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Abstract: Data growth in today’s world is exponential, many applications generate huge amount of
data streams at very high speed such as smart grids, sensor networks, video surveillance, financial
systems, medical science data, web click streams, network data, etc. In the case of traditional
data mining, the data set is generally static in nature and available many times for processing and
analysis. However, data stream mining has to satisfy constraints related to real-time response,
bounded and limited memory, single-pass, and concept-drift detection. The main problem is
identifying the hidden pattern and knowledge for understanding the context for identifying trends
from continuous data streams. In this paper, various data stream methods and algorithms are
reviewed and evaluated on standard synthetic data streams and real-life data streams. Density-micro
clustering and density-grid-based clustering algorithms are discussed and comparative analysis in
terms of various internal and external clustering evaluation methods is performed. It was observed
that a single algorithm cannot satisfy all the performance measures. The performance of these
data stream clustering algorithms is domain-specific and requires many parameters for density and
noise thresholds.
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1. Introduction

Nowadays automation is in almost every domain and transactions of everyday life are recorded
at high speed. The huge amount of data generated by these processes can be termed a data stream.
The problem of clustering data streams has been extensively studied and researched in recent years [1–5].
In many organizations, the number of transactions generated due to business process is very large;
however, these transactions are recorded and kept, thus it is essential to analyze such data streams to
extract trends for improvement in business development. As generation of records across business
processes is a continuous process that occurs over time, the databases grow without limit. Such
databases may show trend change over time, this process is data evolution.

In data mining, data objects are represented as points. The classification of data into clusters is
unsupervised and can be denoted as X = C1 ∪ . . . Ci ∪ Ck; Ci ∩ Cj = Φ(i 6= j) where, X denotes
original dataset, Ci, Cj are clusters formed in X, and k denotes the number of clusters formed [6].
In case of unsupervised knowledge, only former information of the domain and data are known,
however structured characteristics are not known. It is very common that these unknown structural
characteristics include the spatial distribution of the data. Characteristics such as volume, density,
shape, or orientation are the basis of cluster formation. Clustering is a method to group unlabeled
data sets based on “similarity” of the features extracted out of data items, and allocations of dissimilar
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data items in different groups. The clustering problem is to partition a given data set in one or more
groups of similar objects. The similarity feature or measure of the objects with respect to each other is
generally distance or density function. The traditional clustering techniques, methods, and algorithms
are widely studied in the research community [7–12]. Recently, clustering with data streams and
problems related to this are also discussed.

Most of the algorithms on clustering data streams generate clusters over the whole data set.
These algorithms consider clustering as a single-pass clustering method. For some applications, such
clustering methods are useful, however, in the case of data streams, it is necessary to define the
clustering problem carefully, as the data stream is an infinite process in which data is evolved with
time. The clusters are also varying with respect to the time when they are calculated and the time over
which they are measured. For example, a particular application may have the requirement of the user
to examine clustering occurring with respect to a time-frame, these clusters are attended as special
case. Therefore, it is necessary for the data stream algorithm to provide an interface for user-defined
time periods in order to generate relevant clusters. Various surveys have been conducted on mining
data streams. Most of them discuss the techniques and theory related to data streams [2,13–16].
The most frequently used methods and techniques are discussed in some of the review literature [17,18].
Clustering algorithms are compared based on different characteristics [19]. Some of the review papers
discuss density-based clustering techniques on data streams [20]. A survey in a past paper [21]
discussed a review on density-based clustering techniques and methods for evolving data-streams.
The work in a different paper [22] is one of the earlier contributions in survey of clustering algorithms.
The authors have surveyed clustering algorithms used in different domains and their applications
on benchmark datasets and computational problems. They also discussed many closely correlated
topics such as cluster validation and proximity measures. The authors of a past paper [22] talked about
applications, challenges, techniques, and technologies on big data. They have tried to present a list of
technologies currently used to deal with big data. Their focus is on clustering techniques based on
MapReduce and parallel classification using MapReduce. The authors of another past paper [22] used
taxonomy and empirical analysis to survey clustering algorithms on big data. They presented a survey
of different categories of existing clustering algorithms (partitioning-based, model-based, grid-based,
hierarchical-based, and density-based). The authors give a comparison between these five categories
of data clustering. The goal is to find the best performing algorithm for data stream clustering.

Motivation: In real-life applications some of the data set may contain large amounts of noise
and outliers. Therefore clusters are not necessarily spherical in shape. The density-based clustering
methods can handle noise and outliers effectively. It is not necessary to specify the number of clusters
as initial assumptions. In many applications, the main issue is to do cluster analysis of evolving data
streams. Some of the examples, where clustering of high dimensional data is very important, are
described below.

Gene Expression Analysis: In the medical domain, a huge amount of data on molecular biology is
being generated. This type of data (also called as gene expression data) consists of features such as gene
expression. The gene expression level shows conclusions regarding the amount of the corresponding
gene product. Such data comprises of concurrent measurement of the gene expression level for
thousands of genes under hundreds of conditions. The data is represented in the form of a Data
Matrix, in which rows are genes and columns are different experimental conditions, different tissues,
consecutive time clots, or different patients. There exists a requirement for biologists to identify
patterns within such bid datasets. Therefore, based on the scope of the research data mining tasks can
be applied.

Text Documents: Generating clusters or groups based on themes from text documents, such as
web pages, is necessary in many applications. In these cases, text documents are transformed into
high-dimensional feature vectors based on frequency features. The data matrix generated contains
rows and columns, where columns represent the count of one particular term. The documents are
grouped based on the frequency of words and similar words in a subset of terms, these subsets are
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related to the theme of the documents. A particular document may happen to have overlap among
groups for different themes; therefore it may be possible to assign membership of the document to
various groups simultaneously, based on similarities of the frequency of words in the different subsets
of terms.

Customer Recommendation Systems: In customer recommendation systems, reviews from the
customers regarding a company’s product are captured. The company may have a wide range of
products. Customer’s reviews having the same or similar remarks of preferences are grouped for
market analysis. Based on the analysis special offers and strategic planning related to marketing
is applied. The problem is to cluster customers with overlapping preferences based on the type
of product.

The remainder of this paper is organized as follows. In the next section i.e., Section 2, traditional
clustering techniques are discussed. In Section 3 one algorithm from each clustering technique is
discussed that is related to data stream clustering. Section 4 overviews the criteria to evaluate clustering
methods. Section 5 examines how algorithms overcome challenging issues and compare them based
on evaluation metrics. In Section 6, experimentation and results are presented for some of these data
stream clustering algorithms. Finally, Section 7 concludes our study and introduces some current
issues in the clustering of data streams.

2. Clustering Techniques

A clustering technique is a process of grouping objects into different sets called clusters. Clustering
is well-studied problem, and many clustering techniques have been proposed in past literature [23–25].
Data stream clustering typically maintains the synopsis of the data stream. Most of these algorithms
are extended versions of traditional clustering algorithms satisfying certain constraints. The traditional
clustering algorithms that are base-line algorithms for data stream algorithms are classified as follows.

2.1. Partitional Clustering

Partitioned-based methods mostly divide the data item (objects) sets into a number of groups
called partitions, each partition represents a cluster. These clusters possess certain properties, e.g.,
each cluster must contain at least one data item and each data item should be categorized to exactly
one cluster. There are many clustering methods using partition-based clustering algorithms such as
K-means [26], K-medoids [6,27], K-modes [6,27], PAM [27], CLARA [27], CLARANS [27], FCM [27],
and CluStream [1]. All of these algorithms generate clusters. In k-means clustering, a cluster is a group
of points near to the center of the cluster. The k-medoids algorithm is similar to k-means but in the
case of k-means the average distance is calculated; whereas, in the case of the k-medoids algorithms
mediods of the cluster points are calculated. Extensions of the k-means algorithm on data streams
have been discussed previously such as where entire data stream is clustered in the STREAM [28,29]
algorithm like the LSEARCH algorithms/method which uses a k-median approach and is used for
data streams. Aggarwal et al. proposed an algorithm called CluStream that uses a k-means approach
for clustering evolving data streams. In CluStream the online–offline framework for clustering data
stream is used; this has been adopted for most of the data stream clustering algorithms.

2.2. Hierarchical Clustering

A hierarchical clustering method forms a hierarchy or tree of the clusters. There are two types of
hierarchical methods: (i) agglomerative and (ii) divisive. In the agglomerative approach, a bottom-up
strategy is used, which initially considers each object as a group, then successively, as the clustering
process progresses upwards, objects are grouped together based on closeness. In a similar way, the
top-down approach, which is a divisive approach that initially collects all objects into one group, and
then recursively, as the algorithm progresses, it splits the group based on a similarity measure among
the objects. BIRCH [30], CURE [31], ROCK [32], and Chameleon [33] are best suitable algorithms.
ClusTree [34] generates and maintain hierarchy of micro-clusters at different levels.
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2.3. Density-Based

Partitional clustering methods uses distance measure between the objects to cluster the objects.
Generally, clusters generated out of this approach are spherical in shape. It may not be possible to
discover arbitrary shaped cluster. The methods using density as basis for identifying clusters are
categorizes as density-based methods. In these methods, cluster generated in all directions as long as
density in the neighborhood exceeds some threshold. This method naturally protects data set from
outlier. The overall density of a point is processed and analyzed in order to determine features or
functions of dataset which influences a particular data point. The algorithms like DBSCAN, OPTICS,
DBCLASD, DENCLUE and DenStream uses an approach such that noise (outliers) are automatically
filtered out and cluster of arbitrary shape are constructed.

2.4. Grid-Based

The object space is divided into the finite number of cells called as grid structure. All cluster
operations are performed on the grid structure (i.e., quantized space). As it computes statistical values
for the grids, speed of the method increase substantially. It is because of accumulated grid-data,
grid-based clustering is not dependent on the number of data objects. Regional statistical data,
calculated over data objects mapped uniformly on the grid, is further used for cluster formation rather
than data stream directly. Grid-based methods’ performance is proportional to the size of grid, which
need very less space as compare to actual data stream. Algorithms such as Wave-Cluster and STING
works on this methodology. Some of the grid-based methods are using density measure for clustering
data streams. Such methods are called as density grid-based clustering methods. The data points are
mapped into grids, and these grids are clustered using density of data point as reference. In such
methods data points are mapped into the grids, and the grids are clustered based on density of data
points. Algorithms like D-Stream [35] and MR-Stream [35] are belong to density grid-based algorithms.

2.5. Model-Based

Clustering methods use some predefined mathematical model to fit the data and then optimizes
them. The basic assumption is that data is hybrid in terms of probability distributions. Model-based
methods determine the number of clusters based on standard statistics. In order to have robust
clustering method noise and outliers are considered while calculation of standard statistic. The issue
in Clustering problem is to automatically determine the number of clusters based on standard
statistic, taking outliers and noise into consideration. Therefore, these types of methods are very
much robust methods with respect to noise and outliers. Based on approach used to generate
clusters, these model-based methods are categorized into statistical and neural network approach
methods. Algorithm like MCLUST [36] is model-based clustering algorithm. There are other
model-based clustering algorithms like EM [37] (based on mixture density approach), COBWEB [38]
(conceptual clustering), and neural network based methods such as self-organizing feature maps.
Those model-based algorithms which are based on statistical approaches uses probability measures
in determining clusters. In case of neural network approach, input and output are connected with
units carrying weights. The Neural Network properties are useful in clustering problem; therefore
neural network approach is much popular in clustering. The properties such as (1) Neural Network
have in-built parallel and distributed computing architecture; (2) The interconnected weights are
recursively adjusted so as to best fit the data. The weights are then normalized because of this recursive
operation. The selection of feature is done on the basis of patterns; (3) Numerical data is processed
or converted/transformed into quantitative features. Each cluster is represented as exemplar; which
then acts as prototype of the cluster and does not belong to specific object. New incoming objects are
assigned to cluster whose exemplar is similar, based on some distance measure.

SOM (Self Organizing Maps) [39] method reduces complex and nonlinear statistical relationship
of high-dimensional data items to a single geometric relationship on a low-dimensional platform. Since
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this type of method compresses information with preserving related and most important topological
and metric relationships of the primary data items on the platform, it is creating abstraction of its kind.

Figure 1 provides the five classes of categorization as described above.
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3. Literature Survey

This section presents comprehensive survey on Data Stream Clustering Methods and Algorithms.

3.1. Partitional Clustering Method

k-means, k-medoids and k-modes Algorithm
In above Algorithm 1: k-means is explained; in which step (3) calculate mean of given cluster,

however, mean is highly sensitive to noise (i.e., outliers or values which are not significant for domain).
Improved method is k-medoids, for which medoid is calculated for data set instead of mean of the
data set. Following are two methods for calculating medoids for data set:

Method 1: Method 2:
Let S = { x1 , x2, . . . , xn} ⊆ <M

d- Euclidean Distance
Calculate ai = Max {d(x, xi) : x ∈ S} i = 1, 2, . . . , n
Also, compute ai0 = Min(ai) f or i = 1, 2, . . . , n
Then medoid of S is xi0

.

Let S = { x1 , x2, . . . , xn} ⊆ <M

and x = 1
n ∑n

i=1 xi
Let xi ∈ S be such that
If d(xi, x) ≤ d(x, x ) ∀ x ∈ S,
Then call xi to be the Medoid of S.

Spherical k-means clustering Algorithm: For clustering text documents spherical k-means
clustering algorithm is generally used. This algorithm uses cosine similarity measure in place of
Euclidian distance to calculate “similarity” of objects in a given “vector space model” (also known
as “bag of words in text mining). This Vector space model is the collection of text documents. This
multivariate numerical data clustering is done using traditional clustering method. Documents di
are represented by feature vectors xi, clustering this data into k groups is to minimize the function

∑i d
(

xi, pc(i)

)
, where pc(i) is function of centroid representing assignment of c of objects i to cluster

ids c(i) ∈ {1, . . . , k}, for a suitable similarity measure d. Therefore spherical k-means algorithms is to
minimize cosine similarity function; min

{
∑i 1− cos

(
xi, pc(i)

)}
.
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Algorithm 1. k-means

Data: No o f Clusters = k
S = {x1, x2, . . . , xn} ⊂ <M

d = Euclidean distance
1. A11 , A12 , . . . , A1k Partitions o f S into k subsets
2. A21 = A22 = . . . = A2k = Φ
3. yi = mean o f A1i , where i = 1, 2, . . . , k
4. For j = 1, 2, . . . , n

put xj in A2i i f d
(

xj, yi

)
< d

(
xj, yi1

)
, i1 6= i and i = 1, 2, . . . , k,

// here minimum of all distances from each mean is calculated;
5. I f A1i = A2i ∀ i = 1, 2, . . . , k then STOP.

Otherwise
Rename A2i as A1i ∀ i = 1, 2, . . . , k and goto STEP 2.

3.2. Hierarchical Clustering Method

BIRCH Method:
BIRCH Method also is Balanced Iterative Reducing and Clustering using Hierarchies Clustering

technique. This method uses hierarchical clustering methodology. In this method Tree of clusters; in
which clusters represents unique features, are formed known as Clustering Feature (CF) Tree. There
may be group of such trees depending on dimension of the problem under consideration. This tree is
basic notion for summarization of cluster; which represents cluster hierarchy.

BIRCH method maintain tuple containing summary of information as cluster feature such as
CF = (n, LS, SS), where n is number of data points within a cluster, LS represents sum of all points
within a cluster (i.e., ∑n

i=1 xi), and SS is square sum of these n data points (i.e., ∑n
i=1 xi

2). The statistics
for individual cluster, such as centroid x0, radius R, and diameter D is used recursively with multiphase
clustering technique. These phases are: Phase 1: BRICH generates multilevel CF-tree by preventing
data’s inherent structure, consists of compress data during initial scan

Phase 2: Clustering algorithm is then applied staring from leaf modes of the CF-tree, this will
remove sparse clusters as noise or outliers and dense nodes are grouped into clusters.

3.3. Density-Based Clustering Method

Conducting extensive review it is observed that based on strategy used by these density-based
data-stream clustering algorithms, lead to group them into two types such as density micro-based
clustering algorithms and density grid-based clustering algorithms.

Clusters are generated based on density of the region separated by sparse region. DBSCAN [40]
(Density-Based Spatial Clustering of Applications with Noise) works on large spatial data; identifying
connected regions with high density. In Table 1 shows categorization of density-based algorithms.

Table 1. Density-Based data stream clustering algorithms’ categorization.

Density-Based Data Stream Clustering Algorithms

Density Micro-Clustering Algorithms Density Grid-Based Clustering Algorithms

DenStream (2006) HDenStream (2009) DUC-Stream (2005) PKS-Stream (2011)
StreamOptics (2007) SOStream (2012) D-Stream I (2007) DCUStream (2012)
C-DenStream (2009) HDDStream (2012) DD-Stream (2008) DENGRIS-Stream (2012)
rDenStream (2009) PreDeConStream (2012) D-Stream II (2009) ExCC (2013)
SDStream (2009) FlockStream (2013) MR-Stream (2009)

The number of points such as neighborhood points, closed to a particular point decides the density
of the point. Such dense neighborhood defined with respect to: the radius (ε) of the neighborhood
(ε-neighborhood), and the number of the objects in the neighborhood (MinPts). The basic definitions
in DBSCAN are introduced in the following, where D is a current set of data points:
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Basic Definition Description

ε-neighborhood
of a point

the neighborhood within a radius of ε. Neighborhood of a point p is denoted by Nε(p):
Nε(p) = {q ∈ D | dist(p, q) ≤ ε},
where dist(p, q) denotes the Euclidean distance between points p and q

MinPts the minimum number of points around a data point in the ε-neighborhood

core point a point is a core point if the cardinality of whose ε-neighborhood is at least MinPts

border point
a point is a border point if the cardinality of its ε-neighborhood is less than MinPts and
at least one of its ε-neighbors is a core point

noise point
a point is a noise point if the cardinality of its ε-neighborhood is less than MinPts and
none of its neighbors is a core point

directly density
reachable

a point p is directly density reachable from point q, if p is in the ε-neighborhood of q
and q is a core point

density reachable
a point p is density reachable from point q, if p is in the ε-neighbourhood of q and q is
not a core point but they are reachable through chains of directly density reachable
points

density-connected
if two points p and q are density reachable from a core point o, p and q are density
connected

cluster Maximal set of density-connected points.

DBSCAN Algorithm:
Let S = { x1 , x2, . . . , xn} ⊆ <M be set of multi-dimensional Data Set.

1. Input r, ε such that r > 0 and ε > 0 ;
2. Generate clusters Ai = { x ∈ S : d(xi, x) ≤ ε} i = 1, 2, . . . , n;
3. If |Ai| < r, then Ai shall not be consider for further calculations;
4. Calculate Ai ∪ Aj i f Ai ∩ Aj 6= Φ, where i 6= j;
5. Repeat step (4) till no such union exists.

3.4. Grid-Based Clustering Method

D-Stream Algorithm:
Basic Definitions: Let Input data has d dimensions, and each input data record is defined within

space S = S1 × S2 × . . . × Sd, where Si is the definition of space for ith dimension. In D-stream
the d-dimensional space is partitioned into density grids. Suppose for each dimension, its space
Si, i = 1, 2, . . . , d is divided into pi partitions as Si = Si,1 ∪ Si,2 ∪ . . . ∪ Si,pi , then the data
space S is partitioned into N = ∏d

i=1 pi density grids. For density grid g that is composed of
S1,j1 × S2,j2 . . . × Sd,jd , j = 1, . . . , pi, it is denoted as g = (j1, j2, . . . , jd). A data record x =

(x1, x2, . . . , xd) can be mapped to density grid g(x) as g(x) = (j1, j2, . . . , jd) where xi ∈ Si, ji . For
each data record x, calculate density coefficient, which decreases as x ages. Let T(x) = tc be time
stamp of x as it arrives at time tc, and its density coefficient at time t is: [40] D(x, t) = λt−T(x) = λt− tc ,
where λ ∈ (0, 1) is called the decay factor. Let E(g, t) set of data records that are mapped to g at or
before time t.

The Density of Gridg is: [40] D(g, t) = ∑x ∈E(g,t) D(x, t).
Gird Density is updated as: [40] D(g, tn) = λtn−tl D(g, tl) + 1, where tn is time at grid g receives

new data records and tl is time when grid g received last data records. In order to update all grids
for every time step, Θ(N) computation time is required, however, calculating grid density by above
method need to update one gird, therefore, Θ(1) computation time is required. In order to save
memory space Characteristic Vector of grid is defined as a tuple (tg, tm, D, label, status), therefore
no need to save time stamps and densities of all data records, where tg is the last time when grid g is
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updated, tm is the last time when g is removed from the grid_list, D is the grid density at last update,
label is the class label of the grid, and status = {SPORADIC, NORMAL}.

In order to derive cluster, the grid density is to be calculated [40]. Let X(t) be the set of all
data records that arrive from time 0 to t, thus ∑x ∈X(t) D(x, t) ≤ 1

1− λ , f or any t = 1, 2, . . .; and
lim
t→∞

∑x ∈X(t) D(x, t) = 1
1−λ .

Average density of each grid is 1
N(1− λ)

and a grid g is called dense grid if D(g, t) ≥ Cm
N(1−λ)

=

Dm where Cm > 1 is a parameter controlling the threshold. A grid g called sparse grid if
D(g, t) ≤ Cl

N(1−λ)
= Dl , where 0 < Cl < 1. A grid g called transitional grid if Cl

N(1−λ)
≤

D(g, t) ≤ Cm
N(1−λ)

.

• Neighboring Grids [40]: consider two density grids g1 =
(

j11, j12, . . . , j1d
)

and g2 =
(

j21, j22, . . . , j2d
)
,

if there exist k, 1 ≤ k ≤ d, such that

(i) j1i = j2i , i = 1, 2, . . . , k− 1, k + 1, . . . , d; and
(ii)

∣∣j1i − j2i
∣∣ = 1;

then g1 and g2 are neighboring grids in the kth dimension denoted as g1 ∼ g2.
• Grid Group [40]: A set of density grids G = (g1, . . . , gm) is a grid group if for any two grids

gi, gj ∈ G, there exist a sequence of grids gk1 , . . . , gkl
such that gk1 = gi, gkl

= gj, and
gk1 ∼ gk2 , gk2 ∼ gk3 , . . . , and gkl−1

∼ gkl
.

• Inside and Outside Grids [40]: Consider a Grid Group G = (g1, . . . , gm) and a grid g ∈ G,
suppose g = (j1, . . . , jd), if g has neighboring grid in every dimension i = 1, . . . , d, then g is an
inside grid in G. Otherwise g is outside grid in G.

• Grid Cluster [40]: Let G = (g1, . . . , gm) be grid groups, if every inside grids of G are a dense grids
and every outside grids are either a dense grid or a transitional grid, then G is a grid cluster.

As time progress a dense grid likely to degenerate to a transitional grid of sparse grid if new data
is not received for long duration. It is also likely to be possible for a sparse grid to transform into
dense grid as it me receives some new data records. Therefore, after a period of time, the density of
each grid should be inspected and the clusters adjusted. It is therefore, necessary to decide duration
of time interval. The value of such time interval or gap should not be too small or too large. If it is
too large, dynamic changes of data streams will not be captured, also if it is too small computational
workload increases.

It is essential to calculate minimum time required for dense grid to degenerate to sparse grid as
well as minimum time required to sparse grid to become dense grid. Then time gap will have value
minimum of both of these times.

For any dense grid minimum time required to become sparse grid is [40] δ0 = logλ

(
Cl
Cm

)
, For

any sparse grid minimum time required to become dense grid is [40] δ1 = logλ

(
N− Cm
N− Cl

)
, therefore

gap time is gaptime = min{δ0, δ1}.
Sporadic Grids: It is observed that most of the grids in the space are empty or receive data

infrequently. A characteristic vector is maintained only for non-empty grids. But, in practice it is
observed that, because of noise or outliers may increase non-empty grids, which will be processed
during clustering. Such grids are called Sporadic Grids. Sparse grid with D ≤ Dl are sporadic grids.
There are two reasons for density to be less than Dl are: (1) it has received very few data; and (2)
density is reduced by effect of decay factor. It is necessary to remove grids that belong to case (1), but
if grids are removed for type (2), then quality of clustering may deteriorate as such grids may contain
many data records that are often upgraded to transitional or dense grid. Density Threshold Function
provides solution for differentiation of these grids.

Density Threshold Function [40]: Suppose the last update time of grid g is tg, then at time

t (t > tg), the density threshold function is: π
(
tg, t

)
= Cl

N ∑
t−tg
i=0 λi =

Cl(1− λt−tg+1)
N(1−λ)

,
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Properties of threshold functions are:

(i) If t1 ≤ t2 ≤ t3, then λt3−t2 π(t1, t2) + π(t2 + 1, t3) = π(t1, t3)

(ii) If t1 ≤ t2, then π(t1, t) ≥ π(t2, t) f or any t > t1, t2.

At time t, a sparse grid is a sporadic grid if:
Condition 1: D(g, t) < π

(
tg, t

)
; and

Condition 2: t ≥ (1 + β)tm if g has been deleted before (at time tm), where β > 0 is a constant.
In D-Stream, grid_list is maintained which contains grids under consideration for clustering.

Following are the rules to remove sporadic grids (sparse grids) from grid_list:
Rule 1: During each iteration all grids satisfying Condition 1 and Condition 2 are marked as

SPORADIC, but wait until next periodic inspection to be considered for deletion.
Rule 2: In the next periodic inspection, if grid g marked as SPORADIC has not received any data,

grid g will be removed from grid_list. Otherwise, check if g satisfies (Condition 1) and (Condition 2): if
yes, keep g marked as SPROADIC but do not remove it; otherwise reset the label to NORMAL.

Consider a grid g, whose density at time t is D(g, t). Suppose that it has been deleted several times
before t (the density is reset to zero each time) because its density is less than the density threshold
function at various times. Suppose these density values are not cleared and suppose all data are kept,
the density of grid g would be Da(g, t). This Da(g, t) is called the complete density function of the
grid g.

Suppose the last time a grid g is deleted as a sporadic grid is tm and the last time g receives a data
record is tg. If at current time t, D(g, t) < π

(
tg, t

)
, then Da(g, t) < π(0, t) < Dl .

Suppose the density of a grid g at time t is D(g, t), and g receives no data from t + 1 to t + gaptime,
then there exist t0 > 0 and t1 > 0 such that: [32].

(a) If D(g, t) < Dl , then Da(g, t + gaptime) < Dl f or t ≥ t0.
(b) If D(g, t) < Dm, then Da(g, t + gaptime) < Dm f or t ≥ t1.

3.5. Model-Based Clustering Methods

Fuzzy Clusters: Given a set of objects, X = {x1, . . . , xn}, a fuzzy set S is a subset of X that allow
each object in X to have membership degree between 0 and 1. i.e., FS : X → [0, 1] .

The fuzzy set idea is applied on clusters. That is, given set of objects, a cluster is fuzzy set of objects.
Such a cluster is called fuzzy cluster. Consequently, a clustering contains multiple fuzzy clusters.

Given a set of objects, o1, . . . , on, a fuzzy clustering of k fuzzy clusters, C1, . . . , Ck, can be
represented using a partition matrix, M =

[
wij
]
(1 ≤ i ≤ n, 1 ≤ j ≤ k), where wij is the membership

degree of oi in fuzzy cluster Cj. The partition matrix should satisfy the following three requirements:

i For each object, oi, and cluster, Cj, 0 ≤ wij ≤ 1. This requirement enforces that a fuzzy cluster is
fuzzy set.

ii For each object, oi, ∑k
j=1 wij = 1. This requirement ensures that every object participates in

clustering equivalently.
iii For each cluster, Cj, 0 < ∑n

i=1 wij < n. This requirement ensures that for every cluster, there is at
least one object for which the membership value is nonzero.

Given a set of objects, o1, . . . , on, and a fuzzy clustering C of k clusters, C1, . . . , Ck. Let
M =

[
wij
]
(1 ≤ i ≤ n, 1 ≤ j ≤ k) be the partition matrix. Let c1, . . . , ck be the centers of clusters

C1, . . . , Ck, respectively. Center can be either mean or medoid. Similarity or distance between the
center of the cluster and an object is assignment measure which decides how well object belongs to
cluster. For any object, oj, and the cluster Cj, if wij > 0, then dist

(
oi, cj

)
measures compactness of object

with corresponding cluster. As an object belongs to more than one cluster, the sum of distances to the
corresponding cluster centers weighted by degrees of membership captures how well the object fits
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the clustering. For an object oi, the sum of squared error (SSE) [27] is SSE(oi) controls the influence
of the degrees of membership. The larger the value of p, the larger the influence of the degrees of
membership. Therefore, the SSE for a cluster, Cj, is SSE

(
Cj
)

and the SSE of the clustering is SSE(C).
Probabilistic Model based clusters: Given data set, D, and k, the number of clusters required,

that task of probabilistic model-based cluster analysis is to infer a set of k probabilistic clusters that
is most likely to generate D using this data generation process. Consider a set, C, of k probabilistic
clusters, C1, . . . , Ck, with probability density function f1, . . . , fk, respectively, and their probabilities,
ω1, . . . , ωk. For an object, o, the probability that o is generated by cluster Cj (1 ≤ j ≤ k) is given
by P

(
o
∣∣Cj
)
= ωj f j(o). Therefore, the probability that o is generated by the set C of clusters is

P( o|C) = ∑k
j = 1 ωj f j(0), Since the objects are assumed to have generated independently, for a data

set,D = {o1, . . . , on}, of n objects, also P(D|C) = ∏n
i=1 P(oi

∣∣∣C) = ∏n
i=1 ∑k

j=1 ωj f j(oi) . It is clear that
the task of probabilistic model-based cluster analysis on a data set, D, is to find a set C of k probabilistic
clusters such that P(D|C) is maximized.

Expectation-Maximization (EM) Algorithm:
The expectation step(E-step): Objects allocation is performed with respect to the current cluster

centers, based on closeness to center of the cluster. Given the current cluster centers, object allocation
to the cluster is done based on closeness to the center of the cluster. It is expected that object belongs to
that closest cluster.

The maximization step (M-step): For a given cluster arrangement, the center are adjusted such
that, the sum of the distances from the objects assigned to this cluster and the new cluster is minimized.
The similarity of the object to a cluster is maximized. An expectation-maximization (EM) algorithm is
a framework that approaches maximum likelihood or maximum a posteriori estimates of parameters
of statistical models.

4. Evaluation Clustering Methods

Cluster evaluation checks the feasibility of clustering analysis on a data set and the quality
of the results generated by clustering methods. The major tasks of clustering evaluation include
the following:

4.1. Assessing Cluster Tendency

In order to assess clustering, first non-random structure need to evaluate, as clustering analysis on
the data set is meaningful only when there is non-random structure in the data. The Hopkins Statistic
is a spatial statistic to test spatial randomness of data points as distributed in space. Given as data
set, D, which is a sample of random variables, o, it is about to determine pace of such, o, whether
uniformly distributed in the data space. The Hopkins Statistic is calculated as:

1. Sample n points, p1, . . . , pn, uniformly from D. The probability of inclusion of each point in D is
same. For each point, pi, the nearest neighbour of pi (1 ≤ i ≤) in D is calculated, and let xi, be
the distance between pi and its nearest neighbour in D, then xi = min

v∈D
{dist(pi, v)}

2. Sample n points, q1, . . . , qn, uniformly from D. For each qi (1 ≤ i ≤ n), calculate nearest
neighbour of qi in D − {qi}, and let yi be the distance between qi and its nearest neighbour
in D− {qi}, then yi = min

v∈D, v 6=qi

{dist(qi, v)}

3. Hopkins Statistic, H, is calculated as H = ∑n
i=1 yi

∑n
i=1 xi+ ∑n

i=1 yi

The Value of H tells about uniform distribution of data point in sample space. If H is near to 0
data points are highly skewed, otherwise uniformly distributed.
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4.2. Determining Number of Clusters in a Data Set

Methods which are based on partitional approach (like k-means) require number of clusters in a
data set as a parameter. However, number of cluster may be treated at important summary statistic of
a data set. Therefore, it is desirable to estimate this number even before a clustering method is used to
derive detailed clusters.

4.3. Measuring Clustering Quality

After applying clustering method on a data set, the resultant clusters need to be tested for fitment
with data set and matching the ground truth (if such truth is available). The results of two clustering
methods can be compared as it is applied on similar data sets.

Evaluation measures are internal and external measures, depending on whether or not they
employ a ground truth clustering for comparison. A different categorization additionally identifies
so called relative measures, comparing the single partitions within a clustering result. However,
this group is less recognized and solutions are often specialized to a specific domain. Following
Table 2 shows various evaluation measures for measuring quality of clustering and efficiency of
clustering algorithms.

Table 2. Internal and External measures for evaluation of clustering algorithm [41].

External Measures Internal Measures

Cluster Accuracy Compactness
Random Index Separation

Adjusted Random Index Davies-Bouldin Index
Normalized Mutual Information Dumm Validity Index

Purity (P) Sum of Square Error
Precision Silhouette

Recall
Entropy (E)

F Measure (F)

4.3.1. The Internal Measures for Evaluation of Clustering Quality

Cluster Accuracy (CA)

CA measures the percentage of correctly classified data points in the clustering solution compared
to pre-defined class labels. The CA is [41] CA = ∑K

i=1
max(Ci/Li)
|Ω| where Ci is the set of instances in the

ith cluster; Li is the class labels for all instances in the ith cluster, and max(Ci/Li) is the number of
instances with the majority label in the ith cluster (e.g., if label l appears in the ith cluster more often
than any other label, then max(Ci/Li) is the number of instances in Ci with the label l).

Adjusted Rand Index (ARI)

ARI takes into account the number of instances that exist in the same cluster and different clusters.
The expected value of such a validation measure is not zero when comparing partitions [41].

ARI =
n11 + n00

n00 + n01 + n10 + n11
=

n11 + n00(
n
2

)

where:

− n11: Number of pairs of instances that are in the same cluster in both.
− n00: Number of pairs of instances that are in different clusters.
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− n10: Number of pairs of instances that are in the same cluster in A, but in different clusters in B.
A is set of cluster based on external criterion and B is set of cluster based on clustering result.

− n01: Number of pairs of instances that are in different clusters in A, but in the same cluster in B.
A is set of cluster based on external criterion and B is set of cluster based on clustering result.

The value of ARI lies between 0 and 1, and the higher value indicates that all data instances are
clustered correctly and the cluster contains only pure instances.

Normalized Mutual Information (NMI)

This is one of the common external clustering validation metrics measure that estimate the quality
of the clustering with respect to a given class labelling of the data. More formally, NMI can effectively
measure the amount of statistical information shared by random variables representing the cluster
assignments and the pre-defined label assignments of the instances. Thus, NMI is calculated as
follows [41]:

NMI =
∑ dh,l log

(
|Ω|.dh,l

dhcl

)
√(

∑h dh log
(

dh
d

)) (
∑l cl log

( cl
d
))

where dh is the number of flows in class h, cl is the number of flows in cluster l and dh,l is the number
of flows in class h as well as in cluster l. The NMI value is 1 when the clustering solution perfectly
matches the pre-defined label assignments and close to 0 for a low matching.

The contingency Matrix [41]: Given a data set D win n objects, assume that the partition
P = {P1, . . . , Pk} of D, where ∪K

i=1Pi = D and Pi ∩ Pj = ∅ f or 1 ≤ i 6= j ≤ K, and K is the number
of clusters. If there is “true” class labels for the data, it has another partition on D: C = {C1, . . . , CK′},
where ∪K′

i=1Ci = D and Ci ∪ Cj = ∅ f or i = 1 ≤ i 6= j ≤ K′, where K′ is the number of classes. Let nij
denote the number of objects in cluster Pi from class Cj, then the information common to two partition
is maintained in the form of contingency matrix as shown in Table 3 below:

Table 3. The Contingency matrix.

Partition C

Partition P

C1 C2 · · · CK′ ∑

P1 n11 n12 · · · n1K′ n1.

P2 n21 n22 · · · n2K′ n2.

...
...

... · · · ...
...

PK nK1 nk2 · · · nKK′ nK.

∑ n.1 n.2 · · · n.K′ n

Then external measures are represented by following formulae (using above notations):

Entropy: The entropy measure is for quality which determine the belongeness of the selected points to
the allotted gropus. The notations used in the following formula is defined in Table 3.

E = −∑
i

Pi

(
∑

j

Pij

Pi
log

Pij

Pi

)
, where pij = nij/n ; pi = ni./n; and pj = n.j/n
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Purity: This is same as entropy except the ration is considered with elements of the whole class. Here
all paramenters are also defined in Table 3.

P = ∑
i

Pi

(
max

j

Pij

Pi

)
, where pij = nij/n ; pi = ni./n; and pj = n.j/n

F Measure: This evaluation method is evolved for hierarchical clustering. It can be used for partitional
clustering. It combines precision and recall concept from the information retrieval community.
The parameters used in following formula are described in Table 3.

F = ∑j Pjmaxi
[
2
((

pij/pi
)
(pij/pj)

)
/
((

pij/pi
)
+ (pij/pj)

)]
where pij = nij/n ; pi = ni./n; and pj = n.j/n

Silhouette Coefficient

The Silhouette coefficient is measure; this tells about how well the clusters are separated and how
compact the clusters are. Let D be data set with n objects partitioned into k clusters, C1, . . . , Ck. For
each object o ∈ D, calculate a(o) as average distance between o and all other objects within the cluster
to which o belongs.

a(o) =
∑o′ ∈ Ci , o 6= o′ dist

(
o, o

′
)

|Ci| − 1

and calculate, b(o) as minimum average distance from o to all clusters to which o is not a member.

b(o) = min
Cj :1≤j≤k,j 6=i


∑o′∈Cj

dist
(

o, o
′
)

∣∣Cj
∣∣


The silhouette coefficient of o is

s(o) =
b(o)− a(o)

max{a(o), b(o)}

4.3.2. The External Measure for Evaluation of Clustering Quality

Compactness (CP)

It is one of the commonly measurements used to validate clusters by employing only the
information inherent to the dataset. Thus, a good clustering will create clusters with instances that
are similar or closest to one another. More precisely, CP measures the average distance between every
pair of data points [41,42] is CPi =

1
|Ωi| ∑xi ∈Ωi

‖xi − wi‖ where Ω is the set of instances (xi) that have
been grouped into a cluster and W is the set of wi centroids of clusters in Ω. As a global measure of
compactness, the average of all clusters is calculated [41,42] as CP = 1

K ∑K
k=1 CPi where K denotes the

number of clusters in the clustering result. Ideally, the members of each cluster should be as close to
each other as possible. Therefore, a lower value of CP indicates better and more compact clusters.

Separation (SP)

This measure quantifies the degree of separation between individual clusters. It measures the
mean Euclidean distance between cluster centroids [41,42] is SP = 2

k2− k ∑k
i=1 ∑k

j=i+1 ‖wi − wj‖2,
where an SP close to 0 is an indication of closer clusters.
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Davies-Bouldin Index (DB)

This index can identify cluster overlap by measuring the ratio of the sum of within-cluster scatters

to between-cluster separations. It is defined as [41,42] DB = 1
k ∑k

i=1 max
j 6=i

(
Ci+ Cj
‖wi− wj‖2

)
, where a DB

close to 0 indicates that the clusters are compact and far from each other.

Dunn Validity Index (DVI)

The DVI index quantifies not only the degree of compactness of clusters but also the degree of
separation between individual clusters. DVI measures inter cluster distances (separation) over intra
cluster distances (compactness). For a given number of clusters K;, the definition of such an index is
given by the following equation [41,42]:

DVI =

min
0<m 6=n<K

 min
∀xi ∈ Ωm

∀xj ∈ Ωn

{
‖xi − xj‖

}


max
0<m≤K

max
∀xi ,xj∈Ωm

{
‖xi − xj‖

}
If a dataset containing compact and well-separated clusters, the distance between the clusters is

usually large and their diameters are expected to be small. Thus, a larger DVI value indicates compact
and well-separated clusters.

5. Challenging Issues and Comparison

In case of data stream clustering there are many challenges for implementation of algorithm on
real-time data stream.

• For Data stream algorithms it is necessary to specify parameters especially in case of k-means type
algorithms such as; (i) the expected number of clusters (in case of k-means algorithm it is necessary
to specify number of clusters) or the expected density of clusters (in case of density-based method
it is required to tune minimum number of points for a given radius of the micro-clusters); (ii)
the window length, whose size controls the trade-off between quality and efficiency; and (iii) the
fading factor of clusters or objects, which gives more importance to the most recent objects.

• Data stream algorithms must be robust enough to deal with existence of outliers/noise. Evolving
data streams are always dynamic in nature in terms of generation of new clusters and fading
of old clusters. This nature of data stream imposes another challenge to deal with; algorithms
should provide mechanism to identify outliers/noise in such cases.

• The window models techniques somewhat deals with challenges arise with non-stationary
distributions of data streams. Still there is need to develop more and more robust data stream
clustering algorithms for change detection (context) for trends analysis.

• Data type presented in many data streams are of mixed type, i.e., categorical, ordinal, etc.
within several real-world application domains. This will be another challenge in data stream
clustering algorithm.

• Increase in mobile applications and activities of social network have generated data streams in
big size, handling such data stream is a challenge in terms of processing capability and memory
space optimization. Some of the data stream algorithms tried to provide better solution for such
challenges. It is also essential to evaluate such clustering algorithms to measure effectiveness,
efficiency and quality of data stream clustering algorithm.
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Algorithms Merits Remark

DenStream [43,44]:

• Works on Online–offline strategy.
• During On-line phase DBSCAN generates core; potential; and

outlier micro-clusters.
• During Offline Phase macro-clusters are formed.

• This algorithm effectively works on
evolving data-streams.

• A new micro-cluster is generated in case if arriving
records are added into existing micro-clusters.

• Memory utilization is not effective even if two clusters are
merged and original is deleted.

• For new-cluster memory allocation is recursive until it is
eliminated in pruning phase.

• The pruning phase is time consuming.

StreamOptics [45]:

• Based on micro-cluster concept.
• Micro cluster distance is basis for cluster formation.

• OPTICS is a baseline algorithm for StreamOptics,
which provide three-dimensional plot.

• Evolution of cluster structure over the time can be
easily identified.

• In this method manual checking of three-dimensional plot
is necessary.

C-DenStream [46]:

• Uses instance level constraints from static data to stream data.
• These instance-level constraints are converted to micro-cluster

level constraints.

• Domain information is used as a constraint by adding
these to micro-clusters.

• In case of applications where prior knowledge of
membership is known, this algorithm shows
accurate result.

• The constraints for static data to stream data need to be
defined by experts only.

• The limitations of DenStream algorithms is exist.

rDenStream [46,47]:

• rDenStream means DenStream with retrospect
• The algorithm uses historical outlier buffer to decide about

outlier micro-cluster.

• The initial arrived data is used to extract
knowledge pattern.

• As algorithm retains historical information buffer and
process the same, therefore it increases memory usage and
time complexity.

• An application which has large amount of outliers, this
algorithm is applicable.

• It consumes more memory for storage of historical outliers
in buffer.

SDStream [48]:

• During online phase micro-clusters are generated based on
radius and density weight

• Offline phase uses potential miceo-cluster to produce final
clusters of arbitrary shape.

• Sliding window method is used to summarize the old
data; however the recent data is process for clustering.

• SDStream did not clarify the main usage of exponential
histogram for the algorithm.
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Algorithms Merits Remark

HDenStream [49]:

• Works on evolving heterogeneous data stream
• The algorithm has online and offline phase.

• The algorithms works for heterogeneous data such as
categorical, and continuous, etc.

• The algorithm does not discuss how to save categorical
features in an efficient way for data stream environment.

SOStream [50]:

• Detects structures within fast evolving data streams.
• The calculation of threshold for density-based clustering

is automatic.
• Works only in online phase

• The value of threshold is calculated using adaptive
technique with respect to data stream.

• SOStream is a micro-cluster based algorithm.
• This method consumes more time.

HDDStream [51]:

• Works with online and offline phases.
• In online Phase points and dimensions are summarizes.
• Offline phase introduces preferred vector for each micro-cluster

which is related to preferred dimension.

• This algorithm clusters
high-dimensional data-streams.

• During pruning the algorithm considers micro-cluster
weights. As micro-clusters fades over-time, it is necessary
to check prefer vector.

PreDeConStream [52]:

• Online phase is to collect summary of points and dimension.
• Variance of micro-cluster and their neighbors are calculated to

maintain subspace prefer vector during offline phase.

• Clustering can be applied to high-dimensional
data stream.

• This method is time consuming with searching the affected
neighboring clusters.

FlockStream [53]:

• Micro-clusters acts as agents and they work independently to
form cluster.

• Agents move in their predefined visibility range for a fixed time.
• These agents are joined if they are similar to each other to form

a cluster.

• The number of comparison is much less as compare to
DenStream algorithm.

• Offline phase is less frequent, although the algorithm forms
an outlier agent to handle noise.

• Technique is not clear in case of removal of outliers from
agent list.

DUCstream [54]:

• This is incremental single pass clustering algorithm using
dense unit.

• The clusters are represented as connected a component of graph,
in which vertices are dense units and edges are their relation.

• A single pass algorithm for clustering evolving data
streams based on swarm intelligence

• Since DUCstream processes the data in chunks, it relies on
the user to determine the size of the chunks of data.
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Algorithms Merits Remark

DStream I [55]:

• Online phase reads a new data point, maps it on to grid, and
updates characteristic vector.

• The offline phase adjusts the clusters in each time interval gap.

• This algorithm clusters the data stream using grids
and density.

• Density decaying is calculated and clusters are
adjusted accordingly in real-time and thus captures
evolving behavior of the data stream.

• This algorithm is efficient in handling outliers.

• The time interval gap is decided on minimum time taken by
dense grid to become sparse grid and vice versa over
evolving data streams. But other factors may affect the
selection of time interval gap.

• It cannot handle the high-dimensional data because it
assumes that the majority of the grids are empty in the
high-dimensional situation.

DD-Stream [56]:

• This method is an extension of DStream-I, in which cluster
quality is improved by detecting border points.

• This algorithm extracts the points which are at
boundary for the grids, in order to improve the
quality of clustering.

• At the time of mapping of data to the grids, border points
are extracted, this is time-consuming process.

• The sparse and dense grids are decided based on density of
grid; however the algorithm does not any clear strategy for
removing the sporadic grids.

D-Stream II [57]:

• This is modifies version of DStream-I, in which grid-attraction
concept is used. To what extend the data from one grid is closed
to neighbor grid is grid-attraction.

• Merging of attracted grids are done to form the clusters.

• This algorithm considers the position of the data in
the grids which improves the quality of clustering.

• The grid_list is maintained using tree rather than table,
this improves processing time and memory usage.

• The algorithm still has the problems that are already
mentioned in D-Stream I.

MR-Stream [58]:

• During online phase, for a new data point arrival, cell is formed
and a tree structure is built by way of updating weights at
each nodes.

• During offline phase, tree-pruning is done and dense cells and
sporadic cell are separated.

• This method uses a memory sampling policy for
running the offline component. This strategy
improves the quality of clustering.

• A noise cluster is formed by merging sparse grids. But there
is possibility that another noise cluster may be created from
sparse grids.

• This algorithm has limitations to handle
high-dimensional data.

PKS-Stream [59]:

• In online phase the PKS-tree is generated by mapping the data
records to the related grid cells, if the grid cell exist; otherwise
new grid cell is formed. The offline phase forms the clusters
based on dense high neighboring grids.

• In each time interval gap, the PKS-tree is adjusted and sparse
grids are removed from the tree.

• This algorithm support the high-dimensional data
stream; using density grid-based clustering.

• The tree is not removed even if a new data is added to any
of the cells of the tree.

• The parameter k is deciding factor for clustering result.
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Algorithms Merits Remark

DCUStream [60]:

• For each data point a tuple which include data point, existence
probability and arrival time. These points are mapped to grid.

• Uncertain tense weight is calculated, and aggregation of these
weights is uncertain data density. Core dense grid, which is
dense grid with sparse neighbors.

• By examining all such grids, find core dense grids, which
forms clusters.

• The algorithm is more suitable for density-based
clustering over uncertain data-streams.

• An algorithm takes more time for searching core dense grid
and its corresponding neighbor.

DENGRIS-Stream [61]:

• The algorithm use grids on which data points are mapped, then
density of grids are calculated so as to decide clusters within time
window units.

• This algorithm use density grid-based approach over
evolving data streams with sliding window model.

• There is no evaluation to show its effectiveness compared
with other state-of-the-art algorithms.

ExCC [62]:

• It is exclusive and complete clustering, and uses
online–offline phases.

• Online phase keeps synopsis of grids.
• Offline phase forms clusters on demand.
• It is an exclusive algorithm as it uses grids for distribution

of data.

• ExCC is able to evaluate data streams with mixed
attributes such as numeric and categorical.

• Furthermore, the algorithm compares the results with
micro-clustering methods.

• Since hold-queue approach is used for each dimension, it
takes more memory and consequently processing
time increases

• Also, to keep pool of dense grids consumes more memory.
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In case of Partitioning method like STREAM [63] Algorithm, this is one of the early data stream
clustering algorithms, which extends the k-medians algorithm. The STREAM algorithm is sensitive
to parameter k and only able to discover spherical clusters. If the underlying data stream is evolving
in nature, the algorithm fails to detect concept drift. Application problems which have limited set of
data stream without evolving property may use this method. CluStream algorithm from hierarchical
clustering approach, uses BIRCH method as baseline for clustering of data streams. CluStream follows
online–offline approach. CluStream analyzes the evolution of clusters by using additional property
to extract information of micro-clusters during a specific time range. Algorithms like HPStream [64],
SWClustering [65], E-Stream are using CluStream as baseline framework. These clustering algorithms
work well in case of applications with high-dimensional data streams. In density-based methods like
DenStream, OPTICS-Stream algorithms are able to generate clusters of arbitrary shape and it is not
essential to input number of clusters as predefined parameter. Algorithms like D-Stream, MR-Stream
show better results for data streams with evolving nature. These algorithms are suitable for the
applications in which it is necessary to identify trends in evolving data streams in a given time-frame.
D-Stream, and MR-Stream work on density grid-base approach. A D-Stream uses the fading model
to decrease the weight of cell over time. During periodic process the sparse grids are removed to
save memory and accelerate the mining process. D-Stream performs clustering upon a user request.
MR-Stream is a multi-resolution density grid-based clustering method for data stream. MR-Stream
preserves more memory than D-Stream and accelerates the clustering process. MR-Stream provides
better cluster result by extending the neighborhood concept and supports a memory sampling method
that helps users to detect when concept drift occur. Algorithm like SWEM [66] works model-based
approach. This is an EM-based [67] clustering algorithm for data stream using sliding window.
SWEM redistributes components in the entire data space by splitting those micro-components with
large variance and merging neighbor micro-components. SWEM deploys fading model to expire the
statistical summarization of the micro-components. Algorithms like SOM [68] (Self-Organizing Maps),
GSOM [69] (Growing SOM), CPSOM [70] (Cellular Probabilistic SOM), and GCPSOM [70] also uses
model-based strategy. GSOM, CPSOM uses SOM algorithm as base-line method. Also GCPSOM is
hybrid algorithm developed using GSOM and CPSOM. CPSOM is online method generally suitable
for large data sets. In GSOM method nodes are generated dynamically at the boundary of the map
whenever its accumulated error exceeds a threshold. As GCPSOM is a hybrid algorithm that aggregates
the advantages of both the GSOM and CPSOM, it dynamically grows the feature map for the clustering
data streams and keeps track clusters as they evolve.

6. Experimental Results and Discussion

6.1. Experimentation with Data Streams

Some of the algorithms and techniques discussed so far are now implemented (D-Stream,
DBSTREAM, Reservoir Sampling + k-means(weighted), and sliding windows +kmeans (weighted)).
Comparison of these algorithms is the major purpose. A static data set is generated using stream [55,56]
package in R. Around sample 1500 data points from Bars and Gaussians data stream generator of
stream [55] package are extracted with 0.05% noise (1500 points are considered for experimentation
purpose). First 1000 data points are used to learn clustering and next 500 points are for evaluation
of these algorithms. In Figure 2 the data distribution is shown. It consists of four clusters, two
Gaussians and two uniformly Filled, slightly rotated rectangular clusters. The four algorithms are
initialized in stream [55] package. The algorithms are reservoir sampling re-clustered with weighted
k-means, sliding window re-clustered with weighted k-means, D-Stream and DBSTREAM with their
built-in re-clustering strategies. The parameters are chosen such that each shall produce approximately
100 micro-clusters.
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Figure 2. Bars and Gaussians Data Set.

In Figure 3, micro-cluster placement of these four algorithms is shown. Micro-clusters are shown
as red circles and size is proportional to each cluster’s weights. For D-Stream values of parameters are
gridsize = 0.7 and Cm = 1.5, here Cm is parameter controlling threshold as defined in Section 3.3. For
DBSTREAM radius is set as r = 0.45. It was observed that Reservoir sampling and the sliding window
select some data points as micro clusters and also include few noise points, however, D-Stream and
DBSTREAM algorithms are robust to noise points and do not include these points into micro clusters.
As D-Stream is grid-based, micro clusters are regularly spaces as compared to DBSTREM algorithm.

The assignment area is the area around the center of a micro-cluster in which points are considered
to belong to the micro-cluster. For comparison, this appears to be interesting to visualize this for these
four algorithms. Figure 4 shows the assignment area. In reservoir sampling and sliding window
algorithms data points are always assigned to nearest micro-cluster, therefore it is not shown, however
for DBSTREAM the assignment area for all micro-clusters is exactly the same radius, and D-Streams
uses grids to show assignment area.
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Micro-cluster purity index is to compare clustering quality. For each algorithm with data points
which are not used for formation of the micro-clusters are deployed for such evaluation. In this
case, data points are selected from 1001 onwards as first 1000 points are used for learning of clusters.
Following Table 4 shows the result of the same.

Table 4. Evaluation results of generated data set.

Sample Window D-Stream DBSTREAM

numMicroClusters 100.0000000 100.0000000 84.0000000 99.0000000
purity 0.9556277 0.9474273 0.9659613 0.9705846

The results for purity for this data set are very good with reasonably well separated clusters. While
comparing algorithms in terms of “purity” it is necessary to understand number of micro-clusters
produced by individual algorithm, as more micro-clusters are produced, better results are obtained.

Next, macro-cluster placement is done. In case of sampling and sliding window two-stage process
is created with weighted k-means method for k = 4 (the value for k is selected 4 as experimentation
done with generated data with four clusters two Gaussian and two uniformly filled), D-Stream and
DBSTREAM have built-in re-clustering mechanism. D-Stream joins adjacent dense grid cells to form
macro-clusters and DBSTREAM joins micro-clusters reachable by overlapping assignment areas.

Figure 5 shows the macro-cluster placement. Sampling and sliding window algorithms use
k-means re-clustering technique, since k = 4, they produce exactly four clusters. However, in case of
D-Stream and DBSTREAM algorithms, produce the two denser clusters correctly, but split the lower
density clusters into multiple pieces.
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The evaluation measures at the macro-cluster level shows findings from the visual analysis of
the clustering with D-Stream and DBSTREAM. These algorithms are producing the best results. It is
observed that DStream and DBSTREAM do not assign some of the points which are actually not noise
points will have a negative effect on the average silhouette width. Following is the result of evaluation
of algorithms with respect to macro-cluster formation. The compactness of clusters in a clustering is
the within-cluster sum of squares, i.e., the sum of squared distances (SSQ) between each data point
and the center of its cluster. Also, in case of silhouette coefficient it was observed that, its value is very
low in case of D-Stream and DBSTREAM methods. Since the number of Macro Clusters generated by
D-Stream and DBSTREAM methods are seven and it is four in case of Sam1ple and Window method
(which is exactly the same as data streams are generated), this shows an increase in number of clusters
which results in decrease in intra-cluster average distance, and hence silhouette index is very low for
D-Stream and DBSTREAM methods as compared to Sample and Window methods. Table 5 shows
results of evaluation for generated data streams.

Table 5. Evaluation Results for generated data streams.

Sample Window D-Stream DBSTREAM

numMacroClusters 4.0000000 4.0000000 7.0000000 6.0000000
purity 0.8697902 0.8325503 0.8926433 0.8758753
SSQ 1199.8108788 1564.1203674 866.9658854 885.5041398

cRand 0.5811980 0.5500995 0.7820541 0.7954812
silhouette 0.4291496 0.4289753 0.3047187 0.2943902

6.2. Experimentation with Evolving Data Stream

For evolving data streams DSD_Benchmark [56] function from Stream [55] package is used. This
generates two moving clusters crossing each other’s path. This generated evolving data stream is used
to compare four algorithms. Initially 5000 fixed data stream points are created, and all algorithms are
initialized accordingly. This time for re-clustering purpose k = 2 is selected in case of sampling and
sliding window algorithms. For D-Stream and DBSTREAM, decay factor i.e., lambda is initializes to
0.01, as the cluster in the data streams move more quickly.
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The four clustering algorithms are evaluated and cluster 5000 data points using the prequential
evaluation method with a horizon of 250 points. Adjusted Rand Index is selected as an evaluation
measure. This will generate 5000/250 = 20 evaluations for each algorithm.

Figure 6 show the Adjusted Rand Index for the four data stream clustering algorithms over the
evolving data stream. It is observed that, it is not possible to separate the clusters at position 3000
when the two clusters overlap. D-Stream and DBSTREAM shows well results, where as sampling and
the sliding window methods achieve only lower Adjusted Rand Index, as these algorithms cannot
detect the noise and therefore tries to allocate these points to one of the cluster therefore the clusters
resulting in the lower Rand Index.
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6.3. Experimentation on Real-Life Data Stream

Density-based data stream clustering algorithms such as DBStream, D-Stream, and Two-stage
Sampling and Sliding Window algorithms are implemented using real-life data stream available
at https://archive.ics.uci.edu/ml/datasets. The data set contains consumption of electrical power
at house-hold customer. It contains 207,5259 measurements gathered between December 2006 and
November 2010 (47 months), with 8 attributes/labels. Attribute data type and description are shown
in Tables 6 and 7 respectively.

Table 6. Attributes with data type.

Date Time global_ global_ Voltage global_intensity sub_ sub_ sub_
active_power reactive_power metering_1 metering_2 metering_3

Date Numeric Numeric Numeric Numeric Numeric Numeric Numeric Numeric

Table 7. Description of Attributes.

Attribute Title Description

date Represents Date in format dd/mm/yyyy

time Represents time in format hh:mm:ss

global_active_power Represents household global minute averaged active power (in kilowatt).

global_reactive_power Represents household global minute averaged reactive power (in kw).

voltage Represents minute-averaged voltage (in volt).

global_intensity Represents household global minute-averaged current intensity (in amp).

sub_metering_1
Represents energy sub-metering No. 1 (in watt-hour of active energy).
It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave
(hot plates are not electric but gas powered).

sub_metering_2
Represents energy sub-metering No. 2 (in watt-hour of active energy).
It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a
refrigerator and a light.

sub_metering_3 Represents energy sub-metering No. 3 (in watt-hour of active energy).
It corresponds to an electric water-heater and an air-conditioner.

https://archive.ics.uci.edu/ml/datasets
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In Figure 7, micro-cluster placement of these four algorithms is shown. Micro-clusters are shown
as red circles and size is proportional to each cluster’s weights. For D-Stream values of parameters are
gridsize = 0.1 and Cm = 1.5. For DBSTREAM radius is set as r = 0.36.

It was observed that Reservoir sampling and the sliding window select some data points as
micro clusters and also include few noise points, however, D-Stream and DBSTREAM algorithms are
robust to noise points and do not include these points into micro clusters. As D-Stream is grid-based,
micro clusters are uniformly spaces as compared to DBSTREM algorithm. Reading at sub_meter_2
and sub_meter_3 shows power consumption with respect to Global_active_power. From figure it is
observed that, the micro-clusters generated by D-Stream and DBSTERAM captures almost all data
points, however in case of sampling and sliding window algorithms some of the data points are missed
for clustering purpose.
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The assignment area is the area around the center of a micro-cluster in which points are considered
to belong to the micro-cluster. Figure 8 shows the assignment area.

This visualization of the micro-cluster assignment area shows that, in case of DBSTREAM
micro-clusters are exactly same as the radius. D-Stream algorithm shows grids representing assignment
area as dense grids.

Figure 9 shows the macro-cluster placement. Sampling and sliding window algorithms use
k-means re-clustering technique, since k = 4, they produce exactly four clusters. However, in case
of D-Stream and DBSTREAM algorithms, produce the two denser clusters correctly, but split the
lower density clusters into multiple pieces. D-Stream generates 9 clusters and DBSTREAM algorithm
generates 11 clusters.
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Considering real data stream as an evolving data stream and applying evaluation measure purity,
it is observed that D-Stream and DBSTREAM shows better performance over sampling and slicing
window algorithms. Also, parameters such as fading factor (lambda), gridsize, radius (r) and Cm need
to be specified.
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Figure 10 shows the Purity for the four data stream clustering algorithms over the evolving data
stream. It is observed that, it is not possible to separate the clusters at various positions when the two
clusters overlap. D-Stream and DBSTREAM shows well results, where as sampling and the sliding
window methods achieve only lower Purity, as these algorithms cannot detect the noise and therefore
tries to allocate these points to one of the cluster therefore the clusters resulting in the lower Purity.

It is observed that, purity, SSQ and cRand indices shows better results for D-Stream and
DBSTREAM, however these indices are low for Reservoir Sampling + k-means(weighted) and Slicing
window+ k-means(weighted) methods. In turn, for silhouette index it is vice versa. Therefore any
single method may not able to satisfy all evaluation parameters. Also, from Figures 6 and 10, it is
observed that, for application’s domain specific data streams, the clustering methods leads to different
evaluation result. Hence, it is necessary to select appropriate method for specific application.
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7. Conclusions and Future Outlook 

In this paper the problem about to identify hidden pattern and knowledge for understanding 
the context and identifying trends from continuous data streams are discussed. The comprehensive 
survey provided the study of data stream clustering methods and algorithms. The methods and 
algorithms are broadly categorized into five types based on methodologies adopted for 
implementation. This will be an ease to select appropriate algorithm for specific domain, without 
getting details of it. The related algorithms and methods from each category are discussed and some 
of them are implemented with evaluation matrix. 

It is observed that, a single algorithm may not be able to satisfy all evaluation measures. Most of 
the density-based and density grid-based algorithms like DStream, MR-Stream, ExCC shows better 
performance for evolving data streams. The performance of these algorithms is measured either on 
synthetic data sets using statistical techniques for generating the data stream with assumed noise or on 
real-life data set; but there are limitations with these algorithms in order to cater evolving data streams in 
real-time. More research is requiring to device adaptive model for clustering evolving data streams. 

As a future work, there is need to investigate the Context-based adaptive clustering methods for 
evolving data streams, so as to identify trends. These trends are necessary for predications and 
recommender system. 
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