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Abstract: At Leibniz University of Hannover, Germany, a new turbomachinery test facility has
been built over the last few years. A major part of this facility is a new 6 MW compressor station,
which is connected to a large piping system, both designed and built by AERZEN. This system
provides air supply to several wind tunnel and turbomachinery test rigs, e.g., axial turbines and
axial compressors. These test rigs are designed to conduct high-quality aerodynamic, aeroelastic,
and aeroacoustic measurements to increase physical understanding of steady and unsteady effects in
turbomachines. One primary purpose of these investigations is the validation of aerodynamic and
aeroacoustic numerical methods. To provide precise boundary conditions for the validation process,
extremely high homogeneity of the inflow to the investigated experimental setup is imminent. Thus,
customized settling chambers have been developed using analytical and numerical design methods.
The authors have chosen to follow basic aerodynamic design steps, using analytical assumptions for
the inlet section, the “mixing” area of a settling chamber, and the outlet nozzle in combination with
state-of-the-art numerical investigations. In early 2020, the first settling chamber was brought into
operation for the acceptance tests. In order to collect high-resolution flow field data during the tests,
Leibniz University and AERZEN have designed a unique measurement device for robust and fast
in-line flow field measurements. For this measurement device, total pressure and total-temperature
rake probes, as well as traversing multi-hole probes, have been used in combination to receive
high-resolution flow field data at the outlet section of the settling chamber. The paper provides
information about the design process of the settling chamber, the developed measurement device,
and measurement data gained from the acceptance tests.

Keywords: turbomachinery testing; aerodynamics; settling chamber; inflow; flow conditions

1. Introduction

Due to the climate impact of electrical power generation from fossil sources as well
as aircraft propulsion systems driven by regular jet engine fuels, there are two main
pathways for the future development of those systems. On the one hand, further steps
in the understanding and prediction of the aerodynamic, aeroelastic, and aeroacoustic
characteristics of turbomachinery are needed. On the other hand, there is a strong request
to investigate and understand the impact of new fuels and alternative combustion processes
for jet engines. These requirements mentioned above have in common the strong request
for new design tool validation on an experimental basis.

To meet these requirements with regard to academic and industrial research, the Leib-
niz University of Hannover has decided to build up a new turbomachinery and combustion
technology test facility at the new campus for mechanical engineering [1] at Garbsen.

The constantly increasing level of electrical power generated by wind turbines and
solar systems has led to a massive change in the electrical power grid in Europe, especially
in Germany [2]. Although electrical energy from wind can temporarily cover large parts of
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the required power, conventional power plants are needed to ensure that enough power is
available at all times at every place within the grid, especially during the winter term [3].
Currently, the required power from conventional sources from time to time reaches nearly
100% of the overall produced power, although the installed net power of wind turbines can
theoretically cover almost 50% of the required power. As a result, especially during the
summer, a massive and quick change between electrical power produced by fluctuating re-
newable energies and conventional power plants has to happen. These high load gradients
of up to 15 GW/h have already been expected in the past [2].

In parallel to the increasing amount of fluctuating power generation from wind and
solar sources, the volume of re-dispatched energy, which means unplanned changes in
grid operation, has increased by a factor of 43 between 2010 and 2020. It can be expected
that this effect is spreading from the German power grid to the European grid, as power
generation all over Europe is still subject to change with regard to renewable energies [4].

For future turbomachines for power generation, the market development described
above means a strong request for highly flexible use with high numbers of start–stop
cycles and load variations, as well as probably new designs like hydrogen-driven tur-
bines or new thermodynamic-cycle processes, i.e., using supercritical CO2 cycles based
on geothermal supply.

Current and future jet engine development will have to cope with strong market
regulations by governments worldwide. These regulations focus on the strong reduction in
the climate impact of worldwide travel as well as on local noise reduction, especially in
the direct vicinity of airports and adjacent glide slopes. Two foci of future development
efforts will be on massive aerodynamic changes in aircraft engine components driven by
the mechanical evolution of concepts, i.e., geared turbofan designs, as well as on new
concepts and an extended understanding of noise effects within the engine. Although
direct noise emissions from jet engines have been drastically reduced over the last decades,
there is still a significant lack of understanding with regard to noise generation and noise
transport within multirow turbomachines [5].

In conclusion, it can be stated that efficiency as a first-order design criterion is re-
placed by a reduction in emissions and capability for flexible operation while using new
combustion technologies and aerodynamic designs.

2. New Experimental Test Facilities for Energy Conversion Processes

The Leibniz Universität Hannover has decided to establish the new research alliance
“Dynamics of Energy Conversion.” The following section will provide a detailed insight
into the new air supply system with regard to turbomachinery testing and will focus on the
development of high-performance settling chambers required for new test rigs.

2.1. Aerodynamic Operating Parameters for the New Test Facilities

To validate computational models, resources such as a test facility are required. Tech-
nical boundary conditions, as well as the required budget, are always critical issues in
research. For fundamental research as well as near-product design testing, the aerodynamic,
aeroacoustic, and aeroelastic scaling methods are based on Mach number Ma, Reynolds
number Re, and the reduced frequency k.

Furthermore, the geometrical and power-related scaling of turbomachines is also lim-
ited by geometric and mechanical constraints, i.e., increasing rotational speed. The new test
facilities at Leibniz University have been designed to operate with up to 25 kg/s at a pres-
sure range between 25 kPa and 800 kPa absolute pressure. The maximum temperature at
the test rig’s inlet is 200 ◦C. Furthermore, the new test facility is capable of operating a large
variety of test rigs in open-loop or closed-loop modes. During closed-loop operation, the
fluid within the piping system is used in a closed circuit, providing higher or lower (below
atmospheric) pressure levels as well as less interaction with environmental influences.
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2.2. Test Facility Layout

Figure 1 shows a schematic view of the test facility’s overall layout. The facility was
designed and built by AERZEN and was officially taken into operation in 2021. It can be
seen that the core components of the facility consist of two large root-type blowers and two
large screw compressors that are connected to the test rigs by a complex piping system [6].
While overall temperature and pressure levels are adjusted by several heat exchangers
and bypass-air systems, the high-quality local flow characteristics upstream of test rigs
have to be ensured as well. The focus of this paper is on the experimental validation of
the operational behavior of settling chambers that are installed upstream of the test rigs in
order to provide high-quality inflow.
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3. Settling Chamber Design

For the design of aerodynamic settling chambers for test rigs and other applications,
very little open literature is available to the public. Most of the settling chambers of existing
test facilities were designed between 1950 and 1980. Modern CFD methods and a large
number of experimental investigations over the last decades have significantly reduced
the number of operating hours for experimental research. Authors of former studies [7,8]
regarding the design of settling chambers and wind tunnels mostly rely on basic fluid
mechanic equations and procedures, and there is even less literature with regard to the use
of CFD for calculating the flow through such structures. During the design phase of the
settling chamber, several restrictions had to be taken into account. These restrictions were
mainly set by the available space for installation and the wide operating range, such as

• Maximum overall length: 5 m
• Maximum diameter: 2.5 m
• Inlet and outlet pipe diameter: 0.7 m
• Operating pressure: up to 800 kPa
• Operating temperature: up to 200 ◦C
• Extremely wide range of through-flow velocities
• Homogeneity of flow characteristics at the outlet is suited for state-of-the-art CFD-tool

validation for the connected test rigs

Figure 2 shows the position of the settling chamber in front of a standard test cell
within the facility. Due to restrictions in the overall facility layout, the axial length is limited,
as mentioned above. The test rig is fed compressed air from the supply line above the test
cell. This means that the air passes the shut-off valve and, in total, three 90◦ bows before



Int. J. Turbomach. Propuls. Power 2024, 9, 31 4 of 12

entering the settling chamber. The flow can be expected to be turbulent, while bows in
different directions cause swirls and inhomogeneous flow profiles.
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Figure 2. Three-dimensional model view of the standard test cell with a settling chamber installed
upstream of the test rig.

3.1. Mechanical Design

The settling chamber is part of an integrated piping system that has been designed to
operate at pressure levels of up to 800 kPa and at more than 200 ◦C of static temperature.
Thus, the settling chamber not only needs to fulfill aerodynamic criteria but also has to stand
significant mechanical loads. The mechanical stress on several components puts additional
constraints on the design to make sure that the system structure is stable, nonvibrating,
and safe at all times.

As can be seen in Figure 3, the starting point for the overall design was a standard
pressure vessel [9], including some guide vanes and several layers of meshes [10]. The
disadvantage of these types of designs is the unsymmetric flow distribution originating
from the inlet section of the chamber in combination with the high amount of space needed
for the dished ends of the vessel.
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Due to the complex pipe geometry and the existence of several flaps and multi-axis
bow elements upstream of the settling chamber, nearly one-third of the available length is
covered by inlet guide vanes, turning the flow in a lateral direction. (compare Figure 3).
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Due to the massive increase in cross-section, flow separation on the guide vanes occurs and
can lead to local blockage and uncontrolled flow structures, which are then transported
through the settling chamber.

For flow homogenization, a mounting structure for up to three adjustable grating-type
flow straighteners has been incorporated in the cylindrical part of the chamber. The gratings
are equipped with wire screens on their upstream sides.

3.2. Aerodynamic Design

For the aerodynamic design of the settling chamber, the complete flow path between
the supply line and the test rig has been optimized within the given restrictions.

Thus, geometry optimization has not only been conducted for the settling chamber
itself but also for the piping system upstream of the settling chamber.

In order to aerodynamically stabilize the inlet section of the chamber, several iterative
design steps have been performed. The final design can be seen in Figure 3. Both bow
segments upstream of the settling chamber are equipped with optimized internal guide
vanes to reduce swirl and flow separations. The trailing edge of the guide vanes has been
designed for a slightly overturning flow in order to achieve a mainly perpendicular flow
pattern with regard to the inlet cross-section of the chamber.

Besides analytical overall methods ([7,11]), the main focus of the design optimization
was on the slotted bowl, which has been designed instead of a flat bulging plate (see
Figure 4). This unique design has been optimized with regard to the overall geometry of
the bowl itself as well as with regard to the geometry and the number of slots. The given
design supports the axial as well as radial distribution of the flow within the inlet section of
the settling chamber. Furthermore, the divergent section of the settling chamber is designed
as a coaxial diffuser in order to reduce the risk of flow separation due to the aggressive
cross-section extension in this part of the settling chamber. The support structure for the
inner diffuser (“splitter cone”) acts as additional guide vanes to further suppress the swirl.
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3.3. Flow Homogeneity Limits at Test Rig Inlet

The criteria for the evaluation of the settling chamber performance are mainly charac-
terized by the maximum distortion of total pressure and total temperature field, velocities,
and flow angles at the outlet section of the settling chamber. The limits related to mean
values (except boundary layers) have been set to an allowed total pressure deviation of
0.1% of the mean value, or a maximum of 400 Pa. The allowed total temperature deviation
has been set to 0.1% with a maximum of ±1 K. These limits are applied to all operating
points as given in Table 1.
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Table 1. Operating conditions for the settling chamber as investigated during tests.

Operating Point No Massflow Rate [kg/s] Pressure [Pa] Temperature [K]

1 0.5 103,000 350.15

2 1.6 100,000 360.15

3 3.1 178,000 360.15

4 3.7 100,000 367.15

5 6.2 320,000 426.15

6 6.3 100,000 473.15

7 6.6 100,000 397.15

8 10.3 229,000 361.15

9 12.7 200,000 473.15

10 12.9 456,000 360.15

11 18.3 317,000 367.15

12 19.4 432,000 426.15

13 20.6 459,000 361.15

14 21.5 317,000 390.15

15 21.7 200,000 370.15

16 22.0 104,500 345.15

17 22.9 400,000 473.15

18 27.4 800,000 473.15

19 27.4 600,000 473.15

3.4. Operating Conditions for the Acceptance Tests

A comprehensive analysis of the complete operating map of the air supply system has
been performed. Table 1 gives a survey of all operating points (OP) investigated. The points
have been defined as charcteristig operating conditions for the assumed test rigts as well as
reperesenting minimum and maximum operating conditions of the air supply system.

3.5. Numerical Model and Experimental Setup
Numerical Domain

During the design process as well as for the post-test analysis, a numerical model has
been set up. The optimization was conducted using STAR CCM+ 11.02 at Leibniz University
of Hannover as well as using ANSYS CFX 2022 R2 and OpenFoam at AERZEN. In the fol-
lowing, only results from the post-test analysis conducted with ANSYS CFX will be shown.
A mesh study was performed for the discretization of the geometry and the flow volume,
resulting in an unstructured mesh of 28,000,000 nodes. For high second-order accuracy, the
“high resolution” discretization was used for the simulations. For turbulence modeling, the
Menter SST model was used. As y+-values have been set to y+ > 100, boundary layers have
been resolved by wall functions and have been assumed to be fully turbulent (no transition
model). Figure 5 shows the complete domain of the numerical model.
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The overall boundary conditions were set to a given mass flow rate and stagnation
temperature at the inlet while using a static pressure boundary condition at the outlet.

3.6. Setup and Operating Range for Experimental Data

For the recording of experimental data, a new measurement device has been developed
to be used during the acceptance tests [5]. The device consists of 12 rake probes for
permanent measurement of total pressure and total temperature, with a total of more
than 120 measurement positions. In addition, radially moving multi-hole pressure and
temperature probes can be inserted into the flow. This enables the fast detection of the
local flow field at the exit section of the settling chamber. While rake probes can be used to
measure continuously at the complete cross-section of the core flow, traversing probes can
be used to conduct high-resolution measurements of the core flow as well as for measuring
the boundary layer near the walls. The device was developed and manufactured at Leibniz
University [5]. Figure 6 shows the schematic sketch of the measurement device as well as
the device implemented in the piping system. A total of 19 operation points have been
investigated, representing different load characteristics of the future test rigs.
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4. Results and Discussion

As described in Section 3, a detailed, iterative design process based on standard
RANS simulations has been used to improve the internal aerodynamic design of the
settling chamber. Therefore, internal mechanical guide vanes, throttle structures, and
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meshes have been installed and optimized. Due to limitations in available space, multiple
distortion and vortex-generating structures can be found upstream of the settling chamber
(twin-90-degree pipe bow, butterfly valve, etc.). The design efforts were mainly aimed at
reducing inhomogeneous turbulence and swirl. Figure 7 shows the effect of optimized
internal structures on the swirl in comparison to an empty settling chamber with no internal
structures. It can be clearly seen that a massive reduction in the normalized circumferential
velocity can be achieved by the chosen design features. Despite an overall reduction in
swirl for all operating points according to Table 1, it can be seen from Figure 7 that by using
optimized internal structures, as shown in Figure 4, the aerodynamic flow structures are
much more independent from the operating conditions in general.
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For the post-test analysis, OP5 and OP19, as given in Table 1, have been investigated
with regard to a comparison of the distribution of total pressure and total temperature
within the core flow section. These operating points have been chosen for presentation
because OP5 represents the operating conditions of most of the existing axial turbine test
cases, while OP19 represents the upper limit of the new test facility itself, thereby defining
the maximum operating parameters for future test applications. As the spatial resolution
from the rake probe measurements is relatively low compared to the high resolution of the
numerical simulation, all data from simulations have been reduced to the experimental
grid in order to give a proper visual comparison of the data.

Figure 8 shows the relative total pressure distribution for OP5, representing a medium-
load operating point for the facility and the settling chamber as well. It can be seen that
the overall pressure distribution is quite good. The deviations in total pressure are clearly
within the limits as given in Section 3.3, for the simulation as well as for the measured
data. As a matter of fact, the numerically predicted total inhomogeneity compared to the
experimental data is smaller by a factor of 3, while the overall relative distribution shows a
good match.



Int. J. Turbomach. Propuls. Power 2024, 9, 31 9 of 12

Int. J. Turbomach. Propuls. Power 2024, 9, x FOR PEER REVIEW 9 of 12 
 

 

For the post-test analysis, OP5 and OP19, as given in Table 1, have been investigated 
with regard to a comparison of the distribution of total pressure and total temperature 
within the core flow section. These operating points have been chosen for presentation 
because OP5 represents the operating conditions of most of the existing axial turbine test 
cases, while OP19 represents the upper limit of the new test facility itself, thereby defining 
the maximum operating parameters for future test applications. As the spatial resolution 
from the rake probe measurements is relatively low compared to the high resolution of 
the numerical simulation, all data from simulations have been reduced to the 
experimental grid in order to give a proper visual comparison of the data. 

Figure 8 shows the relative total pressure distribution for OP5, representing a 
medium-load operating point for the facility and the settling chamber as well. It can be 
seen that the overall pressure distribution is quite good. The deviations in total pressure 
are clearly within the limits as given in Section 3.3, for the simulation as well as for the 
measured data. As a matter of fact, the numerically predicted total inhomogeneity 
compared to the experimental data is smaller by a factor of 3, while the overall relative 
distribution shows a good match. 

  
Figure 8. Deviation from the mean value of the relative total pressure distribution at the settling 
chamber outlet cross-section for OP5; measurement uncertainty in experiment ±50 Pa. 

Pressure levels seem to be a bit higher in the upper part of the outlet pipe cross-
section than in the lower part. The differences in the scale of total inhomogeneity are due 
to the lack of ability of RANS-based numerical models to give a good approximation of 
mixing processes. These mixing processes of turbulence and wake flow structures are 
often overestimated by the RANS models used. In addition, the measured data near the 
beginning of the boundary layer are very sensitive to errors in probe positioning. This 
might be an additional reason for the observed differences in near-wall regions. These 
arguments also account for the total temperature distribution shown in Figure 9. It can be 
seen that the thermal boundary layer seems to be a bit larger than predicted. The size of 
the thermal boundary layer is, of course, very sensitive to the wall heat transfer. Although 
all pipes are thermally insulated during the measurement, the local heat transfer cannot 
be neglected. The actual wall temperature has been measured during the test, so for all 
temperature data shown in this paper, the numerical model has been adjusted to the real 
wall temperature of the piping components. 

Figure 8. Deviation from the mean value of the relative total pressure distribution at the settling
chamber outlet cross-section for OP5; measurement uncertainty in experiment ±50 Pa.

Pressure levels seem to be a bit higher in the upper part of the outlet pipe cross-section
than in the lower part. The differences in the scale of total inhomogeneity are due to
the lack of ability of RANS-based numerical models to give a good approximation of
mixing processes. These mixing processes of turbulence and wake flow structures are
often overestimated by the RANS models used. In addition, the measured data near the
beginning of the boundary layer are very sensitive to errors in probe positioning. This
might be an additional reason for the observed differences in near-wall regions. These
arguments also account for the total temperature distribution shown in Figure 9. It can be
seen that the thermal boundary layer seems to be a bit larger than predicted. The size of
the thermal boundary layer is, of course, very sensitive to the wall heat transfer. Although
all pipes are thermally insulated during the measurement, the local heat transfer cannot
be neglected. The actual wall temperature has been measured during the test, so for all
temperature data shown in this paper, the numerical model has been adjusted to the real
wall temperature of the piping components.
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For the second operating point, OP19, the absolute inhomogeneity of the pressure
flow field increases due to higher flow velocities, as can be seen in Figure 10. The relative
difference between the simulation and the measured data is at the same scale (factor 3–4)
as for OP5. As already described for OP5, the pressure level in the upper part of the
investigated pipe section is a bit higher than in the lower section but still at a very low level.
This flow behavior can be seen in calculated data as well as in measured data. The total
pressure boundary layer is larger than for OP5 due to different velocity profiles. Although
the sensor positions near the pipe wall already seem to measure parts of the boundary
layer profile, all pressure data are within the limits set for the overall settling chamber
design. Figure 11 shows the total temperature distribution for OP19. It can be seen that
temperature boundary layers are larger than for OP5, especially for the measurements. On
the one hand, the overall flow temperature for OP19 is higher than for OP5, which means a
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higher temperature gradient between the core flow and the wall. On the other hand, higher
turbulence might cause higher mixing and, therefore, a stronger transport of cold air from
the near-wall region to the center of the piping. The overall core flow at OP19 is also well
within the given limits of ±1 K. In any case, further studies will give a more detailed view
of the development of the temperature boundary layer.
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To provide a more detailed view of the temperature distribution, Figure 12 shows a
comparison between the calculated temperature profile and the measured profile from a
temperature probe traversing between the circumferential positions of 45◦ and 225◦ for
OP19. Please note that there is no direct comparison between Figures 11 and 12, as the
resolution of the data, as shown in Figure 11, is drastically smaller than in Figure 12.

It can be seen that there is a very good match between the simulation and the measured
data regarding the overall temperature level. In both data sets of Figure 12, simulated and
measured data, there is a very slight drift to higher temperatures within the profile for
higher radial positions. As the fluid is directed in the horizontal direction when passing the
settling chamber, the major flow direction is horizontal, which means that slightly warmer
parts of the fluid convect to the upper part of the flow field. For the measured data, the
measurement uncertainty is given in Figure 12 as a benchmark for the quality of the flow.
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5. Conclusions

A design approach for flow settling chambers for aerodynamic test rigs has been
shown and experimentally validated. The authors can show that the use of state-of-the-art
CFD tools is valid for the purpose of new settling chamber design iterations. By applying
multiple flow straighteners upstream of the settling chamber itself, the authors can prove
that disadvantages arising from the very limited axial length of these customized settling
chambers can be equaled by individual concepts for the internal design, such as optimized
slotted bowls and splitter cones. When analyzing numerical pre-test results, it should
always be kept in mind that distortions in the flow field at the outlet section of the settling
chamber will be predicted to be smaller than they are due to overestimated mixing by the
numerical models.

Regarding the operating parameters, it can be stated that the chosen design is robust
in terms of different pressure levels and mass flow rates and is well suited to provide a
high-quality inflow to turbomachinery test rigs.
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