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Abstract: The COVID-19 pandemic has resulted in a global health crisis. The rapid spread of the
virus has led to the infection of a significant population and millions of deaths worldwide. Therefore,
the world is in urgent need of a fast and accurate COVID-19 screening. Numerous researchers have
performed exceptionally well to design pioneering deep learning (DL) models for the automatic
screening of COVID-19 based on computerised tomography (CT) scans; however, there is still a
concern regarding the performance stability affected by tiny perturbations and structural changes in
CT images. This paper proposes a fusion of a moment invariant (MI) method and a DL algorithm
for feature extraction to address the instabilities in the existing COVID-19 classification models. The
proposed method incorporates the MI-based features into the DL models using the cascade fusion
method. It was found that the fusion of MI features with DL features has the potential to improve the
sensitivity and accuracy of the COVID-19 classification. Based on the evaluation using the SARS-
CoV-2 dataset, the fusion of VGG16 and Hu moments shows the best result with 90% sensitivity and
93% accuracy.

Keywords: deep learning; moment invariant; computed tomography; COVID-19; feature extraction

1. Introduction

Following the declaration of the coronavirus infectious disease 2019 (COVID-19)
outbreak as a public health emergency of global concern on 11th March 2020, it has since
been recognised as a pandemic [1]. COVID-19 is a respiratory illness caused by a novel
virus known as severe acute syndrome coronavirus-2 (SARS-CoV-2). Primarily, the virus
gains entry into the human body via the oral and nasal orifices, where it stays and rapidly
proliferates to increase the viral load [2]. The virus gradually descends to the lower
respiratory tract, reaching the lungs before it impairs the respiratory process [2]. These
events contribute to the respiratory symptoms that are manifested by infected persons.

The most widely employed technique in detecting and confirming the presence of
COVID-19 is the reverse transcription-polymerase chain reaction (RT-PCR) test [3]. How-
ever, RT-PCR results in a high false-negative rate and is time-consuming, as the screening
needs to be repeated several times. A false-negative result could pose a risk to the patients’
life because they do not receive suitable treatments on time.

Medical imaging, especially the computerised tomography (CT) scan, appears to be a
quicker and more reliable technology for the early detection of COVID-19. Given that CT
scan has the capacity to detect essential features such as patchy bilateral shadows or ground-
glass opacity (GGO), interlobular septa thickening in the lungs of COVID-19 infected
patients [4], it is currently considered the primary method for radiologists and clinical
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doctors as a screening tool for patients suspected to be positive for the virus [5]. However,
COVID-19 diagnosis based on the CT scans requires radiology experts, and the vast number
of cases results in an insufficient number of radiologists. Thus, in order to expedite the
screening of COVID-19 diagnosis and address issues relating to the scarcity of RT-PCR test
kits and prolonged waiting time for results, an automated screening is required.

Machine learning is utilised to tackle a wide range of problems in a variety of indus-
tries, including phishing detection [6], water quality research [7], facial recognition [8,9],
food recognition [10], and many others. The application of machine learning in the auto-
matic detection of COVID-19 has gained extensive recognition by expediting the diagnosis
and employing minimum labour inputs. Specifically, many researchers have applied deep
learning (DL) techniques in classifying the severity of COVID-19 in accordance with CT
scans [11–14] attributed to their remarkable ability in image processing tasks. The images
are classified by using a descriptor to extract the images’ import features (e.g., SIFT [15]
and image moment [16], which is followed by the application of classifiers such as SVM
for the final image classification [17]. Techniques that are based on deep neural networks
are characterised by high performance as the images are classified based on the extracted
features, thereby reflecting their difference compared to handcrafted features [18].

Recently, several applications involving image processing and pattern recognition
have benefited from powerful tools such as orthogonal moments and their variants. Numer-
ous researchers have reported the successful usage of image moments in feature extraction
in many applications [19,20]. For example, the combination of orthogonal quaternion
Polar Harmonic Transform moments with optimisation algorithms for image representa-
tion and feature selection was successful in classifying the images of colour galaxies [21].
However, it has been established that there are still instabilities in artificial intelligence
techniques for medical imaging that are associated with tiny perturbations and structural
changes in the CT images [22]. Events such as patient shifting, small anatomic variation
between individuals, and white-noise issues arising from the scanner might generate tiny
disturbances [22].

The main drive for conducting this research is to propose an accurate classification
technique for COVID-19 CT images that depends on the combination of the strength of
the two methods. Furthermore, this study aims to investigate the potential of the moment
invariant (MI) method for a more reliable automated COVID-19 screening. This paper
proposed a fusion of Moment Invariant (MI)-based algorithm with the VGG16 model for
feature extraction to increase the stability, sensitivity, and specificity of COVID-19 detection
based on CT scans. The performance of the proposed method was trained and evaluated
using the SARS-CoV-2 dataset. In summary, the key contributions of this research are
as follows;

• A fusion of DL-based features and MI-based features is employed into a neural
network-based framework for a more reliable and faster screening of COVID-19
patients using CT scans.

• An extensive experimental analysis is presented to validate the effectiveness and
efficiency of the MI-based COVID-19 detection algorithm. By incorporating the MI
method in the feature extraction, the proposed framework can attain the best accuracy
of 93% with high sensitivity (90%) and specificity (96%).

The above-mentioned contributions are presented in Section 1 of this article, whereas
the other parts are divided into four sections. Section 2 discusses the related works in the
research area, while the proposed method is explained in Section 3. Then, Section 4 de-
scribed the dataset preparation to be used in the experiments, whereas Section 5 elaborates
the experiments conducted and discussed the results obtained. Sections 6 and 7 present
the conclusion and potential future works, respectively.
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2. Related Works
2.1. Deep Learning Approaches for COVID-19 Detection

A modified VGG-19 model for COVID-19 detection was proposed by Mohammed [23],
which involves features extraction from CT images and chest X-rays. The performance
assessment was conducted on a self-collected database consisting of 1000 CT images
and chest X-rays. The sensitivity, specificity, and accuracy of the VGG-19 model were
reported as 97.4%, 99.4%, and 99.0%, respectively [23]. Another researcher proposed a
deep transfer learning algorithm, VGG-19, that employs Chest X-ray and CT scan images
for the prompt detection of COVID-19 cases [24]. The proposed model yielded promising
diagnostic properties with sensitivity, specificity, and accuracy of 94.0%, 95.86%, and 95.0%,
respectively [24]. For the classification of COVID-19 CT images, Butt et al. [13] reviewed
a study by comparing multiple CNN models and found that a 3D-CNN with residual
learning framework (ResNet-23) as a based network of the CNN was able to achieve an
accuracy of 86.7% [13].

Additionally, a DL approach that uses Multiple Instance Learning (MIL) Residual
neural network ResNet34 has been developed by Xiao et al. [25] for COVID-19 severity
prediction. The model used private collected CT images from different universities and pro-
duced an accuracy of 97.45% on the training set and 81.9% on the testing set. However, they
acknowledged the presence of potential bias and lack of transparency and interpretability
due to the relatively small size of the dataset employed in developing the DL approach [25].
Jaiswal et al. [11] used DenseNet-201 for the automated detection and diagnosis of COVID-
19 CT images. The researchers used the sigmoid activate function for binary classification
instead of the SoftMax activate function and generated an accuracy and specificity of 99.8%
and 99.2%, respectively [11]. Another residual learning approach on COVID-19 detection
was proposed by Ahuja et al. [26]. The authors used ResNet-18 as the pre-trained model for
abnormality localisation on the public dataset COVID-CT-Dataset and also applied image
augmentation to produce more training and testing CT images and finally achieved more
than 90% for accuracy, sensitivity, and specificity [26].

2.2. Application of Moment Invariant in Image-Based Classification

Moment invariants (MIs) are special functions of image moment. Moments are scalar
quantities that are applied to characterise a function and capture its important features. MI
is regularly applied to extract the geometric invariant features of geometric transformed
images. It is commonly used in applications such as the classification of invariant objects
and invariant features, which includes rotation, scaling, and translation extraction using
moments. Moment invariant can be categorised into continuous moments and discrete
moments. It has become a preferable selection for shape description as it provides a distinct
solution for a given problem mentioned [27]. MI has been widely applied in medical
imaging such as object detection and image registration.

Various MIs were applied by Ruggeri and Pajaro [28] to decide the layer of the eye
cornea that is visualised in the confocal microscope. Given the capacity of cell shapes to
provide distinct and individual layers, they served as the main basis for the proposed layer
recognition. Upon applying Hu’s invariants on the binarised data, the researchers were
able to classify it by ANN [28]. To avoid bias in the binarisation result, Zernike moments
(ZMs) was used as an alternative cell-shape description. The result of the implementation
outperformed the Hu moment invariants, and no binarisation was required.

Wang and Wang [29] used MIs on image processing for digital subtraction angiography
to visualise the blood vessels in X-ray images. MIs are combined for local similarity
detection during image sequence registration, which is followed by a proposed method
involving thin-plate spline image warping, which has been demonstrated to be capable of
handling both slow and sudden motions [29].

Hu MIs have also been applied to describe protein fragment features in order to
identify the functions of proteins, including the SARS coronavirus [30]. The morphometry
of cortical sulci was performed by using three-dimensional geometric moments and their
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invariants [31]. These MIs were applied with respect to rotation, translation, and uniform
change of scale, and the approach successfully characterised the brain activities based on
the Principal Component Analysis (PCA) of the first 12 invariants, which was computed for
the first 12 different deep brain structures [31]. Furthermore, the approach was employed
to the shapes of 116 various cortical sulci that were automatically detected in a dataset of
142 brains to obtain their correlates of handedness and gender [31].

3. Proposed Method

The block diagram of the proposed moment invariant-based deep learning method
for COVID-19 classification based on CT images is shown in Figure 1. There are three main
stages in the proposed method, which are features extraction from the CT images, features
concatenation, and classification. Two types of features are extracted during the feature
extraction stage: DL features and MI features. For DL feature extraction, three different
CNN architectures are utilised in this work: namely, the Custom CNN, ResNet50, and
VGG16. Meanwhile, the MI-based features are extracted using the Hu moment invariant
method. Then, these two features (DL-based and MI-based features) are concatenated
using the cascade fusion. Lastly, classification based on the fused features is performed by
using the fully connected (FC) layers. The details of each stage of the proposed method are
explained further in the following subsections.

Figure 1. Block diagram of the proposed method.

3.1. DL Features Extraction

For image classification of a case of COVID-19 as negative or positive, three CNN
models were developed to extract essential features. A Custom CNN was constructed,
and two pre-trained models, ResNet50 and VGG16, were reconstructed as the DL feature
extractor. Each model was composed of two parts: convolutional base and classifier.
The convolutional base comprises convolutional and pooling layers to generate features,
whereas the classifier categorises the image based on extracted features. The transfer
learning technique is used to work with the two pre-trained models by fine tuning the
models’ parameters using the pre-trained weight of ImageNet [32]. It helps to overcome
the overfitting problem, as we have a limited amount of CT images for training purposes.
The classifier part for all the pre-trained models was removed, and their convolutional
bases were used to extract the DL features. The Custom CNN is constructed from scratch
with five convolutional layers. The Custom CNN will be further described in Section 3.1.3.
For the Custom CNN network, the features are extracted at the final max-pooling layer
and a volume shape of 11 × 11 × 64. ResNet50 generated features of shape 7 × 7 × 2048
at the final activation layer and VGG16 output features of shape 7 × 7 × 512 at the final
max-poling layer.

3.1.1. Pre-Trained Model (VGG16)

Two well-established pre-trained models are used in the proposed method: (i) VGG16
and (ii) Resnet50. VGG16 is a CNN architecture that won the ILSVR (Imagenet) competition
in 2014 [18]. This model is able to extract low-level features by using its small kernel size
and proved to have an excellent feature extraction ability for the classification of COVID-
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19 CT images, as reported in [33]. VGG16 consists of 16 convolutional layers and has a
small receptive field of 3 × 3. It also has five max-pooling layers of size 2 × 2 with stride
two [18]. In this study, the VGG16 model follows the original architectures, which can be
downloaded using Keras libraries via the Application API. For this work, the VGG16 model
is loaded from the Keras framework using the command from “keras.applications import
VGG16”, with “include_top” argument set to False upon importing the model in order to
omit the original classifier part of the model. Furthermore, the last max-pooling layer was
also omitted and replaced with an average pooling layer. During the classification phase,
the output features from the average pooling layer of the VGG16 model are fed into the new
fully-connected layers. The new classifier part of the VGG16 model consists of one flattened
layer and two dense layers, with each generating 100 and 2 outputs, respectively. The first
dense layer has a Rectified Linear Unit (ReLU) activation function with 0.5 dropout. The
output layer, which is the last dense layer, has a Sigmoid activation function. The feature
map size of the generated VGG16 features used in this work is 25,088 × 1 dimension per
input image. Figure 2 depicts the VGG16 architecture used in this paper.

Figure 2. The VGG16-based architecture used in this work.

3.1.2. Pre-Trained Model (ResNet50)

ResNet50 is a form of a residual network having 50 layers. It is comparable to VGG16
except that ResNet50 has an additional identity mapping capability. The identity mapping
used in ResNet50 allows the model to bypass a CNN weight layer if the current layer
is not necessary. It reduces the vanishing gradient problem by allowing an alternate
shortcut for the gradient to flow. In this research, the ResNet50 model is loaded from the
Keras framework using the command “from keras.applications import ResNet50” with the
“include_top” argument set to “False”. Furthermore, an average pooling layer is added
after the convolutional layer of the fifth convolutional block. Similar to VGG16, a new
classifier part is added after the average pooling layer of the ResNet50. The feature map
size of the generated ResNet50 features used in this work is 2048 × 1 dimension per input
image. The ResNet50 architecture used in this paper is depicted in Figure 3.

3.1.3. Custom CNN

The Custom CNN model is constructed from scratch using the sequential method.
All the libraries required to build a sequential model are imported from the keras.model
and keras.layers. The Custom CNN is composed of five convolutional layers and four
max-pooling layers. All convolutional layers have a window shape of size 3 × 3. The first
convolutional layer uses 32 convolution filters, and the subsequent convolutional layers
use 64 convolution filters. Furthermore, 2 × 2 maximum pooling layers were applied
after the first, second, fourth, and fifth convolutional layers. Correspondingly, after the
last max-pooling layer, there is an FC layer with the ReLU activation function and an FC
layer with the Softmax activation function. For this network, the dropout is fixed to 0.5,
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and the first dense layer is set to generate 128 outputs while the second dense layer is
set to generate two outputs. Figure 4 depicts the architecture of the Custom CNN model.
The feature map size of the generated Custom CNN features is 12,800 × 1 dimension per
input image.

Figure 3. The ResNet50-based architecture used in this work.

Figure 4. Custom CNN architecture used in this work.

3.2. Hu Invariant Moment

The MI-based features of each CT image are extracted using the Hu invariant moments
function from the OpenCV library. Hu moments have specific features such as scaling,
rotation insensitive, and could be translated. They are capable of extracting contour
and shape characteristics from lung images. Hu moments of an image are statistical
outcomes produced following the weighing of average image intensities of the pixels, and
the moments are insensitive to image transformations [34,35]. This signifies that the same
moment values are produced irrespective of the alterations made to the image. Hence, to
enhance the CNN in terms of invariance to the limitation of image transformations, the
Hu’s moments of the image can be fed to the FC neural network. The central moments
provided below can be used to achieve the invariant features [35,36]:

µpq =
x ∞

−∞
(x − x)p(y − y)q f (c, y)dxdy (1)

where
p, q = 0, 1, 2, . . . , x =

m10

m00
and y =

m01

m00
.

The pixel point (x,y) is the image’s centroid f (x, y). The centroid moments µpq
are estimated by using the image’s centroid f (x, y), which is equal to the mpq, whose
centre has been shifted to the image’s centroid. As a result, the central moments remain
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unchanged and insensitive to image translations. Normalisation can be applied to obtain
the scale invariance [36].

The following equation defines the normalised central moments:

ηpq =
µpq

µ
γ
00

(2)

where
γ =

p + q + 2
2

and p + q = 2, 3, . . . .

A total of seven moment invariants are produced in line with the normalised central
moments in (1) and (2):

h1 = η20 + η02 (3)

h2 = (η20 − η02)
2 + 4η2

11 (4)

h3 = (η30 − 3η12)
2 + (3η21 − µ03)

2 (5)

h4 = (η30 + η12)
2 + (η21 + µ03)

2 (6)

h5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] + (3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
]

(7)

h6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03) (8)

h7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]− (η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
]
. (9)

Hu moment invariants are a set of seven numbers calculated using central moments
that are invariant to image transformations. The first six moments are invariants under
translation, rotation, and scaling [35], whereas the seventh moment’s sign changes depend-
ing on the direction of the image reflection. According to [35], as the image resolution
increases, the fluctuation of moment values becomes more stable. When the resolution
exceeds 270 × 270, the fluctuation no longer decreases and becomes stagnant. This means
that even if some changes were made to the image, it will always produce nearly iden-
tical moment values. After rescaling the CT images to 224 × 224 dimension during the
pre-processing step, the process of extracting the Hu moments of the CT images begins
with reading the image and then converting it to a grayscale image. This is implemented
through the use of Python’s imread() and cvtColor() functions. OpenCV has a built-in
function for calculating Hu moments called HuMoments(). This function takes the central
moment of the images, which can be calculated using the function moments() as input.
Then, the seven Hu moment values are generated in the shape of a 7 × 1 dimension.

3.3. Features Concatenation

The high-level features of each image extracted from DL models were concatenated
with the Hu moments feature of the respective image into a composite vector. Cascade
fusion is applied to directly connect to the two feature maps (DL features and Hu moment
features) while retaining all the elements due to its suitability for the fusion of feature maps
of any dimension, as proposed by Ren et al. [37]. The extracted Hu moment values were
presented as a one-dimensional row vector, whereas the features extracted from Custom
CNN and pre-trained models were multi-dimensional feature vectors. The concatenation
process begins with flattening the features extracted from a CT image by a DL model. The
output of the last convolutional or pooling layer of the DL model is multi-dimensional
features of the CT image. These features needed to be flattened so that it can be concatenated
with the one-dimension Hu moments. By using the K.concatenate() in Keras, the flattened
DL features and the Hu moments of the image were concatenated to produce the final
fused features. Figure 5 depicts the concatenation process of DL features and Hu moment
of one CT image.
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Figure 5. Features concatenation process between the DL features and the Hu moments of a CT image.

3.4. Classification Phase

In this work, a fully connected network is built with two fully connected (FC) layers.
The first FC (dense) layers generates 100 output units for VGG16 and ResNet50 and
128 output units for Custom CNN with a ReLU activation function and a dropout of
50%. The second FC (dense) layers generates two output units with a sigmoid activation
function for VGG16 and ResNet50 and softmax activation function for Custom CNN. In the
classification phase, the fused features generated by the concatenation process between the
DL features and the Hu moment invariants were preserved as one-dimensional features.
Then, these features were fed into FC networks. In a neural network, the activation
function is responsible for transforming the summed weighted input from the node into
the activation of the node or output for that input. Compared to any other activation
function, ReLU prevents exponential growth in a model computation and is simpler to
implement, since it has only a derivative of either zero or one, depending on whether its
input is respectively negative or positive. Lastly, the output of the last FC layer is used to
predict the probability of COVID-19 positive and COVID-19 negative labels.

4. Dataset

The present research used the SARS-CoV-2 CT-Scan dataset for experimental purposes.
Soares et al. [38] compiled this dataset after collecting the data from a hospital in Sao Paulo,
Brazil and obtaining approval by their ethical committee. The dataset has been made public
by the authors on 22 April 2020 and can be accessed via the Kaggle website at the follow-
ing link: https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset (accessed on
14 January 2021). The SARS-CoV-2 dataset is a well-balanced dataset with 1230 COVID-19
negative and 1252 COVID-19 positive CT scans, contributing to a total of 2482 CT scans. A
balanced dataset prevents the domination of the minority class by the majority class, where the
classifier learns only one class concept rather than two distinct concepts during the training
process [24]. Furthermore, the SARS-CoV-2 dataset is one of the most recent datasets with the
most significant COVID-19 positive and negative radiology images [24]. This dataset contains
digital scans of printed CT images ranging in size from 104 × 153 to 484 × 416 pixels. The
model was trained using a sample of data designed for training purposes. The model was
fit into the training dataset by adjusting the parameters. A validation dataset is a dataset

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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used for frequent evaluation of the model. This validation dataset was used in fine-tuning
the model hyper-parameters, but it was not applied for the training process. Lastly, a
testing dataset is a subset of data used to evaluate the performance of the trained model on
the unseen data. The most important factor in the success rate of machine learning is the
amount of training provided and the availability of testing data [39]. According to experts’
opinions, test outcomes will fail to attain a good classifier if training data is below 50% [40].
Hence, to be assured of achieving an accurate diagnosis, the training data were increased.
The selected dataset was manually divided into training, validation, and testing sets with
a ratio of 82.8%, 9.1%, and 8.1%, respectively. The training dataset consists of 2054 total
images, with 1032 COVID-19 negative and 1022 COVID-19 positive CT images. On the
other hand, the validation dataset comprises 121 and 107 CT images that are COVID-19
negative and COVID-19 positive, respectively. The testing dataset had a total of 200 CT
images with an equal number of COVID-19 positive and negative cases. The partition of
the selected dataset is summarised in Table 1. Then, all CT images from the training and
testing sets were rescaled into 224 × 224 pixels using OpenCV’s resize function.

Table 1. Dataset partition.

Dataset COVID-19 Positive COVID-19 Negative Total Percentage

Training 1022 1032 2054 82.8%
Validation 107 121 228 9.1%

Testing 100 100 200 8.1%

Total 1252 1230 2482 100%

5. Experiments

Figure 6 summarises the experiments conducted to validate the proposed method. In
the first part of the experiments, the CT images only undergo basic pre-processing steps
before the training and testing phases, which includes rescaling into 224 × 224 dimension
using the resize function from OpenCV and pixels normalisation. All images that were fed
into the DL models (Custom CNN, ResNet50, and VGG16) for feature extraction retained
their three-dimensional colour channel format. However, the images that were fed into
the Hu invariant moment method were grey-scaled. Then, all rescaled images pixel values
were normalised into a range between zero and one. In another part of the experiments,
additional pre-processing steps called region of Interest (ROI) segmentation was carried
out before the training and testing phases. The model implementation has been carried out
using Keras API in Python, with a Tensorflow backend.

For medical imaging, the ROI contains the main disease information, which is the
main basis for the doctor to diagnose and formulate the treatment plan [41]. Hence,
ROI can replace the original image in image processing, which can reduce the amount
of calculations and deal better with the rapid growth of image data [41]. Segmentation
of ROI from the enhanced image is widely employed by researchers with automated
and semi-automated techniques [42]. In this work, the lung structure in the CT images
was automatically segmented using Python’s OpenCV and scikit-image libraries. The
segmentation process begins with image binarisation using a threshold of 150 Hounsfield
Units (HU), which is followed by removing the unwanted regions connected to the image’s
border. All tiny and unnecessary parts surrounding the left and right lung parenchyma
were removed. Thereafter, a binary erosion with a disc of radius two was used to detach
the lung nodules from the blood vessels. Next, binary erosion with a disc radius of 10 was
used to maintain the attachment of the nodules to the lung wall, resulting in a binary mask
of the lungs. Small holes, large airways, blood vessels, and trachea were filled with the
hole-filling function within the lung’s binary mask. This procedure was performed to
produce complete ground truth images of the lungs. Finally, these ground truth images
were superimposed to fill the masked region with the original lung region, which is the
ROI. Segmented ROI image pixels values were normalised into a range between 0 and 1 to
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convert the images into the range that could be normally sensed. Figure 7 shows the ROI
segmentation of a lung CT scan.

Figure 6. Flowchart of the experiments.

Figure 7. ROI segmentation of a lung CT scan. Each panel presented the image result of every steps of
the segmentation process: (a) original CT; (b) binarised; (c) border removed; (d) component labelled;
(e) biggest two selected; (f) blood vessels separated; (g) mask closure; (h) holes filled; (i) segmented
image.
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6. Results and Discussion

Throughout this section, several abbreviations were used for better organisation and
presentation of the results. The DL models without the use of MI-based features were de-
noted as Custom CNN, ResNet50, and VGG16, whereas the DL models involving the use of
MI-based features were designated as Custom CNN + MI, ResNet50 + MI, and VGG16 + MI.
The results obtained from the experiments are presented in the following subsections.

6.1. Models’ Performance on Unsegmented CT Images

For each of the DL models, training and validation were conducted for 100 epochs,
and we set the learning rate to be 0.0004 with an Adam optimiser. A single passing of
the whole training dataset to the neural network is insufficient for the network model to
learn the weights. A small number of epochs will result in the underfitting of the model,
whereas overfitting ensues if there are very high numbers of epochs. Therefore, 100 epochs
were proposed and used for better weight updating and learning optimisation. Next, the
learning rate is a hyper-parameter that affects the learning process during the training
phase. If the training rate is too high, the training will become unstable, or the learning
set’s weight will be too fast, whereas a very low learning rate will prolong the training
process. Since this experiment was only run for 100 epochs, which is not really long, a
small learning rate of 0.0004 was proposed.

The training and validation accuracy of the DL models without MI on the unseg-
mented datasets are shown in Figure 8. As presented by the dots on the curve lines in
Figure 8a, the best training accuracy for the Custom CNN was obtained on the 94th epoch,
ResNet50 on the 99th epoch, and VGG16 on the 24th epoch, whereas for the validation
accuracy in Figure 8b, the best epochs were obtained for Custom CNN, ResNet50, and
VGG16 on the 90th, 88th, and 51st runs, respectively. In Figure 9a, the Custom CNN + MI,
ResNet50 + MI, and VGG16 + MI obtained the best training accuracy on the 12th, 98th, and
16th epochs, respectively. For the validation accuracy in Figure 9b, the best epoch obtained
for Custom CNN + MI, ResNet50 + MI, and VGG16 + MI was obtained on the 38th, 83th,
and 55th epochs, respectively.

Figure 8. (a) Training and (b) validation accuracy for DL models without MI.
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Figure 9. (a) Training and (b) validation accuracy for DL models with MI.

After the training phases, the DL models were tested on the pre-processed testing
dataset. Based on the generated confusion matrices and Receiver Operating Curves (ROCs),
the performance of the DL models with and without MI was summarised in Table 2. The
Area under the Curve (AUC) values of the Custom CNN and VGG16 models ranged from
0.95 to 0.98, respectively, which is considered an excellent classification performance. Both
AUC values of the Custom CNN and VGG16 were very close to 1, because the prediction
power of both models was good. Specifically, the predicted probability values close to 1 are
regarded as correct labelling, while values close to 0 represent incorrect labelling.

Table 2. Performance of DL models with and without MI on the testing dataset (unsegmented).

Model TP TN FP FN AUC Sensitivity (%) Specificity (%) Accuracy (%)

Custom CNN 90 90 10 10 0.956 90 90 90
ResNet50 84 69 31 16 0.856 84 69 76.5
VGG16 88 97 3 12 0.975 88 97 92.5

Custom CNN + MI 85 96 4 15 0.968 85 96 90.5
ResNet50 + MI 75 72 28 25 0.825 75 72 73.5
VGG16 + MI 90 96 4 10 0.969 90 96 93.0

The highest AUC was exhibited by VGG16 and with a specificity value of 0.975 (97.5%).
It can also be seen that the use of MI-based features could increase the DL model’s specificity
performance in classifying COVID-19 cases, as supported by the higher specificity obtained
by the Custom CNN + MI (96%) and ResNet50 + MI (72%) compared to the Custom CNN
(90%) and ResNet50 (69%), respectively. However, there was a 1% decrease in the specificity
obtained by VGG16 + MI when compared to VGG16. VGG16 yielded the highest specificity
value with 97%. Furthermore, it can also be seen the accuracy value of Custom CNN
and VGG16 models increased when using the MI-based features. Specifically, Custom
CNN + MI (90.5%) and VGG16 + MI (93%) showed 0.5% higher accuracy than Custom
CNN (90%) and VGG16 (92.5%), respectively. Based on these findings, it can be concluded
that MI has the potential to mitigate the inaccuracy of the COVID-19 classification model
as the model learns an additional seven features from the CT image. The Hu moments
concatenated into the DL features has made the flattened vector more informative and
more discriminative. The more features learned by the model, the greater the recognition
ability of the model. In addition, the DL models were trained to see the Hu moment,
extent, and solidity values alongside the DL features vector. These values had affected the
activations in the network in order to achieve transformation invariant.

In contrast, there was a significant decrease in the accuracy value when MI-based
features were employed in the ResNet50 model. Accordingly, by applying only the feature
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extracted via ResNet50, the model yielded an accuracy value of 76.5%, which decreased to
73.5% when ResNet50 + MI was used. For sensitivity, the highest results were obtained
by Custom CNN and VGG16 + MI, with each yielding a value of 90%. Although VGG16
+ MI showed a significant increase in sensitivity compared to VGG16 (88%), the Custom
CNN + MI (85%) and ResNet50 + MI (75%) exhibited lower sensitivity values than Cus-
tom CNN (90%) and ResNet50 (84%), respectively. In both MI-based and non-MI-based
experiments, the ResNet50 model had shown the worst performance compared to other
models. The low ResNet50 performance could be attributed to the ResNet50 feature map
size (2048 × 1 dimension) employed in this work being significantly less than the VGG16
feature map size (25,088 × 1 dimension) [10]. The larger feature map size of VGG16
compared to Custom CNN and ResNet50, on the other hand, is likely to contribute to
VGG16 giving the best overall accuracy. Hence, the proposed method gained the overall
advantages of using VGG16 as the feature extractor. Overall, VGG16 + MI yielded the
highest sensitivity and accuracy values with 90% and 93%, respectively, thereby making it
the best among the six models generated.

6.2. Models’ Performance on Segmented CT Images

All the training and validation process was conducted for 100 epochs, and the learning
rate was set at 0.0004 with an Adam optimiser. Figure 10 shows the training and validation
accuracy of the DL models without MI on the segmented training and validation datasets,
respectively. As presented by the dots on the curved lines in Figure 10a, the best training
accuracy results for the VGG16 was obtained on the 29th epoch, while that for ResNet50
was obtained on the 70th epoch, and that for Custom CNN was obtained on the 76th
epoch. For the validation accuracy depicted in Figure 10b, the best epoch was obtained
for Custom CNN, ResNet50 and VGG16 on the 76th, 79th, and 28th runs, respectively. In
Figure 11a, the Custom CNN + MI, ResNet50 + MI, and VGG16 + MI obtained the best
training accuracy on the 43rd, 100th, and 93rd epochs, respectively. For the validation
accuracy, the best epoch was obtained for Custom CNN + MI, ResNet50 + MI, and VGG16
+ MI on the 23rd, 94th, and 37th runs, respectively.

Figure 10. (a) Training and (b) validation accuracy for DL models without MI on segmented images.



Big Data Cogn. Comput. 2021, 5, 74 14 of 20

Figure 11. (a) Training and (b) validation accuracy for DL models with MI on segmented images.

After the training phases, the DL models were tested on the segmented CT images
in the testing dataset. Based on the generated confusion matrices and the ROCs, the
sensitivity, specificity, and accuracy performance of the DL models with and without
MI on the segmented CT images were calculated and recorded (Table 3). Then, these
results were compared to the findings in Table 2. As shown in Table 3, most of the models
with segmentation on the input images performed worse compared to those without
segmentation. For example, Custom CNN yielded a sensitivity value of 90% on the
unsegmented images and 80% on the segmented images, thereby showing a 10% decrease
in sensitivity due to segmentation on the input images.

Table 3. Performance of DL models with and without MI on the testing dataset (segmented vs. unsegmented).

Model
With Segmentation Without Segmentation

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

Custom CNN 80 88 84.6 90 90 90
ResNet50 77 82 79.5 84 69 76.5
VGG16 82 93 87.5 88 97 92.5

Custom CNN + MI 81 84 82.5 85 96 90.5
ResNet50 + MI 76 79 77.5 75 72 73.5
VGG16 + MI 86 90 88 90 96 93

There was a 12% decrease in specificity by Custom CNN + MI with image segmenta-
tion compared to the Custom CNN + MI without the image segmentation. Additionally,
with image segmentation, both VGG16 and VGG16 + MI showed a 5% decrease in accuracy
when compared to that without image segmentation. However, ResNet50 with image
segmentation showed significant improvement in specificity and accuracy, with 82% and
79%, respectively. ResNet50 + MI also showed better results on the segmented images with
76% sensitivity, 79% specificity, and 77.5% accuracy.

Given the overall performance of the models on the segmented images, it can be
concluded that segmentation on the input CT images would decline the performance of
the COVID-19 classification. This might be due to the poor segmentation of lung images,
which resulted in improper segmentation of some critical lung regions. The improperly
segmented region is adherent to the inner lung or lung wall and resulted in the loss of
essential features during model training, thus leading to the lower recognition ability of
the models.

6.3. Models’ Performance Report with Confidence Intervals

A confidence interval (CI) is an interval statistic used to quantify the uncertainty
on an estimate. CI is commonly employed to contain an unknown characteristic of the
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population or process [43]. The quantity of interest might be a population property or
parameter, such as the mean or standard deviation of the population or process [43]. In
applied machine learning, CI can be used in presenting the skill of a classification model, in
particular, the models’ accuracy. Each prediction is a binary decision that could be correct
or incorrect. Technically, this is called a Bernoulli trial [44]. The proportions in a Bernoulli
trial have a specific distribution called a binomial distribution. In statistics, a succession
of independent events that either succeed or fail is called a Bernoulli process [45]. For
large n, where n is the size of the testing dataset, the distribution of this random variable
approaches the normal distribution [45]. Hence, with large sample sizes (e.g., more than
30 samples), this distribution can be approximated using the Gaussian. In other words, the
CI can be calculated based on the assumption of a Gaussian distribution of the proportion.
For example, if acc is the accuracy rate while classifying some data S of size n, a CI with a
95% confidence level for accuracy of the classification model can be computed as follows:

CI = acc ± 1.96

√
acc(1 − acc)

n
(10)

where 1.96 is the constant value corresponding to the 95% confidence level. In this study,
this formula is also applied to calculate the CI for sensitivity and precision. Hence, the
generalized equation for CI is:

CIp = p ± z

√
p(1 − p)

n
(11)

where z is a constant value corresponding to a given confidence level, n is the size of the
testing dataset, p can be acc, sen, and spec, which refer to the performance metrics accuracy,
sensitivity, and specificity, respectively. In this paper, the value of z is set to 1.96.

Simply reporting the classification model’s sensitivity, specificity, and accuracy is
insufficient, because the results may vary when the model is evaluated on different samples.
Hence, CI is needed to represent the possible range around the estimated performance
metrics so that practitioners would be able to understand how good or bad the model
would be. CI also represent the stability of the estimation. A stable estimate is one that
would be close to the same value if the experiments were repeated. An unstable estimation
is one that would significantly vary from one sample to another. A wider CI in relation
to the estimate itself indicates instability. On the other hand, narrow CI in relation to the
point of estimate tells us that the estimated value is relatively stable and that repeated
experiments would give approximately the same results.

Tables 4 and 5 present the calculated confidence intervals for the models’ performance
on unsegmented and segmented testing datasets, respectively. In Table 5, for the sensitivity
metric, Custom CNN and VGG16 + MI have the narrowest CI (4.16%). This suggests that
the true sensitivity values are likely between 85.84% and 94.16%. For the accuracy metric,
the smallest range of CI lower and upper boundaries was on VGG16 + MI, where the
reported accuracy of the model was 93.0 ± 3.54% at a 95% confidence level. In addition,
when compared to other models, the VGG16 model has the highest specificity rate as well
as the smallest CI lower and upper bounds range (2.36%). When tested on segmented
images, there is a 95% chance that the ranges [81.19, 90.81] and [83.5, 92.5] correspond to
the true model’s sensitivity and accuracy of the VGG16 + MI (refer to Table 5).
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Table 4. Confidence intervals for the models’ performance on unsegmented testing dataset.

Model Sensitivity ± CIsen(%) Specificity ± CIspec(%) Accuracy ± CIacc(%)

Custom CNN 90 ± 4.16 90 ± 4.16 90 ± 4.16
ResNet50 84 ± 5.08 69 ± 6.41 76.5 ± 5.88
VGG16 88 ± 4.5 97 ± 2.36 92.5 ± 3.65

Custom CNN + MI 85 ± 4.95 96 ± 2.72 90.5 ± 4.06
ResNet50 + MI 75 ± 6.0 72 ± 6.22 73.5 ± 6.12
VGG16 + MI 90 ± 4.16 96 ± 2.72 93.0 ± 3.54

Table 5. Confidence intervals for the models’ performance on segmented testing dataset.

Model Sensitivity ± CIsen(%) Specificity ± CIspec(%) Accuracy ± CIacc(%)

Custom CNN 80 ± 5.54 88 ± 4.5 84.6 ± 5.0
ResNet50 77 ± 5.83 82 ± 5.32 79.5 ± 5.6
VGG16 82 ± 5.32 93 ± 3.54 87.5 ± 4.58

Custom CNN + MI 81 ± 5.44 84 ± 5.08 82.5 ± 5.27
ResNet50 + MI 76 ± 5.92 79 ± 5.65 77.5 ± 5.79
VGG16 + MI 86 ± 4.81 90 ± 4.16 88 ± 4.5

6.4. Gradient-Weight Class Activation Mapping (Grad-CAM)

To increase the transparency of the proposed method, Grad-CAM is used to visualise
the regions of the CT images that are essential for prediction by the best model (VGG16).
The Grad-CAM used class-specific gradient information flowing into the last convolutional
layer to generate a localisation map of the essential regions in an image [24]. In this paper,
Grad-CAM is applied to the final convolutional layer after the predicted class has been
determined using the proposed VGG16 model. Figure 12 shows several examples of Grad-
CAM visualisation on the COVID-19 CT images. As shown in Figure 12, the heatmap on
each image shows the potentially infected region for COVID-19. The heatmap is standard
jet colourmaps and is overlapped on the original image where the red colour highlights
the activation region associated with the predicted class (in this case, COVID-19 positive).
In addition, the heatmap in Figure 12 indicates the COVID-19 features learned by the
proposed VGG16 model.

6.5. Comparison with Other Works

Table 6 compares this paper’s proposed VGG16 + MI model to the recently published
literature on DL approaches applied for COVID-19 detection. All the models reported
in Table 6 uses the SARS-CoV-2 dataset for their experiments. Based on the findings,
VGG16 + MI gives a higher accuracy value than VGG19 + DenseNet169 [46], COVID-
Net [47], and DenseNet121 [48]. Furthermore, VGG16 + MI also has a higher sensitivity rate
than the COVID-Net model by Wang et al. [47]. Although the model by Hasan et al. [48] has
a higher sensitivity rate than the proposed model, DenseNet121 [48] has a more complex
architecture than VGG16 + MI, since DenseNet121 consists of a total of 58 convolutional
layers, whereas VGG16 + MI consists of only 16 convolutional layers. If lower complexity
holds higher priority, then the VGG16 + MI is preferable when compared to DenseNet121,
given that there is only a 2% difference in the sensitivity rate. However, the proposed
model has a lower accuracy value when compared to VGG19 + Grad-CAM [24]. In contrast
to our approach, Panwar et al. performed data augmentation on their training dataset [24].
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Figure 12. Grad-CAM visualization of the infected region on COVID-19 CT images based on a
prediction by the VGG16 model.

Table 6. Summary of deep learning-based COVID-19 diagnosis approaches using the SARS-CoV-2
dataset in recent studies compared to our VGG16 + MI model.

Author and DL Model Accuracy Sensitivity Data Augmentation

Panwar et al. [24], VGG19 + Grad-CAM 95% 94.04% 4

Jangam et al. [46], VGG19 + DenseNet169 91.5% 90% 6

Wang et al. [47], Redesigned COVID-Net 90.83% 85.89% 6

Hasan et al. [48], DenseNet121 92% 92% 6

Out best model, VGG16 + MI 93% 90% 6

7. Conclusions

In this paper, a novel moment invariant based on a neural network algorithm for
COVID-19 diagnosis was introduced by incorporating the MI method in the feature extrac-
tion of CT scans. First, the Hu invariant moment function from OpenCV was used to extract
the MI-based features from the CT images, and three DL models (Custom CNN, ResNet50,
and VGG16) were re-structured to extract the DL-based features from the images. Then, the
two features are concatenated using the cascade fusion method. Finally, the fused features
are fed into the FC layers for the classification process. Based on the experiments conducted
on the SARS-CoV-2 dataset, it was found that fusion of MI features with DL features has
the potential to improve the sensitivity and accuracy of the COVID-19 classification, but
with only a small increment. However, the computational time required to extract and
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concatenate both DL and moment invariant features is significantly longer than the time
required to extract only DL features. Nevertheless, if accuracy holds higher priority, then
the use of the fused features is the better choice. Additionally, it was discovered that an im-
proper segmentation of CT images could result in a reduction of the model’s classification
and recognition ability.

8. Future Works

The future work includes expanding the size of the dataset and testing the proposed
method on a larger and more heterogeneous dataset. Furthermore, a cross-dataset will also
be considered where the model is trained and tested on different datasets or a combination
of the datasets. Additionally, as inspired by [49], the binary classification in this work could
be further improved to multi-class classification, which classified the COVID-19 CT images
according to the levels of the infection’s severity. Given the increasing number of active
cases nowadays, patients with more severe infections were given priority for treatment
at the hospitals and quarantine centres. Although the present study could expedite the
screening process, further examination on the severity of the infection should be done to
decide whether or not the COVID-19 positive patients should be given intensive therapy.
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