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Abstract: Nowadays, due to the extensive use of information networks in a broad range of fields,
e.g., bio-informatics, sociology, digital marketing, computer science, etc., graph theory applications
have attracted significant scientific interest. Due to its apparent abstraction, community detection
has become one of the most thoroughly studied graph partitioning problems. However, the existing
algorithms principally propose iterative solutions of high polynomial order that repetitively require
exhaustive analysis. These methods can undoubtedly be considered resource-wise overdemanding,
unscalable, and inapplicable in big data graphs, such as today’s social networks. In this article, a novel,
near-linear, and highly scalable community prediction methodology is introduced. Specifically,
using a distributed, stacking-based model, which is built on plain network topology characteristics
of bootstrap sampled subgraphs, the underlined community hierarchy of any given social network is
efficiently extracted in spite of its size and density. The effectiveness of the proposed methodology
has diligently been examined on numerous real-life social networks and proven superior to various
similar approaches in terms of performance, stability, and accuracy.

Keywords: community detection; community prediction; stacking ensemble learning; supervised
machine learning; distributed processing; bootstrap resampling; social network analysis

1. Introduction

In consideration of the exponential proliferation of data along with the substantial
demand to conveniently incorporate the internal inference and semantics, information
networks have evidently been one of the most prevalent data representations. Particularly,
by presenting each individual data entity as a node and by denoting any kind of association
with an interconnection edge, information graphs may formulate any functional system of
interacting entities. Therefore, the usage of this general-purpose abstraction has practically
proven beneficial in various scientific sectors such as chemistry, biology, politics, digital
marketing, computer science and sociology.

Focusing on social media, information networks can be deemed as the predominant
data structure due to their handily compact representation. From sentiment analysis,
expert identification and mood analysis, to recommendation systems, digital footprint
identification and targeted marketing, graph theory lies under numerous social network
issues. Among others, community detection might be considered as one of the graph theory
keystones since its outcome is fundamentally critical in various cases, such as influence
propagation, link prediction, and opinion mining.

The main objective of community detection regards the identification of strongly
interconnected groups of nodes, aka communities, by primarily leveraging the network
topology features [1–3]. In respect of sociology, community detection could be construed
as the expression of the homophily effect on a given social network [4,5]. Essentially,
community reflects the natural human tendency to mostly associate and interact with
similar peers. Thus, any social network can be naturally decomposed to groups of highly
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interacting entities, the communities, which plainly disclose the given social graph’s
inner mechanics.

As meticulously presented in [1–3,6], copious algorithms have been published to tackle
this NP-hard problem. From graph theory methods to hybrid approaches, which ably
combine network analysis with techniques of different scientific areas, the diversity of the
existing bibliography is indeed remarkable. The most prominent community detection
methods include, inter alia, the Louvain [7], the Girvan–Newman [8], the Clauset–Newman–
Moore [9], the label propagation (LAP) [1], and the spectral clustering [2] algorithms.

Despite the difference in the divide and conquer strategy applied, the classic com-
munity detection algorithms basically define iterative optimization processes that require
exhaustive analysis. Therefore, as plainly explained in [1], with their corresponding
computational complexity being at least quadratic, the application of classic community
detection algorithms is strictly limited to small graphs. In addition, as clearly demon-
strated in [10–12], those solutions are principally static methods that neglect the social
networks’ inherent topology heterogeneities which are responsible for the significantly
variant community structure. Hence, taking into account the size of real-life social graphs,
which typically outnumber a billion users [13], and their extremely imbalanced subjacent
community hierarchy, the introduction of new, profoundly scalable and highly accurate
alternatives is indubitably mandatory.

Inspired by the unconventional application of link prediction in the community
extraction process in [14], the initial node-oriented definition can be alternatively translated
to its equivalent edge-oriented explanation. Specifically, community detection can be
differently expressed as the classification of the imminent graph’s edges to either the ones
associating nodes of different communities, aka inter-connection edges, or of the same,
aka intra-connection edges, solely based on network topology characteristics. This is
actually the principal scope of community prediction which promising perspectives were
clearly demonstrated in [15,16].

Originally, Makris, Pettas and Pispirigos [15] introduced a distributed, binary logistic
regression model is trained using a representative subgraph that is suitably extracted
using the Tiny Sample Extraction algorithm. Despite its promising prediction perfor-
mance, the strict prerequisite of extracting a subgraph of indispensably similar network
characteristics to the original graph, seems insurmountable for today’s big data graphs.
This obstacle is deftly circumvented with the sampling process introduced in the bagging
ensemble community prediction methodology proposed in [16]. Specifically, by concur-
rently applying plain BFS crawlers, multiple subgraphs are extracted. After properly
transforming them to training data sets, the base classifiers of a bagging ensemble model
are trained. This plain sampling technique was practically proven advantageous in cap-
turing a considerable amount of the original graph’s variability. However, due to this
methodology’s [16] significant tendency to misclassify the true inter-connection edges,
reflected on the classifier’s poor precision and increased bias, the extracted community
structure is not sufficiently discernible.

In this article, aiming to diminish the bias while ensuring the minimum variance and
the maximum stability, a novel, near-linear, and highly scalable stacking-based community
prediction methodology is introduced. Specifically, on the model of bootstrap resampling,
multiple BFS crawlers are concurrently applied on a given social graph, extracting multiple
subgraphs. For each extracted subgraph, any edge included is appropriately enriched
with a predefined set of network topology features and suitably labeled after the Louvain
algorithm’s [7] application. Hence, the previously extracted subgraphs are properly trans-
formed to community detection-ready data sets that used in training a distributed stacking
ensemble meta-learner. This meta-learner is built on top of properly fitted bagging and
boosting distributed ensemble models, which combination guarantees the minimization
of the generated bias/variance effect. Thorough experimentation has been conducted on
various real-life social graphs [17–23] which conclusively demonstrated that the proposed
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methodology is remarkably stable, eminently accurate and highly efficient in predicting
the subjacent community structure of any analyzed social media network.

The remainder of this article is organized as follows:

• Section 2 presents the existing bibliography regarding community detection and
community prediction.

• Section 3 analyzes the proposed methodology and explains its implementation.
• Section 4 describes the conducted experimentation process and assesses the gener-

ated results.
• Section 5 outlines the conclusions and sets the future steps.

2. Background
2.1. Community Detection Definitions & Classic Algorithms

Community detection is the network analysis problem that aims to identify the nat-
urally formed, groups of vertices that are more interlinked with each other, comparing
to the rest of the graph [1–3]. Despite the lack of a broadly accepted definition [1], a com-
munity can be intuitively perceived considering its graph representation. In particular,
a group of vertices might be deemed as a community, if only the ratio of its internal edges,
aka intra-cluster density, is higher than the ratio of its external edges, aka inter-cluster
density. Consequently, assuming a group of nodes C, its intra-cluster density, denoted as
dint(C), can be calculated as follows:

dint(C) =
2 ∗ mint

n ∗ (n − 1)
,

where:

• mint is the number of the intra-connection edges of the group C,
• n is the number of nodes within the group C, and
• 1/2 ∗ n ∗ (n − 1) is the number of all possible internal edges of the group C.

Respectively, its inter-cluster density, denoted as dext(C), is calculated as:

dext(C) =
mext

n ∗ (N − n)
,

where:

• mext is the number of the inter-connection edges of the group C,
• n is the number of nodes within the group C,
• N is the number of nodes of the given information network, and
• n ∗ (N − n) is the number of all possible internal edges of the group C.

Thus, the following equation is satisfied, should the group of nodes C forms a community:

dint(C) > dext(C)

Due to community detection’s broad application in numerous scientific fields, such
as biology, sociology, criminology, politics, marketing, computer science, etc., this NP-
hard problem [1–3] has been thoroughly studied. Copious research has already been
published that can be roughly distinguished to graph partitioning, modularity optimization,
label propagation and transformation algorithms.

Based on the principle that an information network’s underlying community hierarchy
is practically the sparsely inter-connected groups of highly intra-connected vertices [24]
and by initially considering the whole graph as a single community, the purpose of the
graph partitioning algorithms is to remove the inter-connection edges by iteratively op-
timizing a global network topology measure. These algorithms are specialized in the
community extraction of information networks which nodes follow the power-law distribu-
tion, aka scale-free information networks [11].Even if there are profuse network topology
measures proposed, such as the shortest-path betweenness [8], the random-walk edge
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betweenness [1], the geodesic edge betweenness [1], the current-flow edge betweenness [1],
the hypergraphs [2], etc., the most prominent is the edge centrality measure introduced
in the Girvan–Newman algorithm [24]. This measure quantifies the importance of each
edge by calculating the distinct shortest paths between any possible pair of nodes that
run along it. As proven in [6,24], Girvan–Newman algorithm’s time complexity is O(nm2),
where n and m denote the information network’s number of nodes and edges respectively.
Hence, despite its plain conception and its straightforward implementation, its application
is merely limited to information networks of few hundreds of vertices.

A worth mentioning sub-category of graph partitioning algorithms is the data structure-
based methods [3]. Following the top-down strategy previously described, the principal
objective of those approaches is to properly transform the given information graph to a
highly efficient tree-like data structure. Thus, after initially considering the whole graph
a community, presented as the generated data structure’s root node, the leaves of the
constructed tree practically reflect the given graph’s underlying community hierarchy.
The most indicative algorithms, among others, are the Overlapping Community algo-
rithm (OCA) [3] and the GSkeletonClu method [3] that are intrinsically parallelizable to
minimize the time required for community detection. However, as plainly explained [3],
the data structure-based methods are inherently not suitable for networks displaying major
inhomogeneities that is the case of today’s social graphs.

Similar to the graph partitioning methods, the modularity optimization algorithms
aim to extract the underlying community hierarchy by respectively defining iterative
optimization processes. However, these approaches principally follow bottom-up strategies
that form meta-communities by globally maximizing modularity [1–3,7]. Modularity is
the most prevalent quality function that holistically combines the intra-cluster and the
inter-cluster densities to assess the coherence of a given group of vertices. Among the
plentiful modularity optimization techniques proposed, such as the simulated annealing [1],
the Clauset–Newman–Moore [25], the Wakita–Tsurumi [12], the Xiang [1] etc., the Louvain
algorithm [7] is unquestionably the predominant. By initially considering each node
as a distinct community, aka singleton, and by repetitively merging the communities
that maximize modularity, this algorithm displays outstanding execution performance
and serves as a generally accepted community detection standard. As defined in [11],
the modularity optimization algorithms are considered ideal for detecting the subjacent
community structure of information networks which nodes follow the normal distribution.
Actually, this is the case of big data graphs according to the central limit theorem. However,
as convincingly proven in [1–3,6], modularity optimization is an NP-complete problem,
limiting thusly the imminent algorithms‘ application to networks of some thousands
of vertices.

In line with the premise that each node is more likely to belong to the community that
most of its direct neighbors belong, the label propagation algorithms are typical iterative
processes that extract the imminent community hierarchy by repetitively assessing and
re-assigning, where needed, the appropriate community label to each individual node.
From the initial label propagation algorithm (LPA) [1] to more sophisticated methods,
such as the community overlap propagation algorithm (CORPA) [26], the multi-label
propagation algorithm (MLPA) [27], the parallel structural clustering algorithm [28] etc.,
these methods principally aim to extract overlapping communities. Despite their promising
computational complexity, the label propagation algorithms intrinsically tend to overrate
the graph’s average qualities. Hence, as shown in [9], their extracted hierarchy’s quality
characteristics are relatively poor, since the generated community structure is unrelated to
the distinct partitions’ properties.

Finally, the convenient generalization of community detection and its vast adoption
from various fields led to the introduction of transformation algorithms. These methods
are radically different to the classic, network-oriented approaches. In particular, they alter-
natively project the community detection concept to different representations to simplify its
intrinsic complexity and leverage different, widely applied methods and theories. From the
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spectral methods based on linear algebra techniques [29,30] and the Markov chains theory
of random walks algorithm [1], to the divisive global clustering algorithm influenced by the
electrical circuit analysis [2] and the genetic algorithms alternatives [31,32], the variety of
transformation algorithms is doubtlessly notable. However, every such proposed projection
can equivalently be translated to heavy computational demands. Consequently, with their
time complexity being typically of cubic order, the transformation algorithms are practically
inapplicable in big data graphs, for which polynomial solutions are prohibitive [1].

2.2. Community Prediction

The binary classification of a graph’s edges to either intra-connection or inter-connection
in order to predict its underlying community structure by solely leveraging their network
topology characteristics, is the community prediction’s accurate definition. In essence, this con-
cept can be briefly construed as the process of properly training a binary classifier to imitate
the behavior of a community detection algorithm using plain network topology features.

To some extent, the community prediction concept was introduced in [14]. Here,
Takaffoli et al. presented a community structure evolution framework that aimed to predict
the existence probability of each possible edge and consequently the later community
structure of a given graph. Specifically, given the input graph’s original community
structure and assuming the occurrence of a specific event, the aforementioned classification
is properly made for each possible edge by considering the history statistics, the influential
members qualities and the network topology properties of each existing community. Albeit
the common objective to predict the subjacent community hierarchy, this approach [14]
principally intents to predict the underlying structure’s evolution using fundamentally
dissimilar prediction criteria.

In [15], the initial community prediction methodology is introduced. In detail, af-
ter applying the tiny sample extraction algorithm on the input social network, a repre-
sentative subgraph of similar network topology qualities to the input graph, is extracted.
This subgraph is properly transformed to a community prediction-ready training data set
by enriching each imminent edge, not only with a predefined set of network topology
features regarding the corresponding k-depth neighborhoods, but also with the suitable
inter-connection/intra-connection label after the application of the Louvain algorithm [7].
Consequently, a distributed binary logistic regression classifier is appropriately trained
using the conveniently converted representative subgraph. This community prediction
classifier [15] is consequently applied to the input graph to properly classify all its im-
pending edges. After removing all the intra-connection edges, the subjacent community
hierarchy of the input graph is revealed.

Despite the fact that this community extraction technique [15] has proven notably
promising, the rigid requirement to extract a subgraph of analogous topological qualities
with the original, is evidently an insuperable limitation for today’s social networks. Firstly,
the representativity’s insurance is mainly inclined to the extraction of a subgraph of similar
size to the initial graph, as demonstrated in [16]. Furthermore, the Tiny Sample Extraction
algorithm inherently requires severe statistical analysis by demanding the calculation of
the input graph’s node degree probability density function, which might not be feasible in
general for big data graphs. Finally, and importantly, the predicted community structure
tends to be fairly unstable due to the considerably high variance of the corresponding
community prediction classifier.

In [16] an alternative community prediction methodology is introduced. After ap-
plying multiple BFS crawlers on the input social graph, multiple subgraphs are extracted.
Similar to the subgraph transformation process presented in [15], each of the previously
extracted subgraphs is properly converted to a community prediction-ready training
data set. Thus, after training a distributed, binary logistic regression classifier for each
suitably transformed subgraph, a bagging ensemble meta-learner is constructed. This meta-
learner is applied to the input graph, to properly classify each imminent edge as either
inter-connection or intra-connection by averaging the decisions made from the individual
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logistic regression base learners. Thereupon, the input graph’s community structure can be
disclosed after removing the inter-connection predicted edges.

The bootstrap resampling technique presented in [16] has practically proven capable
of capturing a considerable amount of the input graph’s network topology variability.
Hence, due to its intrinsic simplicity, this distributed community prediction methodol-
ogy [16] has demonstrated increased robustness and decreased variance comparing to
the [15]. However, this bagging ensemble meta-learner, as clearly reflected in its consis-
tently poor sensitivity performance, was highly biased and subsequently tended to underfit
the training data. This precarious behavior led to the systematic misprediction of the truly
inter-connection edges as intra-connection that resulted in the extraction of significantly
undiscernible community structures. Ergo, the bagging ensemble meta-learner of [16] can
unquestionably be considered insufficient for community prediction.

Therefore, the essential demand to enhance the quality of the predicted community
structure by minimizing the bias/variance effect, while preserving the outstanding perfor-
mance benefits of the distributed execution, is doubtlessly satisfied by the highly efficient,
intrinsically distributed, stacking-based community prediction methodology proposed in
this manuscript.

3. Proposed Methodology

In this article, a near-linear and fully distributed stacking-based community prediction
methodology for large scale social networks is introduced. The principal objective of the
proposed technique is the optimization of the extracted community structure’s quality by
effectively minimizing the prediction’s bias/variance trade-off.

As shown in Figure 1, following the bootstrap resampling strategy, multiple BFS
crawlers are initially triggered to extract multiple subgraphs from the input graph. Sub-
sequently, the extracted subgraphs are properly enriched and suitably transformed to
community prediction-ready data sets, with which the distributed stacking ensemble classi-
fier is trained. This community prediction model that deftly balances the efficient capturing
of data regularities and generalization is then applied on the input graph. After removing
the edges previously classified as inter-connection, the underlying community hierarchy of
the input graph is thusly extracted.

3.1. Subgraph Extraction

As assuredly described in [10–12], due to the gigantic magnitude, the extended topo-
logical heterogeneities and the excessively variant structure of social networks, it seems
infeasible to deduce the statistical properties of a global distribution of probability that the
sophisticated sampling methods require. Hence, despite the lack of general finite-sample
guarantees, the bootstrap resampling method is adopted considering its indisputable
simplicity, its inherent parallelism, its asymptotical accuracy and its critical capability to
control the stability of the results. Therefore, multiple BFS crawlers are randomly triggered
to extract subgraphs of a predefined size. It should be noted that the number of the ex-
tracted subgraphs and their predefined magnitude obviously define the size of the training
data set.

The maximum number of BFS crawlers concurrently executed, is practically deter-
mined by the level of parallelism of the execution system.

In contrast, the predefined magnitude of each extracted subgraph is strongly correlated
to the input graph’s size. This critical parameter decidedly affects the performance of the
proposed methodology and is subject to the input graph. Specifically, considering that
the feature enrichment process requires the application of a classic community detection
algorithm in terms of labelling, the size of each individual subgraph should be limited
to a substantially manageable and descriptive as possible portion of the original graph.
Practically, in the case of big data graphs, this might be way smaller than the two orders of
magnitude, comparing the size of the original graph.
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3.2. Feature Enrichment

As already discussed in sub-Section 2.1, the community’s intuitive interpretation is
associated with the comparison of the intra-cluster and inter-cluster densities. Inevitably,
the evaluation of whether two immediately connected nodes belong to the same commu-
nity or not, is intrinsically interwoven with the deeper knowledge of their surrounding
neighborhoods. Hence, each individual edge should be properly enriched with features
that include its network topology information up to a predefined depth of value k.

The value of depth k is an essential parameter that seriously affects the community
prediction’s performance. However, as thorough experimentation verified, the higher
the value of depth, the less informative the calculated features had been. In particular,
the feature enrichment for depths higher than the third degree has not been profitable
since the corresponding features tended to converge to the graph’s average values. Thus,
they did not have significant contribution to the variability’s explanation.

Therefore, considering any pair of adjacent nodes, denoted as a, b, and their indi-
vidual sets of distinct neighbor vertices up to the kth depth, denoted as ak and bk respec-
tively, the following descriptive network topology measures are calculated per distinct
depth’s value:

• The intersection: The number of common neighbor vertices up to the kth depth.

intersection = |ak ∩ bk|
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• The loose similarity: The fraction of the intersection’s cardinality divided by the
union’s cardinality of the individual sets of the distinct neighbor vertices up to the
kth depth.

loose similarity =
|ak ∩ bk|
|ak ∪ bk|

• The dissimilarity: The fraction of the symmetric difference’s cardinality divided by
the union’s cardinality of the individual sets of the distinct neighbor vertices up to the
kth depth.

dissimilarity =
|ak ∆ bk|
|ak ∪ bk|

• The edge balance: The absolute difference of the cardinalities of the individual sets of
the distinct neighbor vertices up to the kth depth.

edge balance = abs(|ak|− |bk|)

• the edge information: the imminent edge’s interconnection strength indicated by the
number of different k-length paths between the vertices a, b [33].

Even if might seem computationally demanding, the feature enrichment process
described is inherently distributed. Specifically, considering that the necessary calculations
can be performed independently per distinct edge, it is more than obvious that this step is
intrinsically parallelizable.

To complete the extracted subgraphs’ transformation to community prediction-ready
training data sets, the application of a community detection algorithm is required to
properly label each distinct edge. As adequately explained in [34], no community detection
algorithm can generally be considered optimal for any community detection task. Thus,
considering that the Louvain algorithm [7] is one of the fastest modularity-based algorithms
and is broadly accepted as a community detection standard, it is selected to suitably label
the subgraphs’ edges as either intra-connection or inter-connection.

However, it is well established that the execution’s initiation node and the applied
merging’s order [1,7] heavily affect the Louvain algorithm’s returned community structure.
To ensure the validity of the labelling process, the Louvain algorithm is executed multiple
times from different, randomly selected, initiation nodes. Thus, the final assigned label is
practically the average response of the individual executions. It is notable that the signif-
icantly limited size of the extracted subgraphs and the Louvain algorithm’s decent time
complexity seem sufficient to effectively circumvent this heavy computational requirement.

3.3. Stacking Ensemble Learner

The incontrovertibly high variance of the distributed logistic regression model in [15]
and the exceedingly increased bias of the distributed bagging ensemble meta-model pre-
sented in [16], resulted in the extraction of undiscernible community structures of poor
quality. Hence, the necessity for more sophisticated community prediction methodologies is
strongly emphasized. Therefore, a highly-scalable and fully distributed, stacking ensemble
model is introduced. This community prediction meta-learner focuses on optimizing the
extracted community structure’s quality by minimizing the significant bias/variance effect.

In stacking ensemble methods, the independently trained, heterogeneous base learners
are aptly combined by training a final model relying on the individual base learners’
predictions. As shown in Figure 1, the final base learner of the proposed stacking ensemble
classifier is built on top of:

• a distributed bagging ensemble of L2 regularized, binary logistic regression classi-
fiers, and

• a distributed gradient boosted trees ensemble model [35], aka distributed GBT boost-
ing ensemble model.
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The final estimator is trained in accordance with the predicted class probabilities
generated by the individual bagging and boosting estimators that are inherently designed
to ensure high stability. This way, the proposed stacking meta-model will subtly balance
between the bagging ensemble model, which intrinsically guarantees variance mitigation,
and the boosting ensemble model that naturally specializes in bias minimization.

As previously mentioned, the community detection algorithms, which behavior the
community prediction classifier should imitate, are iterative optimization processes of
network topology measures that are ordinarily modelled with linear relationships. Hence,
apart from its intrinsic simplicity and its impressive prediction performance, the binary
logistic regression classifier seems the ideal base learner for the individual ensemble models.
This binary learner is used not only as bagging ensemble model’s base learner, but also
as the final estimator of the distributed stacking estimator. It is worth mentioning, that a
distributed version of the binary logistic regression classifier is readily available in the Spark
processing framework [35], based on which the proposed methodology was implemented.

In bagging ensemble methods, several homogeneous base learners are independently
trained on different bootstrap sampled data sets, which are properly combined by some
deterministic averaging process. Subsequently, by training one binary logistic regression
classifier per distinct community prediction-ready data set and by plainly averaging their
individual predicted class probabilities, the distributed bagging ensemble model is con-
veniently built. This ensemble meta-model is naturally distributed since both training
and prediction operations can obviously executed independently on the base learner level.
By virtue of the curse of the dimensionality and the occurrence of the multicollinearity
effect, the enforcement of regularization is necessary. Taking into consideration that the indi-
vidual coefficients are not expected to have significant discrepancies, the L2 regularization
is applied on bagging ensemble model’s base learners.

In boosting methods, homogeneous base learners are sequentially trained. This way,
any of the subsequent learners in the ensemble boost focuses on the weaknesses of the
previous estimators so as to improve the prediction accuracy. Particularly, by iteratively
adapting each base learner to the misclassified hypotheses of those of the previous levels,
boosting principally generates strong prediction models that specialize in bias reduction.
Thus, considering the community prediction’s intrinsic complexity, a distributed GBT boost-
ing ensemble model [35] is properly trained on the combined community prediction-ready
training data sets. This ensemble of decision trees productively captures the inherent non-
linearities and the subjacent feature interactions, by demonstrating extensive adjustability
and outstanding prediction performance. To avoid the GBT boosting ensemble models’
inherent tendency to overfit the following parameters require careful configuration per
distinct graph:

• The loss function that should be set to logloss to outline the classification purpose of
the stacking ensemble classifier.

• The number of decision trees.
• The maximum depth of the decision trees that depend on the input variables’ interaction.
• The learning rate, i.e., shrinkage, that determines the weighting of new decision trees

added to the model.

3.4. Complexity Analysis

As already explained, the proposed community prediction methodology initially
trains a distributed stacking ensemble classifier. It is considered that:

1. The subgraph extraction process requires the application of multiple linear BFS
crawlers which number is constant.

2. The number of the extracted subgraphs is also constant.
3. the size of the extracted subgraphs is considerably limited. Particularly, as shown

in the conducted experimentation’s execution parameters in Table 4 this size was
consistently smaller than two order of magnitude comparing to the input graph’s size.
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4. The feature enrichment process is of linear complexity and is intrinsically distributed
on the edge level.

5. The edge labelling process requires multiple executions of the Louvain algorithm [7]
on each extracted subgraph, where the number of executions is constant.

6. The Louvain [7] algorithm’s time complexity is considered O(k logk), where k indicates
the number of subgraph’s nodes.

Thus, it is safe to conclude that the overall complexity of the training step is O(k logk),
where k is the number of vertices included in the extracted training sample.

Furthermore, the time complexity of the stacking ensemble model application is
similar to the inter-connection edges removal execution’s step, which in both cases is O(m),
as regards the number of edges of the input graph, denoted with m.

Hence, since the reduction of the training data set’s size tends to outweigh the logk
factor introduced by the application of the Louvain algorithm, it seems reasonable to
conclude that the proposed methodology’s overall complexity is apparently towards
linearity, as regards the number of edges of the input graph.

4. Experimentation Process & Results Discussion

To evaluate the performance of the proposed stacking ensemble community prediction
methodology thorough experimentation has been conducted. Specifically, using an eight
node Cloudera CDH 6.3.3 cluster, with 8 GBs of RAM and 4 virtual processing cores per
execution node, the proposed methodology has been compared and contrasted against
various community extraction methods with regards to the social graphs presented in
Table 1. The Spark software framework used in terms of this experimentation as regards
the community prediction implementations was the Apache Spark 2.4.5 and the proposed
methodology was fully implemented using the Python interface for Spark API, aka PySpark,
on the DataFrame level of abstraction. On the contrary, the classic community detection
algorithms are practically built-in implementations of the NetworkX Python package.

Table 1. Evaluated data sets.

Graph Nodes Edges Average Degree

Hamster [17] 1858 12534 13.49
Bitcoin [18] 3783 24186 12.78

Email-Eu-Core [19] 1005 25571 31.96
Facebook [20] 4039 88234 43.69

Email-Enron [21] 36692 183831 10.02
Douban [22] 154908 327162 4.22
Epinions [23] 75879 508837 10.69

It is worth mentioning that to ensure the determinism and the validity of this ex-
perimentation process, each distinct execution has been repeated 10 times. As a result,
the reported values are practically the average of the individual executions.

4.1. Complexity Analysis

Regarding the evaluation of the prediction performance, to properly juxtapose the
proposed stacking ensemble methodology with the corresponding of the distributed bag-
ging ensemble methodology [16] and the distributed logistic regression model [15] the
following classification performance metrics are considered:

• Accuracy: The ratio of the correctly classified predictions over all the predictions made.
• Recall: The fraction of the correctly predicted inter-connection edges over all truly

inter-connection edges. This is practically the indicator of how well a community
prediction model classifies the truly inter-connection edges.

• Precision: The ratio of the correctly classified inter-connection edges over all inter-
connection predictions made.
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• Specificity: The fraction of the correctly predicted intra-connection edges over all
truly intra-connection edges. Accordingly, to recall, this is the indicator of how well a
community prediction model classifies the truly intra-connection edges.

• F1-Score: The harmonic mean of the correctly classified predictions.

It is self-evident that the higher the difference between the intra-cluster and inter-
cluster densities, the more qualitative and discernible the extracted community structure is
expected to be. Therefore, to consider as valid a generated community structure, the num-
ber of intra-connection edges is expected to be significantly higher than the corresponding
number of inter-connection edges. As a result, along with the accuracy, the F1-score is a
similarly critical prediction performance metric due to its intrinsic specialization in uneven
class distributions.

As already explained, the ultimate purpose of community prediction is to properly
train a binary classifier to imitate the behavior of a community detection algorithm. Hence,
the prediction performance comparison can alternatively be translated to the identification
of the community prediction methodology that better imitates the community detection
algorithm’s behavior used during training. In this case, the Louvain algorithm [7] should
serve as ground truth, dictating thusly its application to any analyzed social graph. How-
ever, this requirement places strict limitations regarding the size of the social graphs
that should be considered for experimentation. Hence, in terms of proper evaluation,
despite the proposed stacking ensemble methodology’s inherent capability of handling
way larger social graphs, the experimentation process is circumscribed to relatively small
social networks.

In terms of comparison’s fairness, apart from applying the same edge labelling strat-
egy per different community prediction methodology, the training data sets used were
also of similar size. Specifically, the experimentation execution parameters applied per
different social graph for the distributed logistic regression model [15] are presented in
Table 2. For the distributed bagging ensemble methodology [16] are given in Table 3.
Finally, Tables 4 and 5 introduce the execution parameters of the bagging and the boosting
components respectively of the proposed distributed stacking ensemble methodology.

Table 2. Distributed logistic regression [15] community prediction methodology execution parameters per distinct social
graph.

Graph Feature Enrichment Depth Training Data Set Size Ratio Over Input Graph

Hamster [17] 3 30%
Bitcoin [18] 3 32%

Email-Eu-Core [19] 3 30%
Facebook [20] 2 25%

Email-Enron [21] 2 35%
Douban [22] 2 14%
Epinions [23] 2 16%

Table 3. Distributed bagging ensemble [16] community prediction methodology execution parameters per distinct so-
cial graph.

Graph Feature Enrichment Depth Base Learners Number Base Learners’ Training Data Set Size Ratio Over Input Graph

Hamster [17] 3 3 10%
Bitcoin [18] 3 4 8%

Email-Eu-Core [19] 3 5 6%
Facebook [20] 2 5 5%

Email-Enron [21] 2 7 5%
Douban [22] 2 7 2%
Epinions [23] 2 8 2%
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Table 4. The bagging ensemble learner’s execution parameters per distinct social graph of the distributed stacking ensemble
community prediction methodology.

Graph Feature Enrichment Depth Bagging’s Base
Learners Number

Training Base Learner’s Data Set Size
Ratio Over Input Graph

Hamster [17] 3 3 10%
Bitcoin [18] 3 4 8%

Email-Eu-Core [19] 3 5 6%
Facebook [20] 2 5 5%

Email-Enron [21] 2 7 5%
Douban [22] 2 7 2%
Epinions [23] 2 8 2%

Table 5. The boosting ensemble learner’s execution parameters per distinct social graph of the distributed stacking ensemble
community prediction methodology.

Graph Feature Enrichment
Depth

GBT Decision
Trees Number

Decision Trees
Maximum Depth GBT Shrinkage

GBT Training Data
Set’s Size Ratio Over

Input Graph

Hamster [17] 3 3 12 0.03 30%
Bitcoin [18] 3 4 12 0.03 32%

Email-Eu-Core [19] 3 5 12 0.03 30%
Facebook [20] 2 5 12 0.03 25%

Email-Enron [21] 2 7 12 0.03 35%
Douban [22] 2 7 12 0.03 14%
Epinions [23] 2 8 12 0.03 16%

As emphatically proven by the experimentation’s results and shown in Figure 2,
the supremacy of the proposed stacking ensemble methodology is uncontested. By re-
porting in average, 82.72% for accuracy, 77.40% for recall, 79.93% for precision, 80.67% for
specificity and 78.99% for F1-score, the distributed stacking-based community prediction
classifier consistently outreaches the prediction performance of the other alternatives [15,16]
and systematically better-imitates the Louvain algorithm’s behavior in any analyzed graph.
Specifically, the proposed methodology exceeds the distributed logistic regression model
approach [15] by 20.33% and 38.29% in terms of average accuracy and F1-score. On the
other hand, comparing the distributed bagging ensemble technique’s [16] performance,
the proposed methodology’s outcome has proven ameliorated by 11.07% and 25.19% as
regards the average accuracy and F1-score values. Particularly, focusing on the comparison
with the distributed bagging ensemble alternative [16], it is safe to conclude that the bigger
the size of the individual graph, the higher the accuracy improvement of the proposed
community prediction methodology.

As already explained, the major problem of the other community prediction method-
ologies [15,16] is the continuously undiscernible extracted community structures due to
their indisputable tendency to misclassify the inter-connection edges. This fact is also
cross-validated by the experimentation process conducted. Specifically, the distributed
logistic regression model methodology [15] reports 31.79% in average for precision, while
the respective reported value for the distributed bagging ensemble methodology [16] is
52.53%. Although, by combining this poor precision performance with their respectable
recall values, which on average were 65.19% and 59.80%, respectively, it is safe to con-
clude that the root cause of this misclassification is their inherent reluctancy to make
inter-connection predictions. In other words, both methodologies [15,16] were more prone
on the intra-connection prediction instead of inter-connection ones.

As practically proven, the most indicative case is the Facebook graph [20]. In this,
the [15] methodology poorly reports that only the 11.14% of its inter-connection predictions
were correct, while the 76.98% of all its inter-connection predictions were truly inter-
connection. Similarly, the respective values for the [16] methodology are 23.16% for
precision and 71.95% for recall. Consequently, the corresponding generated community
structure per methodology, was apparently less fragmented than the originally expected.
On the contrary, the performance of the proposed stacking ensemble methodology for this
specific graph is way better comparing to the others. In particular, by correctly predicting
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the inter-connection edges in the 96.03% of cases and by properly identifying the truly
inter-connection edges by 92.99%, the proposed methodology successfully imitates the
Louvain algorithm’s behavior in the case of Facebook graph [20].

This is also graphically cross-verified in Figure 3, where the intra-connection edges
are represented with blue and the inter-connection edges with red. As clearly shown
in Figure 3a,d, the extracted community structures of the proposed stacking ensemble
methodology and of the Louvain algorithm’s [7] are remarkably similar. In contrast, the
generated community hierarchies of the other community prediction methodologies [15,16],
as demonstrated in Figure 3b,c, are the evidently undiscernible.
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4.2. Netowrk Quality Evaluation

It should not be neglected that the proposed community prediction methodology
is basically a community detection alternative. Thus, it is totally reasonable to quali-
tative juxtapose the extracted community structure for each social-network examined,
with the corresponding of the Louvain [7] and the Girvan–Newman [8] algorithms that are
highly regarded.

In terms of validity, considering the wide adoption of the NetworkX Python package
that readily allow the study of the structure and the dynamics of complex networks,
the respective built-in functions were used in case of the Louvain [36] and the Girvan–
Newman [37] algorithms.

To quantify the quality of the extracted community structures the following topological
quality measures are considered:

• Coverage [1]: The average value of the individual community ratio of the number of
intra-community edges to the total number of edges in the graph.

• Performance [1]: The average value of the individual community ratio of the number
of intra-community edges plus inter-community non-edges to the total number of
potential edges.

• Modularity [1,7,29]: The average value of the individual communities’ ratio of the
intra-community density to the corresponding density of the standard null model.

Considering that the ideal hierarchy structure should be consisted of completely
disconnected partitions, the coverage definition apparently concurs with the intuitive inter-
pretation of community. As shown in Figure 4, by impressively reporting 94.44% in average,
the proposed stacking ensemble methodology constantly extracts denser communities,
while outreaching the respective value of the Louvain algorithm [7,36] by 25.5% and of the
Girvan–Newman algorithm [8,37] by 38.44%. This striking coverage performance apart
from ensuring the returned hierarchy’s coherence, additionally results in the generation of
more discernible community structures. This behavior is due to the fact that the proposed
methodology tends to correctly identify more inter-connection edges comparing to the
classic approaches.

The extraction of more discernible community structures is also cross-validated by
the modularity measure, which is broadly considered [1–3] as one of the most indicative
quality functions. Taking into account that a null model is a randomized version of the
original graph which preserves the input graph’s degree sequence, modularity practically
quantifies the difference between the generated hierarchy’s average coverage and the cor-
responding of the standard null model. As well explained in [1], the higher the calculated
modularity, the denser and thus more discernible the extracted community hierarchy will
be. Hence, by reporting 84.63% in average modularity, the proposed stacking prediction
methodology manages to detect consistently denser community hierarchies comparing to
the Louvain [7,36] and the Girvan–Newman [8,37] algorithms by 38.15% and 74.35% in av-
erage, respectively. The significance of this conclusion is further strengthened considering
that the Louvain [7,36] algorithm’s primary intention is to maximize the modularity of the
generated structure.

Regarding the performance network quality measure, the root cause of the calculated
mediocre overall results lays on the sparsely connected input graphs. By definition, the
performance aims to calculate the ratio of the vertices’ pairs that either belong to the
same community and are connected, or do not belong to the same community and are
not connected, to all possible pair of vertices. As a result, the sparser the original graph,
the lesser the impact of the community extraction to this corresponding quality measure.
Hence, considering the “Average Degree” column of Table 1, only the Email-Eu-Core [19]
and Facebook [20] graphs might be eligible for consideration. For this cases, the proposed
stacking ensemble methodology outreaches, in average, the Louvain [7,36] algorithm’s
performance by 3.48% and the corresponding of the Girvan–Newman [8,37] by 8.37%.
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Finally, it should be strongly noted that the Louvain algorithm’s close imitation of the
proposed stacking ensemble methodology, with regard to the Facebook graph [20], is not only
reflected in its prediction performance, but also in the reported network quality metrics.
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4.3. Execution Performance Evaluation

In terms of completeness, despite the fact that the execution performance comparison
between the classic community detection algorithms and a fully distributed, near-linear
implementation seems aimless, this section is included to demonstrate the proposed
community prediction methodology’s remarkable potentials. Particularly, the execution
performance contrast regards the one of the fully distributed PySpark implementation of
the proposed methodology on an eight node Spark cluster of 8 GBs of RAM and 4 vCPU
cores per node, against those of the built-in, NetworkX’s Python implementations of the
Louvain [36] and the Girvan–Newman [37] algorithms on a single node of 64 GBs of RAM
and 32vCPU cores, using the Python 3.8.5 interpreter.

Hence, as plainly presented in Figure 5, the application of the proposed highly scal-
able approach practically reduces the execution time required to extract the underlying
community hierarchy of any analyzed social graph by 83.92% and 93.36%, on average,
comparing to the Louvain [36] and the Girvan–Newman [37] implementations.
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5. Conclusions

In this manuscript, a novel, near-linear, and highly scalable stacking-based community
prediction methodology is introduced. As the extensive experimentation convincingly
presented, by leveraging the plain network topology characteristics of small, bootstrap
sampled, training data sets, the proposed, fully distributed, stacking ensemble meta-learner
practically manages to effectively detect the underlying community structure of any given
social graph regardless of its size and density.

Despite the promising results, there is a great room for improvement. Specifically, by:

• Automating the stacking ensemble learner parameterization regarding the number
of the extracted subgraphs, the size of the extracted subgraphs and the value of the
depth considered on the feature enrichment process.

• Enhancing the set of network topology features calculated with additional topologi-
cal properties.

• Enhancing the labelling step during training with the further adoption of other classic
community detection algorithms such as the Girvan–Newman algorithm [7] and the
Clauset–Newman–Moore algorithm [8] and automate the selection of the suitable
labelling approach.

• Automating the parameterization process of the distributed GBT component to opti-
mally minimize the prediction bias.
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