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Abstract: The manufacturing geometrical variability in axial compressors is a stochastic source of
uncertainty, implying that the real geometry differs from the nominal design. This causes the real
geometry to lose the ideal axial symmetry. Considering the aerofoils of a stator vane, the geometrical
variability affects the flow traversing it. This impacts the downstream rotor, especially when consid-
ering the aeroelastic excitation forces. Optical surface scans coupled with a parametrisation method
allow for acquiring the information relative to the real aerofoils geometries. The measured data are
included in a multi-passage and multi-stage CFD setup to represent the mistuned flow. In particular,
low excitation harmonics on the rotor vane are introduced due to the geometrical deviations of
the upstream stator. The introduced low engine orders, as well as their amplitude, depend on the
stator geometries and their order. A method is proposed to represent the phenomena in a reduced
CFD domain, limiting the size and number of solutions required to probabilistically describe the
rotor excitation forces. The resulting rotor excitation forces are reconstructed as a superposition of
disturbances due to individual stator aerofoils geometries. This indicates that the problem is linear in
the combination of disturbances from single passages.

Keywords: aeroelasticity; low engine order; geometrical variability

1. Introduction

The increasing depth of detail required in the modelling of turbomachinery perfor-
mance has caused the introduction of probabilistic approaches in different fields. Geometri-
cal variability, in particular, has been addressed as a source of uncertainty. Although geo-
metrical deviation from the nominal design may have different causes, the manufacturing
process on its own contributes to the geometrical variability of turbomachinery components.

The impact of manufacturing geometrical variability on turbomachinery aerodynamic
performance in particular was already presented in the literature. Garzon and Darmofal [1]
considered the impact of aerofoils manufacturing geometrical variability on an axial com-
pressor’s aerothermal performance. Surface scans were used to characterise the geometry
from a set of measurement data. Lange et al. [2] proposed a parametrisation method
to characterise aerofoils optical surface measurements to represent the variability. The
method was used to characterise deviations from the nominal design and could be used to
investigate the impact on the steady state aerodynamic performance [3,4]. Lange et al. [4]
showed the particular importance of a multi-passage representation of the investigated
compressor stage. This is required to evaluate the impact on the performance accurately,
representing the geometrical differences between neighbouring passages. On the other
side, for each passage included in the computations, the computational cost for the CFD
solutions and the variability domain are also expanded.

Historically the study of blade vibrations has been crucial in the development of
turbomachinery, being described in the past as the dominant factor having an influence
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on a machine’s quality and reliability [5]. Deviations from the nominal cyclic symmetry
are of particular interest in the context of aeroelasticity. Within this field, we refer to
these deviations in general as mistuning. The mistuning of turbomachinery components
is largely studied with respect to the structural dynamics, as it potentially leads to local
amplification of the vibration amplitudes [6–8]. To take into consideration the impact of
mistuning, Whitehead [9] first proposed a conservative design limit for bladed disks. A less
conservative limit was defined by Martel and Corral [10], considering the number of active
modes, thus taking into account the modal coupling within blade mode families. In recent
years, the possibility to identify the structural mistuning was shown, and subsequently
the passage-to-passage scatter of natural frequencies, from surface measurements of real
components [11,12]. Through the identification of the mistuning, it is possible to predict the
structure behaviour using an aeromechanic reduced order model. An example is the Subset
of Nominal system Modes (SNM) model proposed by Yang and Griffin [13,14], which
represents the vibration of the mistuned system with a subset of the nominal geometry
modes. Nonetheless, the geometrical mistuning of a stage affects also the flow traversing it,
resulting in a mistuning of the flow interacting with the downstream stages.

The geometrical mistuning of a blade-row causes a mistuning of the flow field for the
downstream row. This can be seen as the cause of non-axisymmetric flow downstream. For
instance, the geometrical variability of the single aerofoils of a stage stator would cause
a flow mistuning for the following stage rotor blades. The flow mistuning impacts the
aeroelastic forced response, affecting the excitation harmonics amplitudes. However, the
harmonics present in the flow field are, in general, unknown. These are usually identified
as multiples of the shaft speed, namely Engine Orders (EO). Of particular interest are the
Low Engine Orders (LEO) of excitation introduced in the system.

From an aeroelastic point of view, a large effort was exerted in representing the
unsteady flow in a reduced domain. Mata et al. [15] proposed a method to represent rotor-
stator interactions in a single passage setup. A method to represent a non-axisymmetric
flow on a reduced number of passages was introduced by Stapelfeldt et al. [16,17]. The
methodology was capable of representing a flow with a known spatial/temporal period-
icity in a sparse single passage assembly, significantly reducing the computational cost.
Considering the probabilistic analysis of the aeroelastic forces, Figaschewsky et al. [18]
investigated the impact of the upstream nozzle guide vane (NGV) pitch angle’s variability.
For the computation of the forces, a full annulus unsteady CFD setup was used, represent-
ing a unit response for a single disturbed NGV. The resulting forces, considering a fully
mistuned NGV (in terms of pitch angle), could be predicted through a superposition of the
individual unit responses.

In a previously published study [19], the authors investigated the impact of a stator’s
geometrical variability on the excitation forces for the downstream rotor. A stochastic model
for stator vanes geometrical variability was created using a set of optical surface scans.
The aeroelastic forces on the downstream rotor were investigated using a single passage
unsteady CFD solver. A reconstruction algorithm was proposed to predict the resulting
forces over a full revolution of the shaft. In particular, the reconstruction was found to
overestimate the LEOs amplitudes, but correctly identify the LEOs pattern. The limitations
are considered to be due to the oversimplification of the geometry in the single passage
representation. When introducing a stochastic source of uncertainty as the manufacturing
geometrical variability, the investigation of the mistuned unsteady aerodynamics is not
easily solved. The difficulties are associated with the large domain of the variability as
well as the computational cost required to represent the axial asymmetry. This paper
wants to propose a method to evaluate the impact of a stochastic source of geometrical
variability on the aeroelastic excitation forces. The manufacturing geometrical variability of
an axial compressor Variable Stator Vane (VSV) is considered. The objective is to evaluate
how different stator geometries, arbitrarily ordered around the annulus, may affect the
traversing unsteady flow field. The impact on the aeroelastic excitation forces on the
downstream rotor blade integrated disk (blisk) is finally investigated.
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2. Materials and Methods

In the following chapter, the method used for the representation of the mistuned
aeroelastic forces is presented. The first section describes the representation of the manu-
facturing geometrical variability for VSVs, measured with optical surface scans. Next, the
geometry of the test rig used as a case study will be described. Finally, the CFD setup will
be presented, introducing the reduced domain for the computation aeroelastic forces.

2.1. Aerofoils Geometrical Variability

The description of the geometrical variability is based on the information relative
to optical surface scans. A set of 36 VSV optical scans was available to the authors to
investigate the impact of the manufacturing process on the aerofoils’ geometry. The
measurements are characterised using the parametrisation method proposed by Lange
et al. in [2]. The aerofoils are represented as a set of radial sections, each described in
a two-dimensional space with a set of numerical parameters. Figure 1 shows the radial
sections distributed over a single blade geometry.
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Figure 1. Radial sections used for the parametric description of a VSV’s optical surface scan.

A total of 93 radial sections are used for the parametrisation, ranging from 4% to 96% of
the aerofoils’ height. Fillets and gaps’ sizes are omitted from the geometrical representation.
The three-dimensional surface is defined with an interpolation/extrapolation process over
the modelled sections.

The parametrisation technique is applied to the surface scans as well as to the respec-
tive nominal CAD geometry. This allows the representation of the available measures as
geometrical offsets from the design intent. In particular, the geometrical deviations ∆b for
blade b are calculated as the difference between the parametric characterisation Ŝb of the
surface scan b and the geometric parameters ŜN of the nominal aerofoil:

∆b = Ŝb − ŜN . (1)

The resulting 36 geometrical deviations ∆b are considered to be deterministic in this
study. No further modelling is conducted to represent the geometrical variability of the
VSV. This is representative of a dataset for a group of manufactured vanes, which have to be
assembled in a machine. The vanes are designed with the same geometry and manufactured
individually; therefore, the assembly order may be arbitrary. However, the method can be
expanded to consider a stochastic geometry, defining an appropriate geometrical model as
proposed in [20].

2.2. Case Study

The geometry of the test rig Rig250 from the German Aerospace Centre (DLR) is used
as a case study. The rig is a 4.5 stage axial compressor. The geometrical deviations are
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applied to the first stage variable stator vane (VSV1). The resulting aeroelastic excitation
forces are studied for the second stage rotor blisk (R2).

The quantities of interest for this study are the aeroelastic excitation forces, with par-
ticular focus on the LEO harmonics. Considering the equation of motion for a bladed disk
in the rotating frame of reference, the structure displacement vector x can be represented
through the modes matrix Φ and the modal displacement vector q:

M
..
x + (G + D)

.
x + Kx = f, (2)

x = Φq, (3)

where M, G, D and K are, respectively, the mass, gyroscopic, structural damping and
stiffness matrices. The forces f act as a forcing on the system.

Following the formulation of Crawley [6], the modal forces ΦTf are divided into
external aerodynamic excitation forces Fe and motion induced forces Fd. Both terms are
functions of time t, while only the latter depends on the displacement:

ΦTf = Fe(t) + Fd(t, q). (4)

The external aerodynamic excitation forces Fe are investigated. These depend on the
interaction with the unsteady flow field. As for the formulation in Equation (4), no blade
motion is considered for their computation.

The compressor is represented at 90% of its nominal mechanical speed. This config-
uration is considered to be representative of resonance conditions for two R2 vibration
modes. The mode shapes of interest are represented in Figure 2 as total displacement
amplitudes. The modes are the first flap mode (Mode 1F) and a higher mode (Mode H). The
vibration modes are computed using the commercial finite element software Abaqus, con-
sidering rotational speed and material temperature. The steady aerodynamic gas loading is
neglected in this case. The mode shapes of interest are interpolated with the CFD mesh.
The displacement shown in Figure 2 is representative of the resulting total displacement
amplitudes on the CFD nodes.
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Figure 2. Vibration mode shapes of interest for the second stage rotor.

For the fluid dynamics computations, the Rolls-Royce CFD software AU3D (version: 8.1.6),
developed at Imperial College London, is used. The solver uses unsteady, compressible,
Favre-averaged Navier–Stokes equations to represent the three-dimensional flow. A finite
volume formulation on semi-structured grids and a second order time integration are
implemented. Sayma et al. [21] describe in detail the flow model and provide two validation
cases for turbomachinery.

The computations use the one equation Spalart–Allmaras turbulence model. The
near walls flow field is computed utilising wall functions, with y+ ∼ 30 values. Fillets
and varying gap sizes are included in the CFD model, with the exception of the fillets of
VSV1. As the fillets of the surface scans are not included in the geometry’s characterisation,



Int. J. Turbomach. Propuls. Power 2024, 9, 12 5 of 16

the VSV1 fillets are not included in the simulation. The single passage mesh counts
approximately 2 × 106 cells for each blade-row, with approximately 120 radial levels.

A steady state CFD solution at the considered working point is solved considering a
single passage of all the 4.5 stages. The boundary conditions are extracted from available
measurement data. The instrumentation and the experimental setup of the rig are described
in detail in [22]. In Figure 3a, the relative Mach number is represented at 90% height for
VSV1, R2 and VSV2. The figure shows two passages for each vane, representing one of the
two on the CFD mesh. The flow field in this condition is subsonic, with a relative Mach
number up to 0.9. In Figure 3b, a comparison is shown between measurement data and the
CFD results of the radial total pressure profiles at the inlet of the VSV1 and VSV2.
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mechanical speed: (a) numerical relative Mach number at 90% channel height; (b) numerical and
experimental total pressure’s radial distribution upstream of the variable stator vanes [20].

The steady state results are used as an initial solution for the unsteady computations.
Boundary conditions for the latter are extracted from the steady state mixing planes.

2.3. Reduced CFD Domain

A sector representation of the different rows is proposed as a reduced model to
represent the flow field. Single sectors including one or more aerofoils are represented in
the CFD for each blade-row. The number of blades is limited to integer fractions of the total
number of aerofoils for the blade-row. Cyclic symmetric boundary conditions are used to
represent the full geometry. The full annulus flow field is reconstructed over the sliding
planes connecting the different blade-rows for the unsteady computations as presented by
Stapelfeldt et al. [16]. A Fourier decomposition in the frequency domain allows this, using
the information relative to the individual blade-rows. A sector representation is chosen in
this case over a sparse single passage assembly to capture the local deviations. The sector
model will be named Multi-Passage Multi-blade Row (MPMR).

A sector model is presented in Figure 4a, where the VSV1, R2 and VSV2 are included.
This Stator–Rotor–Stator (SRS) configuration is used only as validation of the method in
this work. This configuration is chosen as the EO 12 would be present due to the interaction
between the VSV1 wakes and the VSV2 potential field (respective blade counts: 36 and 48).
The number of blades per sector is therefore chosen to be at least 1/12 of the circumference.
In Figure 4b, the modal forcing result for the tuned nominal geometry using the MPMR are
validated with a Full Annulus (FA) CFD solution. The method can therefore also be used to
explore large computational domains.
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In general, for the mistuned case the excitation forces depend on the geometry of
the full annulus of the mistuned blade-row. This would imply that all the aerofoils in the
blade-row need to be represented in the CFD solution. Considering a probabilistic study of
this phenomenon, knowing that any permutation of the same vane set would also affect
the result, the representation of the full geometries would make the solution unfeasible.
Considering moreover the vane geometries as uncertain, the FA CFD would be even more
prohibitive. Therefore, it is of interest to define a method to represent the disturbances
in a reduced CFD model. This ideally would contain the lowest possible number of
passages for each blade-row to reduce the computational cost. Moreover, it is of interest
to represent the fewest possible mistuned geometries in each CFD computation (a single
one if possible). This would reduce the variability space to explore when considering a
probabilistic study. Finally, it is necessary to define a reconstruction algorithm to predict
the forcing disturbances for the downstream blade-row over a full rotation of the shaft,
starting from the reduced CFD data.

2.4. Mistuned Stator Configuration

The application of the geometrical deviations is based on the parametrisation method
introduced in Section 2.1. The parametric offsets ∆b obtained from the optical surface scans
are applied to the hot nominal geometry parametrisation SN of the Rig250 VSV1. The
parametric description of the mistuned blades Sb is defined as follows:

Sb = SN + ∆b. (5)

The representation of the manufactured geometries as an offset from the nominal
design allows the application of the measured deviations, described in a cold setup (static,
ambient pressure and temperature), to the hot aerofoil geometries in the machine. More-
over, this allows the transfer of the measured deviations on the Rig250 VSV1. Due to a
lack of available data regarding the rig geometry, the measurements were conducted on a
different component, with a different nominal geometry. The measurements are assumed
to be representative for the rig due to the similarity of the two geometries and manufactur-
ing methods. In addition, this assumption is preferred over a random representation of
the variability.

As the parameters characterised the aerofoils on a set of radial sections, the three-
dimensional geometry of these could be recreated from the Sb values. Further points of the
aerofoil were calculated through a quadratic interpolation over the three closest sections.
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For the extrapolation at the hub and shroud, an interpolation was performed over the
two closest mistuned sections and the nominal geometry hub/shroud section.

The geometrical deviation of a different optical surface scan is used for each of the
36 VSV1 stator vanes in the assembly. An arbitrary ordering of the vanes is assumed to
represent a single mistuned configuration of the stator vane. A comparison between the
tuned nominal geometry and the mistuned geometry is shown in Figure 5a for the FA.
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son between the FA of the tuned setup and the mistuned VSV1 setup; (b) spectra of the two vibration
modes, comparing the FA tuned setup and the FA mistuned VSV1 setup CFD results.

Two unsteady CFD simulations representing the FA of VSV1 and R2 are computed.
For the time resolution of all the unsteady computations, 240 time steps are used to resolve
the passage of a rotor aerofoil between two VSV1 vanes. This is found to be sufficient to
capture the unsteadiness. At first, the tuned system is represented. The second simulation
included the mistuned VSV1 geometry generated and the nominal R2 geometry. In both
configurations, the modal excitation forces for the two mode shapes of interest show
identical results for all the rotor blades (with an appropriate phase shift).

In Figure 5b, the computed forcing results are reported. The forcing is represented as
normalised amplitudes of its harmonics (EO) for the tuned and mistuned FA geometries.
The normalisation is conducted with respect to the maximum amplitude observed in a
stator–rotor–stator configuration (maximum ”FA Tuned SRS” in Figure 4b). In the tuned
case, only the harmonics relative to the VSV1 vane count (EO 36 and multiples) are present.
In the mistuned case, the introduction of asymmetry causes the excitation to range over a
larger spectrum of harmonics. Compared to the nominal forcing, in the mistuned case an
amplification of the EO 30 and 72 amplitudes is observed. Moreover, a variety of LEOs are
introduced to the system.

3. Results

The study investigates if it is possible to represent the impact of the upstream row
mistuning on the aeroelastic excitation forces in this reduced domain. Of primary interest
are the following topics:

1. The number of aerofoils per stage required to represent the physics;
2. The number of mistuned aerofoil geometries required in each CFD computation to

represent the deviations;
3. Methods to reconstruct the forcing spectra starting from multiple MPMR solutions.

In this section, two different methods will be proposed. The first one is the extension
of the work presented in [19], which used only single passages of the geometries in the CFD.
The method is extended to use MPMR solutions as input, predicting the FA forcing as a
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mixture of these (“MPMR Forcing Mixture”). The results correctly predict the overall forcing
function, but they do not capture the LEO amplitudes. The second method presented is
adapted to represent unit responses in the MPMR solution, predicting the FA forcing as
a superposition of these (“MPMR Forcing Superposition”). The reconstruction captures
the physics of the problem from a set of MPMR solutions, representing in each a single
mistuned VSV.

For simplicity, the domain is reduced to the VSV1 and R2 rows. The VSV1 geometries
are limited to the 36 deviations obtained from the optical surface scans.

3.1. MPMR Forcing Mixture

This method aims to verify if the local flow deviations downstream of the single
mistuned VSV are sufficient to represent the overall mistuned flow. The reduced CFD
setup includes three passages of the stator in a single sector. A single passage of the rotor is
added, as for this row, the nominal geometry is used.

All three VSV1 aerofoils in each computation include the geometrical deviations
modelled. Moreover, the vanes order considered for the investigated FA setup is kept. One
simulation is run for each of the 36 assembly vanes. For each run, the geometry of the
vane of interest is placed in the centre of the computational domain. The directly adjacent
geometries on the suction and pressure side are the respective ones in the FA assembly.

The presence of multiple mistuned vanes in each MPMR solution would be a limi-
tation for a stochastic representation of the geometries. This implies that the geometrical
variability space generated on the single-blade deviations is tripled. The inclusion of three
mistuned blades per solution is chosen to assess the method’s capabilities in an example,
using a small sector of the annulus, but with high fidelity in terms of geometry.

As a result of each simulation, a forcing function f (M)
b,m (t) on the R2 blade is calculated.

The subscripts indicate the VSV1 blade b ∈ [1; 36] at the centre of the sector and the
R2 vibration mode m considered. The superscript (M) indicates that these solutions are
computed using the CFD setup for the mixture method here presented. We indicate with N
the number of total assembly vanes (N = 36 for VSV1).

The FA forcing prediction f̂ (M,FA)
m (t) for the mode m is computed as a mixture of

MPMR solutions, using the definitions in Equations (6)–(8). Indicating with tR the time
required for a revolution, tBP = tR/N represents a vane passing time interval. A phase
shift is added to the MPMR solutions, such as t = 0 coincides with the wake of the central
assembly vane. This is identified with the position of a minimum of EO 36 in the nominal
forcing function.

To ensure the continuity of the predicted FA forcing, each f (M)
b,m (t) is mixed with the

results centred on the neighbouring blades. This is performed in the form of a weighted
average over a selected time frame twa = tBP/20.

The first blade b = 1 and the last blade b = N in the assembly are adjacent. To
represent this in a short notation, we define: f (M)

b=0,m = f (M)
b=N,m and f (M)

b=N+1,m = f (M)
b=1,m.

f̂ (M)
b,m (t) =


f (M)
b,m (t) + km

(
f (M)
b−1,m(t + tBP)− f (M)

b,m (t)
)

∀t ∈ [t0, t1[

f (M)
b,m (t) ∀t ∈ [t1, t2[

f (M)
b,m (t) + kp

(
f (M)
b+1,m(t − tBP)− f (M)

b,m (t)
)

∀t ∈ [t2, t3[

(6)

km =
1
2

(
t − t1

t0 − t1

)
, kp =

1
2

(
t − t2

t3 − t2

)
(7)

t0 = − tBP
2

, t1 = twa −
tBP
2

, t2 =
tBP
2

− twa, t3 =
tBP
2

. (8)
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The reconstruction of the modal forcing f̂ (M,FA)
m (t) over one revolution is obtained

as a concatenation of the weighted averages f̂ (M)
b,m (t) for the single sectors. The periodic

function over the full annulus is defined for a single period of length tR as follows:

f̂ (M,FA)
m (t) =


f̂ (M)
b=1,m(t) ∀t ∈ [− tBP

2 , tBP
2 [

f̂ (M)
b=2,m(t − tBP) ∀t ∈ [ tBP

2 , 3
2 tBP[

...
f̂ (M)
b=N,m(t − (N − 1)tBP) ∀t ∈ [tR − 3

2 tBP, tR − tBP
2 [

. (9)

Figure 6 represents the forcing mixture for the modal forcing at the wake of a generic
blade b. The FA forcing reconstruction f̂ (M,FA)

m (t) is based on the computed value of
the forcing function f (M)

b,m (t) for the blade b in the respective vane passing time inter-

val. The local results for each blade b are mixed with the local results f (M)
b−1,m(t) and

f (M)
b+1,m(t) for the neighbouring blades in the time intervals

[(
b − 3

2
)
tBP,

(
b − 3

2
)
tBP + twa

]
and

[(
b − 1

2

)
tBP − twa,

(
b − 1

2

)
tBP

]
, respectively.
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Figure 6. Mixture of the local forcing function f (M)
b,m (t) with respect to blade b, with the modal forcing

computed for the neighbouring blades b − 1 and b + 1.

The FA modal forcing predicted from the mixture of MPMR solutions can be analysed
by studying its spectrum. In Figure 7a, the represented CFD domain is shown. The resulting
forcing prediction is computed for the mistuned configuration presented in Figure 5a. The
computed FA CFD solution is compared with the prediction using the MPMR mixtures.
The normalised spectra for the two solution methods are presented in Figure 7b for the
two investigated vibration modes.

The results show a good overall prediction of the excitation harmonics, but the LEOs
are not captured. The harmonic relative to the vane count of the upstream stator (EO
36) and its upper harmonics are correctly predicted. These are also amplified by the
mistuning (see Figure 5b) and the mixture can correctly represent the amplification. On
the other side, the introduced lower harmonics are not represented by the method. It can
therefore be concluded that the mixture correctly represents the local deviations, but these
are insufficient to represent the lower excitation harmonics.
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3.2. MPMR Forcing Superposition

The second proposed method aims to capture the LEO introduced by the mistun-
ing, representing a larger domain in the CFD. The reduced CFD setup includes multiple
passages of the stator in a single sector and a single passage of the rotor.

In this case, a single stator vane in the sector included the geometrical deviations.
Further aerofoils are described with the nominal geometry of the vane. This allows for
individual representation of the disturbances due to the single mistuned geometry, namely
the unit responses. Moreover, variability space is reduced to the geometrical deviations of
a single aerofoil per simulation. As presented by Figaschewsky et al. [18], for differences in
pitch angle, unit responses computed in a FA setup could be superimposed to represent
the total mistuned system. It is of interest here to consider the complex three-dimensional
deviations of the geometry. Moreover, in order to reduce the computational time, the
method is redefined to use the sector CFD setup.

As a result of each simulation, a forcing function f (S)b,m(t) on the R2 blade is calcu-
lated. The subscripts indicate the VSV1 single blade b ∈ [1, 36] with applied geometrical
variability in the sector and the R2 vibration mode m considered. The superscript (S)
indicates that these solutions are computed using the CFD setup for the superposition
method here presented.

The FA forcing prediction f̂ (S,FA)
m (t) is computed as a superposition of the MPMR unit

responses, using the definitions in Equations (10)–(13). We indicate with N the number of
total assembly vanes (N = 36 for VSV1). As previously, tR represents the time required
for a revolution, and tBP = tR/N represents a vane passing time interval. For the MPMR
solutions, the wake of the assembly mistuned vane is identified with a minimum of EO 36
in the nominal forcing function. This is used to define the time step t = 0.

In the MPMR stator vanes sector, M airfoils are included. This imposes an artificial
periodicity to the sector geometry. In particular, the solution is representative of N/M
blades over the full annulus with the same applied ∆p geometrical disturbances, evenly
spaced over the circumference. Therefore, a period tS = M tR/N is imposed to the
MPMR solutions.

A mean force f
(S)
m (t) is defined from the MPMR solutions. As the f (S)b,m(t) are discrete

and periodic, a discrete Fourier transform (DFT) can be applied. The mean force is com-
puted by averaging, out of all of the N MPMR solutions, only the harmonics which are

multiples of M are used, as these represent the vane passing frequency. The f
(S)
m (t) is

computed with the inverse transform to the time domain. This allows to define a forc-
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ing disturbance function n(S)
b,m(t) for all the MPMR solutions. A filter F is applied to the

disturbances, considering a fixed filter window t f w = tBP:

n(S)
b,m(t) =

(
f (S)b,m(t)− f

(S)
m (t)

)
×F , (10)

F =


1 ∀t ∈ [0, tS

2 − t f w[
tS−2t
2tw f

∀t ∈ [ tS
2 − t f w, tS

2 [
2t−tS
2tw f

∀t ∈ [ tS
2 , tS

2 + tw f [

1 ∀t ∈ [ ts
2 + t f w, tS[

. (11)

The mean force f
(S)
m (t) can be considered periodic. The disturbance n(S)

b,m(t) for the in-
dividual vanes has to be limited in the respective sector. The periodicity of the disturbances,
having period length equal tS, is artificially introduced by the cyclic symmetric boundary.
Therefore, only one period per vane has to be used for the superposition. In doing this,
the filter F ensures continuity to the individual noise terms. The local disturbances n(S)

b,m(t)
have to be expanded to a respective FA disturbance, taking into consideration the respective
blade b position.

We define the FA disturbance n̂(S)
b,m(t) for each blade b over one shaft revolution as

follows. The n(S)
b,m(t) values are considered over one period tS. The disturbance introduced

by each vane is considered null outside the period tS for the rest of the revolution. An
appropriate phase shift is added to account for the blade b position in the assembly. The FA
disturbances are periodic and described over one tR period:

n̂(S)
b,m(t) =

 0 ∀t ∈
[

tS
2 + δtb, tR − tS

2 + δtb[

n(S)
b,m(t − δtb) ∀t ∈

[
− tS

2 + δtb, tS
2 + δtb[

, (12)

δtb = (b − 1)tBP. (13)

The FA disturbances computed for a set of blades are represented in Figure 8. The
disturbances n(S)

b,m(t) affect a time window tS (dependent on M). The FA disturbances

n̂(S)
b,m(t) have the value of n(S)

b,m(t) around the wake of the blade b and have the value of 0
elsewhere. The position of the wake for each blade depends on the respective mistuned
blade position in the investigated assembly. Each FA disturbance therefore represents the
local modal forcing perturbation due to the mistuning of a single stator.
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The FA forcing prediction f̂ (S,FA)
m (t) is formulated as follows, superimposing the

MPMR unit responses. It is defined as a superposition of the average extracted forcing

f
(S)
m (t) and the individual n̂(S)

b,m(t) disturbances for all the vanes:

f̂ (S,FA)
m (t) = f

(S)
m (t) + ∑N

b=1 n̂(S)
b,m(t). (14)

The FA modal forcing predicted from the MPMR superposition can be analysed in
terms of its spectrum. A first investigation considers a number M = 6 of MPMR sectors.
In Figure 9a, the represented CFD domain is shown. The resulting forcing prediction is
computed for the mistuned configuration presented in Figure 5a. The computed FA CFD
solution is compared with the prediction. The normalised spectra of the two solutions are
presented in Figure 9b for the two investigated vibration modes. In Figure 10, the excitation
forces Fe are plotted for the two models in the time domain.
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The results show that the method can capture the full spectra of the excitation forces for
the two vibration modes. The amplification of the vane passing frequency (EO 36) and its
higher harmonics are captured as well as the introduced LEO. It is possible though to see a
certain prediction inaccuracy with regard to some of these harmonics amplitudes. To verify
that the model is representative of the aerodynamic mistuning, in Figure 10 the computed
and modelled excitation forces Fe can be compared in the time domain. The forces are
normalised such as the nominal excitation would oscillate between 1 and −1. It is possible
here to compare the results computed with the FA CFD and the MPMR superposition. A
period of length tR is represented, coinciding with one full shaft revolution. The prediction
is shown here to be capable of capturing the physics of the problem correctly.

The loss in accuracy is judged to be caused by an insufficient number of vanes in-
cluded in the VSV1 sector. The sector in the example represents 1/6 of the full annulus.
Hence, the cyclic symmetry imposed to reduce the CFD domain may be the cause of the
inaccuracy. The only set parameter of the method is the filter window t f w, which does not
influence significantly the final result. In addition, small changes in the identification of the
geometrically mistuned vane wake seem not to affect the result significantly.

To investigate the influence of the stator sector size on the superposition result, the
study was repeated with a larger number M of stator blades. A total of M = 12 blades
are included in the new setup, equivalent to 1/3 of the FA for this specific geometry. The
resulting MPMR domain for the calculation of the unit responses is shown in Figure 11a. In
Figure 11b, the resulting rotor forcing superposition for the investigated mistuning pattern
is compared with the FA CFD. The results show an increased accuracy in the prediction of
the LEO, compared to the M = 6 case in Figure 9b. However, a larger error is observed
in the prediction of the EO 36 and 72. This is attributed to the inclusion in the MPMR of
several stator blades with the nominal geometry. These EOs were shown to be affected by
the mistuning (see Figure 5b). To address this issue in future studies, a mean geometry
of the measured aerofoils can be defined to replace the nominal aerofoils in the MPMR
unit responses computation. This can give a better representation of the mean flow and
therefore a higher accuracy of the reconstruction. This is supported by the high accuracy in
the prediction of those harmonics in the “MPMR Forcing Mixture” method.
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The results indicate that the problem can be considered linear, even when considering
a set of real mistuned stator geometries assembled in an arbitrary order. The disturbances
introduced by the individual real stator aerofoils on the flow with respect to the nominal
tuned system can be linearly superimposed to represent the assembly. This reduces the



Int. J. Turbomach. Propuls. Power 2024, 9, 12 14 of 16

problem of modelling this type of flow mistuning to the modelling of the disturbances
caused by individual stators. The variability space can therefore be limited to the char-
acterisation of the single aerofoil. Moreover, the CFD domain can be reduced to a sector
representation of the stages.

To investigate a different ordering of the stator vanes with this method, it would be
sufficient to change the different vanes relative phase. Therefore, having a set of N MPMR
solutions available, any permutation of those vanes in a FA setup can be solved algebraically.

4. Discussion

A method to calculate the aeroelastic excitation forces on an axial compressor rotor
in the presence of an upstream geometrically mistuned stator is presented. The problem
requires the description of the flow over the full annulus of the machine. The individual
stator geometries and their relative position cause the non-axisymmetric flow affecting the
rotor aeroelastics. This alters the amplitudes of the excitation harmonics, introducing a
particular set of low engine orders, which are not present in a tuned geometry.

This paper proposes two modelling methods to describe the phenomenon. The forces
are computed in a reduced CFD model, limited to a sector domain. Optical surface scans
are used to represent the manufacturing geometrical variability of axial compressor stator
vanes. Real engine geometries, acquired from measurement data, can therefore be included
in the study.

A first proposed approach (“Forcing Mixture”) shows how local flow information is
insufficient to represent the full spectrum of the forces. The amplifications of the harmonics
connected with the stator vane count (here EO 36 and multiples) are accurately captured,
but the introduced lower harmonics are not predicted correctly.

The second proposed modelling method (“Forcing Superposition”) considers a single
sector of the stator and a single passage of the downstream rotor. The stator sector includes a
single aerofoil with applied geometrical deviations. The rotor forcing over a shaft revolution
for a fully mistuned stator can be predicted superimposing the disturbances originating
from the single real stator geometries, namely the unit responses. This indicates that the
problem can be considered linear in the combination of disturbances from single passages.
This method opens up the possibility for a probabilistic study:

• The geometrical variability space can be limited to the characterisation of the single aerofoil;
• The CFD domain can be limited to a sector of the geometry of interest, including a

single mistuned aerofoil per solution;
• Rotor modal excitation force disturbances can be linearly superimposed to represent

the system;
• The full forcing spectrum is reconstructed from the single unit responses, for any

arbitrary ordering of the mistuned vanes.

For the considered compressor stage, 1/3 of the full annulus allowed for computation
of the unit responses and accurate prediction of the introduced LEO. For future investiga-
tions, it is recommended to define a mean mistuned geometry from the measured data.
This can be used to represent the sectors with fixed geometry in the calculation of the unit
responses to better describe the mean flow.

The disturbances computed for this study show patterns unique to each vane. No
common trend could be observed. Nevertheless, we cannot exclude, on a larger dataset,
the possibility of interpolation between different geometries. Moreover, the creation of
a stochastic model for the geometrical variability [20] would allow for a probabilistic
description of the problem.
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