the baseline results, the peak LE heat transfer was reduced by 15% and the SS transition
was moved 24% closer to the TE for the optimised geometry. In a later study, the same
group [23] used a 3D RANS solver and a genetic algorithm to optimise the film cooling
array of an HP Turbine Vane’s PS. A higher number of design variables were used, such
that 0.32 × 10552 different geometries were possible. Of these, 1800 were tested, with an
optimised solution being produced with reduced heat loads, maximum temperatures, and
pressure losses compared to the baseline design.

3. Low-Order Modelling Methodology

As noted, the LOM used for this work was developed, validated and presented in two
previous publications (see [6,7]), in which greater detail is available. A briefer summary is
presented here for ease of reference. The LOM developed uses two flow networks operating
in tandem, shown in Figure 2. For modelling a larger array, these networks are mirrored
and extended.

• The Continuity Network solves for mass flow continuity through the fluid domain by
evaluating static pressure at each node. The mass flow from inlet node i to outlet node
j is dependent only on the pressure difference Pi − Pj, the fluid density at inlet ρi, and
the link’s mass flow compliance Ci,j.

• The Energy Network solves for energy conservation throughout both the fluid and
solid domains. For fluid nodes, this requires balancing flow enthalpy (dependent on
the flow’s inlet temperature Ti) and heat transfer from the solid. The heat transfer from
fluid node i to solid node k is dependent only on the temperature difference Tk − Ti

and the link’s heat transfer rate
.

Qi,j.

The equations for mass flow rates in the continuity network are detailed in Table 1.
Mass flows through the impingement holes (2) are found using a Discharge Coefficient
equation developed by Mazzei et al. [24]. For film hole flows (6), a correction is made for
mainstream crossflow based on the findings of Gritsch et al. [25]. The area ratios βi and
β f were based on a large square inlet area, and the expansibility factor ε was unity. Flows
around pedestals (5) are calculated using a friction factor developed by Wang (1991) and a
loss coefficient associated with flow turning into the hole. Loss coefficients kl,ex and kl,i are
used for mass flows in the cavity expansion (3) and acceleration from impingement flows
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(4), respectively. No flow Mach number exceeds 0.3, so all flows are taken as incompressible.
Inlet and exit pressures P10 and P50 are used as boundary conditions.
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Table 1. Mass Flow Equations for the Continuity Network.

Link Mass Flow Equation Eq. Ref.

10 → 20 .
mi =

Cd,i√
1−βi

4 ε πdi
2

4
√

2ρ10
√

P10 − P20 (2)

20 → 30 .
mi,pd =

√
P30 − P20

√
ρ20 A20

2

1
2 (1−kl,ex)

(3)

30 → 40 .
mi,s =

√
P30 − P40

√
ρ30 A40

2

1
2 (1+kl,i)

(4)

40 → 41

.
mpd =

√
P40 − P41

C f Ct√
C f +Ct

C f =

√
ρ40 A2Dh

2 f L , Ct =

√
2ρ40 A40

2 A41
2

A40
2(1+kl,t)−A41

2

(5)

41 → 50
.

m f = CFcorr
Cd, f√
1−β f

4
ε

πd f
2

4
√

2ρ41
√

P41 − P50 (6)

For the energy network, the only boundary condition in the network is the coolant
inlet temperature Tc,in—the coolant exit temperature Tc,e is a free variable.

.
Qin and

.
Qex,

with driving temperatures Tin and Taw, represent the transfer of heat to the coolant plenum
and from the mainstream, respectively. Conductive heat transfer rates between nodes i and
j in the solid are found using (7).

.
Qi,j =

ks Ai,j

Li,j

(
Ti − Tj

)
(7)

Calculation of convective heat transfers required the use of empirical Nusselt number
correlations from the literature. These are listed in Table 2—the characteristic length would
be used to calculate the local heat transfer coefficient h, with which the heat transfer rate
could be found. The impingement Nu correlation chosen (8) was derived by San and
Shiao [9], applicable for its low spacing-to-hole-diameter ratio. The correlation was related
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to the Nusselt numbers for heat transfer on both the internal (9) and external (13) surfaces
of the impingement wall using factors found by Gillespie [26]. Cooling on the internal
surfaces of both impingement (11) and film holes (10) was evaluated using the Dittus–
Boelter correlation. The commonly used correlation for a cylinder in crossflow (12) was
used for pedestal cooling. Finally, a correlation for flow over a flat plate from Howatson
et al. [27] was used to model external heat transfer (14).

Table 2. Nusselt Number Correlations for the Energy Network.

Surface Nu Correlation Characteristic Length Eq. Ref.

Film Wall, Interior NuFW,int = 0.426Rej
0.64

(
Hpd
di

)−0.3
exp

(
−0.055 L

di

)
R (8)

Impingement Wall, Interior NuIW,int = 0.423NuFW,int R (9)

Film Hole Surface Nu f = 0.023Re f
0.8Pr f

0.4 d f (10)

Impingement Hole Surface Nui = 0.023Rei
0.8Pri

0.4 di (11)

Pedestal Surface Nupd = 0.35Repd
0.6Prpd

0.36 dpd (12)

Impingement Wall, Exterior Nuin = 0.075NuFW,int R (13)

Film Wall, Exterior Nuex = 0.0296Re∞
0.8Pr∞

1
3 Lex (14)

As each solid temperature node represents the centre of its feature, the conductive
heat transfer which accompanied each convective heat transfer was accounted for using
a dummy temperature Ts. As the conductive and convective heat transfer must be equal
along a single link, the total heat transfer rate from fluid node c to solid node m can be
found from (15).

.
QT = hT A(Tm − Tc) = hconv A(TS − Tc) = hcond A(Tm − TS)

∴ 1
hT

= 1
hconv

+ 1
hcond

(15)

Film cooling was implemented by altering each film wall node’s corresponding adia-
batic wall temperature Taw, effectively changing the driving temperature for the external
cooling. This was accomplished by predicting the local film cooling effectiveness using
a Goldstein correlation [28] modified by Courtis et al. [14]. This is given in (16). The
coefficients used were those found in the authors’ previous publication [7]. As this study in-
cludes the potential for films to overlap, the Sellers superposition method [29] was utilised.
For a node receiving film cooling from n holes, the local film cooling effectiveness is found
in (17). In the solid domain of the energy network, each position in the film wall received
external heating from a square area, over which η f would vary. As such, an area-averaged
film effectiveness (18) was used to find the adiabatic wall temperature.

η f =
T∞ − Taw

T∞ − Tc,e
=

Mu∞d f

8αt

(
x

d f
+ xdecay

) exp

−


∣∣∣ z

d f

∣∣∣
c1

2 (16)

η f = 1 −
n

∏
i=1

(
1 − η fi

)
(17)

η f =
1
A

∫ zmax

zmin

∫ xmax

xmin

η f (x, z)dxdz (18)

For external boundary conditions, a 2D CFD run of the uncooled vane was used
to give the external velocity and pressure distributions. The external HTC distribution
was calculated using the Ambrok method [30] detailed by Kays and Crawford [31]. The
coolant inlet pressure and temperature were 1.05 bar and 300 K, and the mainstream
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temperature was 375 K. Figure 3 shows example results of the LOM when converged,
showing the coolant mass flow distribution in (a) and the surface metal cooling effectiveness
(19) distribution in (b). A gap appears in the pedestal cavity flow network, as a wall was
employed to prevent migration at the largest pressure gradient along the early SS. This
model was developed to use Newton’s Method in MATLAB R2021b, with convergence
when no absolute node imbalance (either in kg/s or W) exceeded 10−8.

ηm =
T∞ − Tm,max

T∞ − Tc,i
(19)
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4. Computational Fluid Dynamics Methodology

CFD simulations for this study were conducted with ANSYS Fluent. The mainstream
boundary conditions were matched to those of the 2D Simulation used to acquire the LOM’s
external boundary conditions—an inlet pressure and temperature of 1.021 bar and 375 K,
and an outlet pressure of 1 bar. These conditions produce a throat velocity of 100 m/s,
matching the conditions from the study of Holgate et al. [32], from which the geometry
was obtained. Coolant inlet conditions matched those of the LOM—an inlet pressure
and temperature of 1.05 bar and 300 K. Convergence was assessed using default Fluent
parameters. Simulations were conducted using the realizable k − ε turbulence model with
enhanced wall functions, as is the industry standard for tests of similar cooling geometries.
The ideal gas law was used to set the coolant density, whilst all other fluid and solid
properties were held constant at standard experimental conditions. This was necessary
to ensure that flow conditions at the vane surface matched those of the 2D simulation
and consequently ensured that the CFD Vane and LOM Vane were operating in the same
conditions. The baseline computational domain for the solid is shown in Figure 4a (a cut
section is made to show the internal cooling features) and the fluid in Figure 4b, which
included the mainstream to allow external cooling. As for the LOM, the Trailing Edge of the
solid is removed as TE cooling is beyond the scope of this study. The wall in the pedestal
cavity is also replicated.
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Figure 4. Computational Study Domains for (a) The Solid Vane and (b) The Fluid.

The mesh, predominately made of tetrahedral elements, was produced with infla-
tion prism layers (15 layers at a growth rate of 1.2, set to a total thickness of 10% of the
baseline hole diameter) along all surfaces other than film hole walls, where the local mesh
was instead heavily refined—this ensured a y+ of below 2 on all non-film hole surfaces
and below 5 on film hole surfaces. A view of the mesh, taken at the mid-plane at the
early SS, is provided in Figure 5a. The results of the mesh independence study, based
on the overall cooling effectiveness, are shown in Figure 5b. The final mesh contained
~9.5 million elements.
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5. Optimisation Objective and Methodology

The objective of this optimisation study was the same for both methodologies:

1. Minimise Total Coolant Mass Flow
.

mc.
2. Ensure Minimum Metal Cooling Effectiveness ηm (19) of 0.44.
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3. Ensure a BFM (1) of at least 1.0015 for each film hole.

If a test geometry failed to meet either of criterion 2 or 3, the design would be judged
as a failure. The design variables chosen were the impingement and film hole diameters on
each row around the vane—for 15 rows, this gave 30 design variables. All other geometric
features—hole positions and inclinations, pedestal sizes, wall thicknesses etc.—were held
constant. Hole diameters were allowed to vary by ±20% from the engine-representative
baseline value.

For the LOM, optimisation was conducted using MATLAB R2021b’s inbuilt ga (Ge-
netic Algorithm) function [33]. Each generation had 70 children, with 3 elite children,
49 crossover children and 18 mutated children. Convergence of the optimisation algorithm
was achieved when the change in best fitness function value was less than 10−6 over
20 generations, running up to 350 generations. For CFD, the optimisation was carried out
using ANSYS 19.2 Workbench’s inbuilt response surface optimisation. Genetic Aggregation
was selected as the algorithm for response surface calculation, created using 70 samples
which were selected using Latin Hypercube Sampling. Genetic Aggregation is a method
based on a weighted average of different meta-models: Kriging, 2nd-Order Polynomial,
Non-Parametric Regression and Moving Least Squares (see [34]). A Genetic Algorithm was
subsequently used to find the optimum geometry from the response surface, reaching a
convergence stability of 0.5% after evaluating 46 generations of 4000 samples each.

6. Results and Discussion

Figure 6 shows the results of the two different optimisation study methods in terms of
how the film and impingement hole diameters were scaled, and Table 3 lists the objective
function results for the baseline geometry, all minimised and all maximised hole sizes, and
for both optimised geometries evaluated using both methodologies. Each geometry is the
same for both the LOM and CFD.
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Analysis of the LOM-GA method’s solution geometry can be broken up into 4 sections.
Firstly, on the mid-to-late PS (PS5-2), the heat load is low, and the external pressure is not
high enough to warrant any backflow concerns; thus, the local ηm and BFM targets can
be accomplished whilst minimising hole sizes to reduce the mass flow. Around the LE
(PS1-SS02), the primary concern is maintaining the BFM for the film hole at SS01, requiring
large impingement holes and small film holes to produce a large pressure ratio across the
outer skin. As this film hole is fed by its three nearest impingement holes, all three must be
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enlarged to reduce pressure losses from jet impingement. Around the early SS (SS03-05),
the heat load is at its greatest, requiring a high amount of coolant to meet the cooling
criteria. As such, both the impingement and film holes in this region are maximised in size.
The large amount of coolant used in this region also provides ample film cooling to the
mid-SS (SS06-09). This film cooling, in addition to the drop in heat load, means that hole
sizes can again be reduced to minimise local coolant usage. Finally, the last hole position
SS10 requires larger hole sizes and high coolant levels to prevent the edges of the vane
from overheating—this is a product of not including TE cooling. The total mass flow was
reduced by 13.3% from the baseline. This geometry meets all the criteria in CFD, but the
higher ηm and BFM indicate that coolant usage could be further reduced in this method.

Table 3. Objective Function Results for Baseline and Optimised Geometries.

Geometry
LOM Results CFD Results

.
mc/

.
m∞ ηm BFMmin

.
mc/

.
m∞ ηm BFMmin

Baseline 0.0210 0.4274 1.0011 0.0210 0.4225 1.0010

All Min 0.0136 0.3818 1.0008 0.0129 0.3903 1.0011

All Max 0.0298 0.4606 1.0013 0.0311 0.4481 1.0007

LOM Opt. 0.0182 0.4402 1.0015 0.0182 0.4410 1.0016

CFD Opt. 0.0171 0.4129 1.0016 0.0165 0.4400 1.0015

The CFD-Genetic Aggregation geometry generally follows the same design principles
as the LOM-GA process’ optimal geometry, but due to higher predictions of local cooling
effectiveness and BFM, it is able to exploit a lower mass flow (21.4% lower than the
baseline). As with the LOM’s design, a low film-wall-to-impingement-wall porosity ratio
is required at SS01 and SS02 to maintain an acceptable BFM at the LE. This is not applied
to PS1 as in the LOM—this is due to coolant from PS1 moving exclusively toward PS2
in CFD, which does not occur in the LOM. The CFD approach is shown to require more
cooling along the PS, with non-minimal impingement hole diameters at PS5, PS4 and PS2.
The early SS (SS03-5) shows similarity with the LOM, requiring high cooling with large
features. Cooling across the mid and late sections of the SS are more spread out, unlike the
concentration of cooling features at SS10 shown in the LOM. As the LOM expects lower
local cooling effectiveness, the CFD-optimised geometry does not meet the ηm criteria when
tested with the LOM.

The effects of the optimisation procedure are demonstrated in Figure 7, which com-
pares the metal cooling effectiveness distributions for the baseline and the two optimised
geometries, evaluated in CFD. The baseline geometry has significant overcooling along
the main section of the Pressure Surface—both optimisation procedures sought to reduce
this by minimising nearly all the hole diameters in the region, allowing a large amount
of coolant mass flow to be saved. As noted previously, the LOM predicted a higher risk
of hot gas ingestion and thus required larger impingement hole diameters around the
LE, including at position PS1, leading to its optimised vane producing overcooling at the
early PS compared to the CFD-Genetic Aggregation Optimised Vane. In contrast, the high
hole diameters along the mid-to-late SS of the CFD-Genetic Aggregation Optimised Vane
led to overcooling in this region compared to a more even distribution for the LOM-GA
optimised vane.

Figure 8 shows how the two optimised geometries compare when tested using each
method. For both the LOM-GA optimised geometry (Figure 8a) and the CFD-Genetic
Aggregation optimised geometry (Figure 8b), the CFD tests show far more effective cooling
along the Suction Surface, most likely due to higher predictions of film cooling effectiveness.
This is best shown for the LOM-GA optimised geometry, where the mid-SS cooling feature
sizes are minimal, as the cooling effectiveness climbs at a much higher rate for the CFD.
For the CFD-optimised geometry, the LOM predicts the cooling effectiveness to continue
to drop off toward Suction Surface position SS05. The CFD-optimised geometry relies on
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external effusion cooling far more than internal impingement cooling in this region, again
leading to a disagreement between the two methodologies. Along the Pressure Surface,
where low mainstream flow speeds increase the Blowing Ratio of effusion hole jets, the
effect of external cooling is less prominent. This leads to far greater agreement between the
LOM and CFD in this region.

Int. J. Turbomach. Propuls. Power 2024, 9, x FOR PEER REVIEW 11 of 16 
 

 

applied to PS1 as in the LOM—this is due to coolant from PS1 moving exclusively toward 
PS2 in CFD, which does not occur in the LOM. The CFD approach is shown to require 
more cooling along the PS, with non-minimal impingement hole diameters at PS5, PS4 
and PS2. The early SS (SS03-5) shows similarity with the LOM, requiring high cooling with 
large features. Cooling across the mid and late sections of the SS are more spread out, 
unlike the concentration of cooling features at SS10 shown in the LOM. As the LOM ex-
pects lower local cooling effectiveness, the CFD-optimised geometry does not meet the 𝜂 criteria when tested with the LOM. 

The effects of the optimisation procedure are demonstrated in Figure 7, which com-
pares the metal cooling effectiveness distributions for the baseline and the two optimised 
geometries, evaluated in CFD. The baseline geometry has significant overcooling along 
the main section of the Pressure Surface—both optimisation procedures sought to reduce 
this by minimising nearly all the hole diameters in the region, allowing a large amount of 
coolant mass flow to be saved. As noted previously, the LOM predicted a higher risk of 
hot gas ingestion and thus required larger impingement hole diameters around the LE, 
including at position PS1, leading to its optimised vane producing overcooling at the early 
PS compared to the CFD-Genetic Aggregation Optimised Vane. In contrast, the high hole 
diameters along the mid-to-late SS of the CFD-Genetic Aggregation Optimised Vane led 
to overcooling in this region compared to a more even distribution for the LOM-GA opti-
mised vane. 

 
(a) (b) (c) 

Figure 7. Isometric Views of Metal Cooling Effectiveness Contours evaluated in CFD around (a) the 
Baseline Vane, (b) the LOM-GA Optimised Vane and (c) the CFD-Genetic Aggregation Optimised 
Vane. 

Figure 8 shows how the two optimised geometries compare when tested using each 
method. For both the LOM-GA optimised geometry (Figure 8a) and the CFD-Genetic Ag-
gregation optimised geometry (Figure 8b), the CFD tests show far more effective cooling 
along the Suction Surface, most likely due to higher predictions of film cooling effective-
ness. This is best shown for the LOM-GA optimised geometry, where the mid-SS cooling 
feature sizes are minimal, as the cooling effectiveness climbs at a much higher rate for the 
CFD. For the CFD-optimised geometry, the LOM predicts the cooling effectiveness to con-
tinue to drop off toward Suction Surface position SS05. The CFD-optimised geometry re-
lies on external effusion cooling far more than internal impingement cooling in this region, 

Figure 7. Isometric Views of Metal Cooling Effectiveness Contours evaluated in CFD around
(a) the Baseline Vane, (b) the LOM-GA Optimised Vane and (c) the CFD-Genetic Aggregation
Optimised Vane.

Int. J. Turbomach. Propuls. Power 2024, 9, x FOR PEER REVIEW 12 of 16 
 

 

again leading to a disagreement between the two methodologies. Along the Pressure Sur-
face, where low mainstream flow speeds increase the Blowing Ratio of effusion hole jets, 
the effect of external cooling is less prominent. This leads to far greater agreement between 
the LOM and CFD in this region. 

  
(a) (b) 

Figure 8. Spanwise-Minimum Metal Cooling Effectiveness around (a) the LOM-GA Optimised Vane 
and (b) the CFD-Genetic Aggregation Optimised Vane, both evaluated by both the LOM and CFD. 
Positive position denotes Suction Surface, negative denotes Pressure Surface. 

To further investigate the difference in external cooling performance between the two 
methods, the CFD-Genetic Aggregation Optimised Vane was tested using both method-
ologies using a low-conductivity solid material (𝑘 = 0.032 𝑊/𝑚𝐾), effectively neutering 
the effect of any internal cooling. This permitted the external wall temperature to be ap-
proximated as the adiabatic wall temperature, allowing the calculation of the external film 
cooling effectiveness using (15). The resulting film effectiveness contours are shown in 
Figure 9. In CFD, there is distinctly more lateral spreading of films, allowing a far greater 
build-up of the films along the Suction Surface compared to the LOM. For the LOM, po-
sitions at the edge of the vane received no external cooling whatsoever—in CFD, it was 
observed that greater reattachment of films from near the LE occurred whilst being spread 
out, leading to greater film cooling effectiveness around the edge of the early Suction Sur-
face. This is shown in the streamlines of Figure 10, which tracks the coolant ejected from 
positions PS1 and SS01 in the CFD case. Streamlines of coolant ejected from SS01 show 
partial reattachment around the convex surface of the early SS, which was not the case for 
the LOM. In both cases, complete film detachment was predicted for coolant ejected from 
PS1. 

Figure 8. Spanwise-Minimum Metal Cooling Effectiveness around (a) the LOM-GA Optimised Vane
and (b) the CFD-Genetic Aggregation Optimised Vane, both evaluated by both the LOM and CFD.
Positive position denotes Suction Surface, negative denotes Pressure Surface.

To further investigate the difference in external cooling performance between the two
methods, the CFD-Genetic Aggregation Optimised Vane was tested using both method-
ologies using a low-conductivity solid material (k = 0.032 W/mK), effectively neutering
the effect of any internal cooling. This permitted the external wall temperature to be
approximated as the adiabatic wall temperature, allowing the calculation of the external
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film cooling effectiveness using (15). The resulting film effectiveness contours are shown
in Figure 9. In CFD, there is distinctly more lateral spreading of films, allowing a far
greater build-up of the films along the Suction Surface compared to the LOM. For the LOM,
positions at the edge of the vane received no external cooling whatsoever—in CFD, it was
observed that greater reattachment of films from near the LE occurred whilst being spread
out, leading to greater film cooling effectiveness around the edge of the early Suction
Surface. This is shown in the streamlines of Figure 10, which tracks the coolant ejected from
positions PS1 and SS01 in the CFD case. Streamlines of coolant ejected from SS01 show
partial reattachment around the convex surface of the early SS, which was not the case
for the LOM. In both cases, complete film detachment was predicted for coolant ejected
from PS1.
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The LOM-GA process used all 14 cores of a PC with a 2.5 GHz Intel Processor, allowing
14 test cases to be solved simultaneously. The entire LOM-GA process, which was com-
pleted in 48 generations (testing 3360 geometries), took nearly 11 h to complete, including
a minimal amount of time for the genetic algorithm. For comparison, the CFD- Genetic
Aggregation process used all cores of the same PC to solve each case, requiring them to
be solved in turn—in total, this process took approximately 13 days of computational
time, with an additional hour or so required to calculate the response surfaces and find
the optimal geometry. Overall, this took ~30 times longer than the LOM-GA method. This
time reduction makes a clear case for the use of the LOM-GA optimisation as a preliminary
design tool for turbine cooling systems.

7. Conclusions

An experimentally validated Low-Order Flow Network Model has been presented for
predicting the distributions of pressure, temperature, mass flows and heat flows throughout
the fluid and solid domains of a High-Pressure Nozzle Guide Vane. This LOM has been
used with a Genetic Algorithm to optimise the impingement and effusion hole diameters
of an NGV’s Double-Wall Effusion Cooling System, reducing the coolant mass flow rate by
13% from the baseline value whilst achieving acceptable Metal Cooling Effectiveness and
Backflow Margin for all effusion holes. For comparison, a CFD-based Genetic Aggregation
optimisation was conducted for the same case study. The general designs of the two
geometries were similar, showing regions where hole sizes could be minimised and those
where larger features were required to produce sufficient cooling. The LOM’s optimised
geometry, however, was produced 30 times faster than the CFD method. This difference
in time taken for the optimisation studies to be completed highlights the advantage of a
low-order approach in preliminary design stages in gas turbine cooling. In future, there
is a possibility for this tool to be extended from serving as a design tool to serving as a
diagnostic one. It is estimated that components manufactured at engine scale can have hole
size deviations of ±10% [35], which could severely impact the cooling performance, as seen
in this study. A LOM approach would allow rapid assessment of all possible deviations to
determine the true nature of a part’s difference from its design.
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Nomenclature

A Area
(
m2)

BFM Backflow Pressure Margin
c1 Lateral Film Cooling Decay Factor
Cd Discharge Coefficient
CFcorr Cross-Flow Correction Factor
d Diameter (m)
f Friction Factor
h Heat Transfer Coefficient

(
W/m2K

)
H Height (m)
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k Thermal Conductivity (W/mK)
kl Pressure Loss Coefficient
L Length (m)
LE Leading Edge
.

m Mass Flow Rate (kg/s)
M Blowing Ratio
Nu Nusselt Number
NGV Nozzle Guide Vane
P Pressure (Pa)
PS Pressure Surface
Pr Prandtl Number
.

Q Heat Transfer Rate (W)
R Radius (m)
Re Reynolds Number
SS Suction Surface
T Temperature (K)
TE Trailing Edge
TET Turbine Entry Temperature
U Velocity (m/s)
x Streamwise Distance (m)
xdecay Film Cooling Streamwise Decay Factor
z Spanwise Distance (m)
αt Turbulent Thermal Diffusivity

(
m2/s

)
β Area Ratio
ε Expansibility Factor
εo Overall Cooling Effectiveness
η Effectiveness or Efficiency
ρ Density

(
kg/m3)

Subscripts
0 Total
ave Average
aw Adiabatic Wall
c Coolant
cond Conductive
conv Convective
e or E Exit
ex Exterior
f Film/Effusion
FW Film/Effusion Wall
h Hydraulic
i Impingement
IW Impingement Wall
in Inlet
int Interior
m Metal
max Maximum
min Minimum
pd Pedestal
s Surface
t Turning
∞ Mainstream
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