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Abstract: In high-dimensional data analysis, Feature Selection (FS) is one of the most fundamental
issues in machine learning and requires the attention of researchers. These datasets are characterized
by huge space due to a high number of features, out of which only a few are significant for analysis.
Thus, significant feature extraction is crucial. There are various techniques available for feature
selection; among them, the filter techniques are significant in this community, as they can be used
with any type of learning algorithm and drastically lower the running time of optimization algorithms
and improve the performance of the model. Furthermore, the application of a filter approach depends
on the characteristics of the dataset as well as on the machine learning model. Thus, to avoid
these issues in this research, a combination of feature reduction (CFR) is considered designing a
pipeline of filter approaches for high-dimensional microarray data classification. Considering four
filter approaches, sixteen combinations of pipelines are generated. The feature subset is reduced in
different levels, and ultimately, the significant feature set is evaluated. The pipelined filter techniques
are Correlation-Based Feature Selection (CBFS), Chi-Square Test (CST), Information Gain (InG), and
Relief Feature Selection (RFS), and the classification techniques are Decision Tree (DT), Logistic
Regression (LR), Random Forest (RF), and k-Nearest Neighbor (k-NN). The performance of CFR
depends highly on the datasets as well as on the classifiers. Thereafter, the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking all reduction
combinations and evaluating the superior filter combination among all.

Keywords: feature selection; machine learning; microarray gene extraction; pipelining; TOPSIS

1. Introduction

Over the years, researchers have been trying with microarray technology to track gene
expression on a genomic scale. Cancer diagnosis and classification are possible through
examining the expression of genes. The use of microarray technology to analyze gene
expression has opened up a world of possibilities for studying cell and organism biology [1].
Nowadays, every researcher primarily focuses especially on the behavior of genes across
the conditions of the experiment studied; however, recently, biomedical applications have
fueled both the use of available technologies and the efficient implementation of new
analytical tools to deal with these complex data. Microarray data analysis yields useful
results that aid in the resolution of gene expression problems. Cancer categorization is
one of the most significant uses of microarray data analysis. This reflects variations in the
levels of expression of various genes. However, categorizing gene expression profiles is
a difficult process that has been classified as an NP-Hard issue. As a result, not all genes
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have a role in the development of cancer. In clinical diagnosis, a large percentage of genes
are insignificant [2].

Researchers were able to examine hundreds of gene expression patterns concurrently
using microarray technology, which is useful in a variety of disciplines, particularly in
medicine, mainly for the detection of cancer; in biomedical research, categorizing patient’s
gene expression profiles has become a regular topic. The main issue is dealing with the
dimensionality of microarray data [3]. As microarrays have such a vast dimension, efficient
algorithm exploration becomes too difficult for analyzing gene expression features. There
are more incorrect characteristics in the dataset, due to which the algorithm’s accuracy
suffers considerably [4]. Due to this reason in the pre-processing stage, feature selection
approaches are used to extract meaningful information. The goal of the feature selection
method is to identify the most significant characteristics from the microarray data to
reduce the feature set and enhance classification accuracy. Using feature selection and
classification approaches, gene expression analysis of cancer diagnosis has been made.
However, combining an efficient feature selection method and classifier is a critical task to
avoid incorrect drug selection [5].

In a machine learning pool, there exist three feature selection techniques: the filter
approach, wrapper approach, and embedded approach. Filter techniques are an essential
element of strategically selecting features due to the cheap cost of computation, making
them suitable when data sizes are too big for a learning algorithm or when resources are
limited. Filter methods may be split into two groups based on how they work. First,
there are univariate methods: each characteristic is assessed independently in this category.
The “relation” between a feature and the class label is taken into account here. Features are
graded based on their “relationship” with other feature-class pairs. Mutual Information
(MI) and Chi-square are a few examples of this category. Second, there are ultivariate
methods: in this scenario, characteristics are accessed in sets to see how well the sets
can distinguish across classes. The sets that can discriminate better are more likely to
offer a more accurate classification. Ranking techniques focusing on score-based feature
subset selection techniques are the most used filter approaches. In a microarray dataset,
the ranking approach may be thought of as a crucial mechanism for picking the k most
relevant genes. Since the number of features in microarray data might be quite enormous,
the learning algorithm’s accuracy is severely harmed. As a result, selecting the top k genes
from microarray data is an important pre-processing step [6]. In typical microarray research,
the high number of features and the relatively limited number of observations (samples)
offer numerous statistical difficulties, which are referred to as the “curse of dimensionality”
in machine learning. As a result, after normalizing and pre-filtering the original datasets,
we use several feature selection techniques to extract compact sets of discriminative features
before using classification algorithms [7]. However, choosing a filter approach for gene
selection is critical, because one technique may produce the best results for one dataset
while another produces the best results for another.

Inspired by the above analysis, which is discussed by several researchers, this paper
proposes a pipeline of reduction combinations using filter approaches. Four feature ranking
algorithms are taken into account in this model for obtaining a better feature subset from
datasets, as shown in Table 1: Correlation-Based Feature Selection (CBFS), Chi-Square Test
(CST), Information Gain (InG), and Relief Feature Selection (RFS). Then, the classification
techniques such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF),
and k-Nearest Neighbor (k-NN) are used to classify the microarray databases. Forming the
combination of four FS approaches, 16 pipelines are built up to reduce the feature subset in
four phases to come up with more useful features. Considering 10 or fewer features, the final
optimal feature subset is generated. With these reduced feature subsets, the performance
of each pipeline is measured with the considered four classification techniques. In certain
circumstances, it may become difficult to decide on a single parameter; thus, lastly, all
reduction combinations are compared on different parameters such as accuracy, sensitivity,
jaccard, specificity, and gmean. Thereafter, to finalize which reduction combination in
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a pipeline is stable irrespective of the dataset, the TOPSIS approach is used for optimal
decision making.

Table 1. Acronym and Description.

Acronym Descriptions

ANN Artificial Neural Network
BOFS Bi-Objective Feature Selection
CBFS Correlation-Based Feature Selection
CFR Combination of Feature Reduction
CR Reduction Combination
CST Chi-Square Test
DBC Distance-Based Clustering
DT Decision Tree
EM Expectation Maximization
FN False Negative
FP False Positive
FR Feature Reduction
FS Feature Selection
GEM Gene Expression Microarray
GRM Gray Relational Model
InG Information Gain
k-NN k-Nearest Neighbor
LR Logistic Regression
MADM Multi-Attribute Decision Making
MCDM Multi-Criteria Decision Making
MI Mutual Information
MIMAGA Mutual Information Maximization and Genetic Algrithm
MLP Neural Nets Machine Learning Perception Neural Networks
MOFSCE Multi-Objective Feature Selection and Classifier Ensemble
PCA Principal Compotent Analysis
RBF Radial Basis Function
RF Random Forest
RFS Relief Feature Selection
SAW Simple Additive Weighting
SVM Support Vector Machine
SVM-RFE Support Vector Machine Recursive Feature Elimination
TN True Negative
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TP True Positive

The organization of this analysis is as follows. Section 1 introduces a generalization of
the research, Section 2 describes the recent related work about the sequence of feature rank-
ing methods with different classifiers and TOPSIS, i.e., multi-criteria selection techniques
used on microarray data. Section 3 describes the proposed model, and Section 4 includes
methodologies used with a detailed explanation; evaluation metrics are also discussed
here with the Multi-Criteria Decision Making (MCDM) technique. Section 5 includes
the complete experimental work with datasets used and the result analysis. In Section 6,
the conclusion and future work are discussed, and finally, a discussion about the study is
presented in Section 7.

2. Related Work

Feature ranking approaches are now used everywhere, including analytical techniques,
summarizing extraction, sequential data processing, multidimensional data processing,
and many more. Several studies use various filter techniques for feature selection. Hence,
it is very difficult to identify a filter approach that can extract superior features from the
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datasets of the respective application. Again, the classification performance depends a
lot on the extracted feature. Therefore, rather than sticking to a single filter approach,
combinations of two or more filter approaches are applied in the pre-processing stage.
Thus, the literature survey is as follows, which focuses on feature reduction in different
stages, implementing filter approaches. A hybrid feature selection approach for illness
identification has been presented by Namrata Singh et al. [8]. They use cross-validation
for partitioning and multiple filter approaches for feature ranking with weighted scores.
Furthermore, the sequential forward selection process is also employed as a wrapper
technique to find out the subset of features. Compared to the benchmark classifiers, such
as Naive Bayes, Support Vector Machine with Radial Basis Function, Random Forest,
and k-Nearest Neighbor, it is experienced that the four-step hybrid ensemble filter selection
strategy outperforms fourteen feature selection algorithms. The empirical results clearly
show that the suggested hybrid approach surpasses the competing methods in terms of
accuracy, sensitivity, specificity, F1-score, the area under curve evaluation measures, and the
number of selected features.

Andrea Bommert et al. compared the most advanced feature selection strategies on
high-dimensional datasets in their work [9]. They compared 22 filter techniques from
several toolboxes on 16 high-dimensional classification datasets from distinct fields as well
as the methods that select the features of a dataset in the same order. They concluded that
some filter methods appear to perform better than others but failed to identify the highly
reliable filter methods. Furthermore, they suggested that filter methods are dependent on
the dataset.

Cosmin Lazar et al. [10] emphasized gene prioritization and filter-based feature selec-
tion techniques for informative feature extraction in Gene Expression Microarray (GEM)
analysis. Rasmita Dash et al. [4] employed a pipelining of the ranking approaches presented
in their work that addresses the difficulties associated with the filter approach. Few of
the lower-ranked features are deleted at each level of the pipeline, resulting in a pretty
decent subset of features being maintained at the end. The sequence for ranking approaches
applied in the pipeline, on the other hand, is critical to ensuring that the significant genes
are kept in the final subset. Out of four gene ranking methodologies, twenty-four separate
pipeline models are developed during this experimental investigation. To discover the
best pipeline for a given task, these pipelines are tested against seven distinct microarray
databases. The Nemenyi post hoc hypothetical test confirms the grading system’s result
that a pipeline model is noteworthy.

Rasmita Dash et al. [11] offer an approach for microarray data Multi-Objective Feature
Selection and Classifier Ensemble (MOFSCE), which works in two phases. The first phase
is a pre-processing phase in which the Pareto front is utilized to identify relevant genes
using a bi-objective optimization approach. In their study, 21 Bi-Objective Feature Selection
(BOFS) models are created using seven feature ranking methodologies. The BOFS model’s
performance varies based on the dataset. As a consequence, the grading system is used to
determine the stability of the BOFS models. The construction of a classifier ensemble, which
obtains the selected characteristics from the identified BOFS model, is the second phase.

Mitsunori Ogihara et al. [12] have presented a comparative analysis of feature selection
on gene expression data and multiclass categorization. The research offers eight feature
selection approaches, which according to the findings are information gain, the towing
rule, sum minority, max minority, Gini index, the sum of variances, one-dimensional SVM,
and t-statistics. They have evaluated the feature’s usefulness by evaluating the level of class
predictability when the prediction is made by splitting a gene’s whole range of expression
into two sections. The results are typically satisfactory for datasets with a modest number
of classes. Prediction accuracy is much worse for datasets with a high number of classes.

In another study, Mehdi Pirooznia et al. [13] examined the effectiveness of classifica-
tion algorithms such SVM, RBF Neural Nets, MLP Neural Nets, Bayesian, Decision Tree,
and Random Forest. k-fold cross-validation was used to calculate the accuracy. The effi-
cacy of certain standard clustering approaches, such as K-means, DBC, and expectation
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maximization (EM) clustering, has been tested on the datasets. Support Vector Machine Re-
cursive Feature Elimination (SVM-RFE), Chi-squared, and CSF have been used to compare
the efficiency of feature selection approaches. In each example, these approaches are used
on eight separate binary class microarray datasets. By observing the increasing performance
of the work completed by Rasmita Dash et al. [11], who used a three-stage dimensionality
reduction strategy on microarray databases, as well as four distinct classifiers. In the first
stage, statistical techniques are utilized to filter out irrelevant genes from the database.
Thus, approximately 90% less significant characteristics are deleted. SNR is employed in
the second step to drop a group of very noisy genes. Finally, the PCA approach is utilized to
further reduce the dimension in the final stage. Then, these compressed data are evaluated
using ANN, MLR, naïve Bayesian, and k-NN classifiers.

Alok Sharma et al. [14] also worked for feature selection by using transcriptome
data for a classification problem. The findings of comparison investigations conducted by
Changjing Shang and Qiang Shen et al. [15] highlight the relevance of appropriate feature
selection in the creation of classifiers for usage in high-dimensional domains. The optimal
classification performance for k-NN and Naive Bayes classifiers is attained using a subset
of features determined by information gain ranking after a huge corpus of systematic tests.
Naive Bayes may also perform well with a modest collection of linearly processed primary
features in categorizing this challenging dataset. In addition, feature selection enhances
classification accuracy while enhancing computing efficiency.

Mahnaz Behroozi and Ashkan Sami [16] looked at a dataset with a variety of sound
recordings. The key contribution is to suggest a new separate classification framework
that recommends using a unique classifier for each type of voice sample and presenting
which vocal tests are more representative. They employed pre-processed data that was
classified using four different algorithms: k-NN, SVM, discriminant analysis, and Naive
Bayes. The k-NN classifier was built using the Euclidean distance metric, with k values of
1, 3, 5, and 7. With a scaling factor sigma(∑) of 3 and a penalty parameter (C) of 1, the SVM
classifier was utilized with linear and radial basis kernels (RBF).

Huijuan Lu et al. [17] devised a hybrid feature selection approach that combines two
gene algorithms. According to experimental results, the suggested MIMAGA-Selection
approach greatly decreases the dimension of the gene expression dataset. The reduced gene
expression dataset delivers superior classification accuracy when compared to traditional
feature selection techniques. Thanyaluk Jirapech-Umpai and S. Aitken [18] proposed a
technique to create classification models using microarray data using both supervised and
unsupervised classifiers. The study focuses on the supervised classification problem in
which data samples are assigned to a known class. The k-NN classifier is used in this
investigation. k-NN classification is based on a distance function determined for pairs of
samples in N-dimensional space, such as the Euclidean distance or Pearson’s correlation.
The class memberships of each sample’s k closest neighbors, as calculated by the distance
function, are used to classify it. Motivated by the above literature survey, different ideas are
taken for feature ranking, classification, and multi-criteria decision-making methods in the
different datasets. Hence, the purpose of this study is to assess the classification accuracy by
finding out which feature ranking works better in sequencing the feature selection process
for the classification of microarray samples. Here, sequencing of the feature selection is
taken into consideration, which is a prerequisite for classification [19]. This reduction
combination is evaluated concerning multiple performance metrics. In the final stage of
implementation, TOPSIS is used to prove the outcome of this analysis.

3. Proposed Work

A rank-based approach is one of the dominant feature selection approaches in high-
dimensional data analysis. This approach awards a rank based on one mathematical score
to all the features in the original data. Top-ranked features are assumed to be highly
informative, and a few of them are selected in the descending order of their rank. Each
ranking algorithm is unique, which focuses on the score based on the ranking criteria.
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However, feature selection based on a single ranking criterion for any dataset may not result
in satisfactory prediction. Hence, different ranking techniques are assigned to various gene-
based sequencing datasets on this ranking technique’s-based feature evaluation scheme [20].
As a result, the informative gene sequence in one approach may not be the same in another.
Thus, a filter technique that is useful in some problem spaces may not be successful for all
datasets that refer to different applications. Hence, one ranking technique may outperform
others for a specific type of problem. Thus, in this study, in place of extraction of a few
top-ranked features using a single ranked-based filter technique, the merits of sequencing
various filter techniques are considered. Furthermore, these genes are passed through
a sequence of filter ranking approaches. In every stage of filtration, few highly ranked
features are taken to the next level, and the rest are dropped.

The proposed model, which is shown in Figure 1, presents the high-level overall
workflow that contains the highly spaced microarray database. It is scaled or normalized
and validated with k-fold cross validation having (k − 1) fold for training and 1 fold for
testing. After validating the data properly, then it is passed through a block, where the
proposed sequence of the feature ranking process with different classification is performed
in a proper manner. That block of the proposed model is described briefly, as shown in
the Figure 2 where sixteen feature reduction (FR) sequences are designed from the four
feature ranking techniques known as reduction combinations (RC) i.e. RC1–RC16. For the
sequencing of feature ranking, four ranking techniques are taken into consideration, which
are in order and represented as follows: FR1: Pearson Correlation Coefficient-Based Feature
Selection, FR2: Chi-Square Test, FR3: Information Gain, and FR4: Relief Method. In every
stage of reduction, 80% lower-ranked genes are dropped, and thus, the reduced dataset
at different levels are formulated. It is very difficult to evaluate which ranking technique
works well on a dataset for a specific classifier. Hence, to design the most superior RC
for highly spaced gene expression data, a multi-criteria-based decision-making technique
was applied in which TOPSIS is implemented considering Accuracy, Specificity, Sensitivity,
Jaccard, and Gmean as five evaluation techniques. The proposed model is presented in
Figure 1 in two ways, where Figure 1 explains the high-level overall flow and shows the
overall model design, and Figure 2 explains the details of proposed work with the Multi-
Attribute Decision-Making (MADM) process for obtaining a better sequence and classifier
combination.

Figure 1. High-Level Flow Diagram of the Proposed Model.
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Figure 2. Detailed Flow Diagram of the Proposed Model.

4. Methodology

This section provides a brief overview of the machine learning techniques and tools
used for data pre-processing, data classifications, performance metrics, and the TOPSIS
approach.

4.1. Normalization

Normalization is often necessary when dealing with attributes on multiple scales [21];
otherwise, it may lead to a weakening in the impact of an equally essential attribute (on a
smaller scale) due to other qualities having values on a greater scale. Generally, normaliza-
tion is of three types: min–max normalization, Z-score normalization, and decimal scaling.
In this research, min–max normalization is used and is discussed as follows.

The min–max normalization method is used for normalizing data. This technique can
result in a poor data model when multiple attributes exist with different scale values when
performing data mining operations, as shown in Equation (1). So, this technique is used for
the implementation of this work for normalizing the data.

new_Vi,j = (Vi,j −min_Aj)/(max_Aj −min_Aj) (1)

where Vi,j is the original value for an instance of attribute j of record i. new_Vi,jis the new
value. min_Aj is the minimum value of the attribute j in the original dataset (A). max_Aj
is the maximum value of the attribute j in the original dataset (A).

4.2. Feature Ranking Techniques Used

Methods for extracting a subset of features from a larger dataset are known as feature
selection methods. Furthermore, feature selection methods provide a feature subset from
the raw dataset. It is divided into three types, i.e., filter approach, wrapper approach,
and embedded approach. Feature ranking includes rating each feature using a specific
approach and then picking genes based on their weights [22]. Each method employed
allowed for the selection of a limited number of features. Some of the papers used different
successful feature ranking techniques in a better way [4,11]. Filtering techniques use
an easy-to-calculate measure to quickly rank features, with the highest-ranking features
picked [23]. Here, four feature selection techniques are taken into consideration as in Table 1,
i.e., CBFS, CST, InG, and RFS. CBFS [2] is a multi-variant filter technique that ranks features
based on the correlation between performance assessment functions. It begins with a full
set of features (genes). CBFS focuses on decreasing feature-to-feature correlations while
improving feature-to-class correlations. The Chi-squared feature evaluation [24] merely
displays the relative relevance of the original characteristics. Then, the user may choose
which features to keep and which to reject based on this information. In Chi-squared feature
selection, this test statistic between the feature and the target class is used to establish the
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relevance of a feature. Equation (2) is used to construct the Chi-squared statistic, where the
feature and class had no connection.

X2 = ∑
(Ai − Bi)

2

Bi
(2)

where Ai is the observed value and Ei is the expected value. The information gain serves
as a simple initial filter for screening features. The Information GainInG(C, B) [25] of a
feature B, relative to a set of data C, is defined as:

InG(C, B) = E(C)− ∑
xεY(B)

|Cx|
|C| (3)

In Equation (3), Y(B) is the set of all possible values of feature Band Cx, the subset of C,
for which feature B has the value of x. The first term is the entropy of the entire set. Given a
randomly picked instance, Relief [26] searches for k of its nearest neighbours from the same
class, which is referred to as nearest hits H, as well as k nearby neighbors from each of the
distinct classes, which are referred to as nearest misses M. Relief selection computes feature
relevance by showing the relationships between features and class labels. This approach,
similar to nearest neighbor algorithms, applies weights to features based on the same-class
and different-class examples that are nearest to every sample in the dataset. The adaptive
formula for finding feature relevance is shown in Equation (4).

Xj = Xj−1 − (Yj − NHj)
2 + (Yj − NMj)

2 (4)

where X is an n-dimensional weight vector with n features. The closest same class and
different class samples are represented by NH as ‘NearHit’ and NM as ‘NearMiss’. j shows
the number of iterations in the algorithm.

4.3. Classification Model

In this subsection, the authors have presented k-NN, LR, DT, and RF as classifiers [27]
to classify the four cancer datasets. The summary of the classification techniques and
performance evaluation matrix are described in the following section.

4.3.1. k-Nearest Neighbor (k-NN)

k-NN [28,29] chooses the class value of a new instance by examining a set of the k
closest instances, as shown in Equation (6) in the training set and selecting the most frequent
class value among them, with k set to five and Euclidean distance matrices used to calculate
the similarity between two points. It stores the query data based on a similarity measure
and the training data. k-NN parameter tuning is performed to improve the performance by
selecting an appropriate value of k.

D(x, y) =

√
m

∑
i=1

(xi − yi)2 (5)

4.3.2. Logistic Regression (LR)

The LR classification model is a prominent option for modeling binary classifica-
tions [29]. LR creates a predictor variable by linearly combining the feature variables. Then,
a logistic function is used to convert the values of this predictor variable into probabili-
ties. Generally, this method is used for binary class prediction. It can also be applied to
multiclass problems. This classification model’s logistic equation is:

Yi = ln (ln (
xi

1− xi
)) (6)

where Xi is the probability of the occurrence of event i.
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4.3.3. Decision Tree (DT)

The DT may handle classification and regression issues to solve the classification
problems [30]. It has two advantages:

• Decision Trees are made to resemble human decision-making abilities, making them
simple to understand.

• Due to the tree-like structure of the decision tree, the logic behind the concept can be
easily understood.

The Decision Tree is made up of three types of nodes: the first one is for decision mak-
ing (commonly represented by a square), the second is for shaping the options (commonly
represented by a circular pattern), and the last one is for representing the action (commonly
represented by a triangle).

4.3.4. Random Forest (RF)

RF is a classification process that commonly employs an ensemble method, which
utilizes multiple decision trees to classify data. It generates bootstrap templates from the
Random Forest’s original data, and for each bootstrap template, it grows a regression tree
or raw classification. Rather than selecting only the best predictors for disclosure, it takes
into account every node. It employs a random predictor selection and chooses the best
separation among them. The parameter n-split, which specifies the number of splitting
points to be evaluated for each feature, is required by RF [31]; higher values of n-split may
result in more accurate predictions at the expense of increased computational load. We
choose three values while leaving the other parameters at their default settings.

4.4. k-Fold Cross-Validation Method

The error rate of the classification algorithm is used to evaluate a classifier’s perfor-
mance. The error rate on the data that is used to train the classifier (training set) is not
a trustworthy criterion. Indeed, such a method could cause the classifier to overfit the
training data. To anticipate a classifier’s performance, we must examine its error rate on a
separate dataset that was not included in the training process (i.e., the test set). The k-fold
cross-validation method is based on dividing the dataset into k sections at random. When
the k − 1 remainders are used for training, one portion is used for testing. This technique is
performed k times to ensure that each part is tested only once. Then, the k-error estimates
are averaged to produce a reliable overall error estimate. Varied k-fold cross-validation tri-
als can result in different classification error rates due to the random selection of folds [32].
As a result, we repeat the k-fold cross-validation process k times to increase the error
rate’s reliability.

4.5. Performance Evaluation Criteria

At the final stage, the performance of each method was evaluated to determine which
method could produce the best results [11]. To evaluate each of the methods used in this
study, we used the parameters such as accuracy (Equation (7)), sensitivity (Equation (8)),
specificity (Equation (9)), jaccard (Equation (10)), and gmean (Equation (11)) from the
confusion matrix. The confusion matrix includes the terms FN (False Negative), FP (False
Positive), TN (True Negative), and TP (True Positive). The definition of all performance
metrics are as follows:

Accuracy = (
TPi + TNi

total number o f sample
) ∗ 100 (7)

Sensitivity = (
TPi

TPi + FPi
) ∗ 100 (8)

Speci f icity = (
TNi

TNi + FNi
) ∗ 100 (9)
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Jaccard = (
TPi

TPi + FPi + FNi
) ∗ 100 (10)

Gmean =
√

Speci f icity ∗ Sensitivity (11)

4.6. Multi-Criteria Decision Making (MCDM)

There are six steps involves in multi-criteria decision-making: (i) problem formulation,
(ii) identification of requirements, (iii) goal setting, (iv) identification of various alternatives,
(v) development of criteria, and (vi) identification and application of decision-making
techniques. Some frequently referred multi-criteria techniques (also known as Multi-
Attribute Decision Making (MADM)) are the Simple Additive Weighting (SAW), Gray
Relational Model (GRM), and TOPSIS. TOPSIS is used to recommend one or more options
from a large set of alternatives. The ranking of TOPSIS techniques was calculated using
Microsoft Excel as a tool. TOPSIS can be used in situations where there are multiple feature
selection algorithms to choose from, each with its own set of criteria such as accuracy,
sensitivity, specificity, number of features, and so on [33]. So, TOPSIS techniques used for
measurement are as follows:

Step 1: Firstly, create a matrix Mi,j with ‘m’ number of rows corresponding to each
feature reduction sequence and ‘n’ number of columns corresponding to the performance
evaluation criteria and the number of classifiers used.

Step 2: For calculating normalized matrix NMi,j:

NM′i,j =
NMi,j√

∑n
i=1(NMi,j)2

, j = 1, . . . , J (12)

Step 3: For calculating weighted normalized matrix WNMi,j:

WNMi,j = NM′i,j ∗Wj, j = 1, . . . , J (13)

where Wj is the weight of the criterion and ∑J
j=1 Wj = 1 , weights can be assigned randomly

or according to the criteria.
Step 4: Then, calculate the ideal best solution from the combination of the best perfor-

mance values as V+
j and ideal worst from the combination of the worst performance values

as V−j using the following formula:

V+
j = {WNM+

1 , L, WNM+
j } = {(maxiWNMi,j | jεh), (maxiWNMi,j | jεl)} (14)

V−j = {WNM−1 , L, WNM−j } = {(maxiWNMi,j | jεh), (miniWNMi,j | jεl)} (15)

where h is the set of best performance values and l is is the set of worst performance values.
Step 5: After calculating the Ideal Best, calculate the separation measure from the

Ideal Best:

S+
i =

√√√√ m

∑
j=1

(WNMi,j −WNM+
j )

2, j = 1, . . . , J (16)

After calculating the Ideal Worst, calculate the separation measure from the Ideal Worst:

S−i =

√√√√ m

∑
j=1

(WNMi,j −WNM−j )
2, j = 1, . . . , J (17)

Step 6: Finally, calculate the relative closeness to the ideal solution performance score
as follows:

Pi = (
S−i

S+
i + S−i

), j = 1, . . . , M (18)
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5. Experimental Results

Simulation is conducted to consider a maximum of 10 numbers of genes for classi-
fication purposes, and an optimal set is extracted. Considering the reduced data, the 10
cross-validation process is implemented to come up with the training and testing data
input for the classifiers. For this analysis, a few successful classification techniques for
highly spaced data are taken such as k-NN, LR, DT, and RF [34]. From the classification
output, it is observed that the performance of RCs varies with the order of the sequence, as
these ranking techniques perform differently for different datasets and classifiers.

5.1. Dataset Description

Microarray data are high-dimensional data with a small number of samples or obser-
vations compared to the number of genes or attributes. The number of samples is in the
range of hundreds, and the number of attributes is in the range of thousands. Among four
datasets, Colon Cancer (D2) and Adenoma Cancer (D4) have two class levels, but another
two datasets such as Brain Tumor (D1) has five class levels, and Breast Cancer (D3) has
three class levels. Table 2 contains descriptions of the databases as follows.

Table 2. Description of microarray databases.

Dataset Total
No. of Samples

No. of Samples
in Each Class No. of Genes No. of Classes

Brain Tumor [35] 40

10

7129 5

10

10

4

6

Colon Cancer [34] 62
40

2000 2
22

Breast Cancer [34] 98
11

1213 351

36

Adenoma Cancer [36] 8
4

7086 2
4

5.2. Result Analysis

Before going to feature sequencing, first, datasets are normalized by min–max normal-
ization, the values are converted to between 0 and 1 for each feature. After that, feature
sets are reduced by 20% in each of the four steps adopted in the sequence. Further simula-
tion is conducted to come up with an optimal set of features, fixing it within the number
of 10. Then, the reduced feature sequences are validated by the 10-fold cross-validation
approach by separating the training and testing data with respect to the considered clas-
sifiers; the classification outputs are presented in Tables 3 and 4. As a result of analyzing
Tables 3 and 4, it is clear that none of the classifiers obtain the optimal results across all
metrics, and the ranking of the top-performing model differs depending on the perfor-
mance assessment measurement chosen. Hence, further analysis of classifiers and the
FR sequencing approaches is performed by TOPSIS. Table 5 represents the result of the
TOPSIS approach implemented on the Brain Tumor dataset, where rows are representing
16 number feature reduction sequences from FR1 to FR16 and columns are representing
classifiers used such as k-NN, LR, DT, and RF with five performance criteria: accuracy
(CR1), sensitivity (CR2), specificity (CR3), jaccard (CR4), and gmean (CR5). The classifica-
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tion result on each dataset is given in Table 2 and converted to the corresponding weighted
normalized matrix by using Equation (15) for each dataset, as shown in Tables 5–8. Then,
the ideal best value v+ is chosen from the set of combinations of best performance values
for each dataset individually, and the ideal worst value v− can also be chosen from the
set of worst performance values, as given in Equations (14) and (15). The Ideal Best and
Ideal Worst solution separation measure or Euclidean distance can be measured by using
Equations (16) and (17), whose results are shown on the column as S+

i and S−i individually
for each dataset in Tables 5–8. Finally, the ideal solution performance score can be found
out by using Equation (18), which is represented as Pi for ranking of each feature reduction
sequences individually with referencing to the datasets shown in Tables 5–8. As described
above, Tables 6–8 represent the TOPSIS result analysis for the Colon Cancer, Breast Cancer,
and Adenoma Cancer datasets. After obtaining the ranks of each FR, the performances of
all FR are compared in Table 9, where the top three ranked feature reduction sequences
with respect to all classifiers are taken into consideration. As it is difficult to choose which
sequence performs better, the occurrence of the few top-ranking FR is also calculated in
Table 10, from which it is observed that FR5 is superior. FR5 is coming in first rank expect
for one classifier (i.e., LR), where the rank is second. Finally, in Figure 3, the number of
occurrences of all FR coming in the top three ranking is shown. Here, it is also found
that out of 48 occurrences (as in Table 9), FR5 is coming under the top three rank in 16
occurrences. However, for other FR cases, the occurrence is quite nominal. Hence, it can be
said that the FR5 model can work better as the feature reduction sequence given for four
datasets, as shown in Figure 4.

Figure 3. Occurrence Analysis for Feature Reduction Technique.

Figure 4. FR5 Model for Microarray Data.
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Table 3. Classification Results of Four Datasets By Using k-NN, LR, DT, and RF Classifier with Different Feature Ranking Techniques.

CR1 CR2 CR3 CR4 CR5

k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF

D1 FR1 0.89 0.92 0.91 0.89 0.78 0.91 0.92 0.91 0.97 0.91 0.85 0.93 0.89 0.94 0.91 0.94 0.87 0.91 0.88 0.92
FR2 0.91 0.94 0.92 0.88 0.9 0.92 0.94 0.91 0.95 0.88 0.97 0.89 0.95 0.86 0.92 0.9 0.92 0.90 0.95 0.90
FR3 0.94 0.93 0.92 0.92 0.88 0.92 0.9 0.91 0.9 0.92 0.93 0.94 0.94 0.93 0.91 0.9 0.89 0.92 0.91 0.92
FR4 0.92 0.9 0.91 0.9 0.91 0.95 0.94 0.89 0.92 0.78 0.87 0.88 0.91 0.89 0.91 0.89 0.91 0.86 0.90 0.88
FR5 0.97 0.95 0.91 1 0.99 0.96 1 0.91 0.98 0.95 0.99 1 1 0.99 0.97 0.98 0.98 0.95 0.99 0.95
FR6 0.96 0.94 0.93 0.92 0.97 0.91 0.88 0.78 0.91 0.92 0.89 0.9 0.98 0.89 0.92 0.91 0.94 0.91 0.88 0.84
FR7 0.9 0.91 0.91 0.89 0.92 0.93 0.89 0.91 0.93 0.97 0.98 0.82 0.97 1 0.9 0.89 0.92 0.95 0.93 0.86
FR8 0.95 0.91 0.88 0.9 0.91 0.89 0.92 0.93 0.91 0.87 0.89 0.91 0.93 0.94 0.96 0.97 0.91 0.88 0.90 0.92
FR9 0.94 0.91 0.92 0.93 0.92 0.91 0.93 0.88 0.9 1 0.93 0.91 0.9 1 0.95 0.99 0.91 0.95 0.93 0.89

FR10 0.97 0.91 0.89 0.87 0.98 0.92 0.88 0.91 0.94 0.92 0.8 0.83 0.93 0.94 0.89 0.98 0.96 0.92 0.84 0.87
FR11 0.95 0.94 0.93 0.9 0.93 0.91 0.85 0.93 0.92 0.95 0.92 0.87 0.94 0.96 0.91 0.92 0.92 0.93 0.88 0.90
FR12 0.96 0.97 0.91 0.89 0.96 0.98 0.91 0.92 0.94 0.96 0.93 0.92 0.91 0.97 0.93 0.93 0.95 0.97 0.92 0.92
FR13 0.99 0.93 0.92 0.93 1 0.97 0.93 0.95 0.89 0.88 0.99 0.89 0.94 0.95 0.97 0.9 0.94 0.92 0.96 0.92
FR14 1 0.89 0.95 0.91 1 0.9 0.97 0.96 0.95 0.9 0.94 0.94 0.95 0.89 0.91 1 0.97 0.90 0.95 0.95
FR15 0.97 0.94 0.92 0.94 0.9 0.91 0.89 0.92 0.88 0.9 0.96 0.97 0.89 0.93 0.95 0.98 0.89 0.90 0.92 0.94
FR16 0.96 0.95 0.89 0.93 0.97 0.94 0.9 0.91 0.9 0.92 0.8 0.91 0.97 0.96 0.95 0.94 0.93 0.93 0.85 0.91

D2 FR1 0.98 0.94 0.89 0.91 0.91 0.94 0.89 0.79 0.89 0.92 0.91 0.89 0.91 0.88 0.92 0.93 0.90 0.93 0.90 0.84
FR2 0.97 0.95 0.9 0.92 0.95 0.91 0.91 0.89 0.92 0.95 0.93 0.88 0.97 0.95 0.94 0.93 0.93 0.93 0.92 0.88
FR3 0.92 0.92 0.91 0.89 0.9 0.89 0.88 0.95 0.93 0.91 0.9 0.91 0.89 0.92 0.91 0.93 0.91 0.90 0.89 0.93
FR4 0.99 0.93 0.87 0.93 0.91 0.94 0.91 0.93 0.95 0.92 0.88 0.87 0.93 0.94 0.91 0.89 0.93 0.93 0.89 0.90
FR5 1 0.99 0.92 0.93 1 1 0.99 0.98 0.98 0.99 0.99 1 0.99 1 1 0.99 0.99 0.99 0.99 0.99
FR6 1 0.98 0.88 0.93 0.95 0.93 0.92 0.91 0.95 0.93 0.94 0.89 0.91 0.97 0.93 0.95 0.95 0.93 0.93 0.90
FR7 0.96 0.95 0.93 0.91 0.86 0.88 0.87 0.93 0.91 0.94 0.93 0.92 0.92 0.93 0.95 0.98 0.88 0.91 0.90 0.92
FR8 0.99 0.97 0.88 0.89 0.94 0.91 0.91 0.92 0.96 0.9 0.87 0.95 0.91 0.92 0.97 0.94 0.95 0.90 0.89 0.93
FR9 0.99 0.96 0.92 0.92 0.95 0.93 0.92 0.89 0.95 0.94 0.97 0.9 0.89 0.96 0.97 0.91 0.95 0.93 0.94 0.89

FR10 0.98 0.98 0.94 0.91 0.95 0.93 0.92 0.93 0.97 0.98 0.91 0.89 0.95 0.96 0.92 0.93 0.96 0.95 0.91 0.91
FR11 0.97 0.94 0.91 0.89 0.98 0.97 1 0.94 0.9 0.95 0.94 0.96 0.92 0.96 0.97 0.89 0.94 0.96 0.97 0.95
FR12 0.99 0.98 0.89 0.92 0.95 0.96 0.94 0.91 0.96 0.98 0.89 0.92 0.96 0.95 0.92 0.89 0.95 0.97 0.91 0.91
FR13 0.96 0.95 0.93 0.94 0.92 0.78 0.92 0.91 0.99 0.98 0.93 0.89 0.93 0.96 0.89 0.91 0.95 0.87 0.92 0.90
FR14 0.97 0.96 0.93 0.78 1 0.97 0.94 0.92 0.99 0.91 0.97 0.98 0.99 0.95 0.93 1 0.99 0.94 0.95 0.95
FR15 0.98 1 0.92 0.87 0.96 0.97 0.96 0.95 0.98 0.96 0.95 0.93 0.89 0.91 0.94 0.96 0.97 0.96 0.95 0.94
FR16 1 0.99 0.94 0.89 0.96 0.95 0.89 0.94 0.95 0.91 0.93 0.94 0.98 0.97 0.95 0.93 0.95 0.93 0.91 0.94
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Table 4. Classification Results of Four Datasets By Using k-NN, LR, DT, and RF Classifier with Different Feature Ranking Techniques cont.

CR1 CR2 CR3 CR4 CR5
k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF k-NN LR DT RF

D3 FR1 0.94 0.93 0.88 0.91 0.91 0.91 0.9 0.89 0.92 0.92 0.91 0.95 0.93 0.91 0.9 0.89 0.91 0.91 0.90 0.92
FR2 0.93 0.92 0.91 0.9 0.94 0.96 0.98 0.97 0.91 0.94 0.97 0.96 0.93 0.91 0.98 0.9 0.92 0.95 0.97 0.96
FR3 0.89 0.91 0.92 0.87 0.92 0.91 0.9 0.92 0.93 0.89 0.96 0.91 0.94 0.93 0.94 0.93 0.92 0.90 0.93 0.91
FR4 0.94 0.93 0.88 0.92 0.97 0.96 0.89 0.9 0.91 0.93 0.94 0.92 0.96 0.98 0.92 0.89 0.94 0.94 0.91 0.91
FR5 0.95 0.92 0.91 0.9 1 1 0.98 0.99 0.99 1 1 0.98 1 1 0.99 0.98 0.99 1.00 0.99 0.98
FR6 0.97 0.93 0.89 0.89 0.96 0.9 0.95 0.97 0.91 0.99 0.96 0.97 0.98 0.91 0.93 0.95 0.93 0.94 0.95 0.97
FR7 0.94 0.89 0.9 0.91 0.93 0.94 0.9 0.91 0.98 0.95 0.96 0.97 0.98 0.97 0.95 0.94 0.95 0.94 0.93 0.94
FR8 0.95 0.91 0.92 0.89 0.95 0.91 0.88 0.92 0.94 0.95 0.97 0.92 0.92 0.89 0.95 0.94 0.94 0.93 0.92 0.92
FR9 0.96 0.97 0.89 0.91 0.95 0.98 0.97 0.94 0.94 0.91 0.94 0.95 0.97 0.93 0.95 0.93 0.94 0.94 0.95 0.94
FR10 0.97 0.95 0.93 0.92 0.94 0.98 0.89 0.92 0.97 0.93 0.94 0.92 0.95 0.96 0.93 0.92 0.95 0.95 0.91 0.92
FR11 0.96 0.88 0.86 0.93 0.98 0.97 0.94 0.96 0.95 0.94 0.93 0.9 0.95 0.94 0.92 0.91 0.96 0.95 0.93 0.93
FR12 0.94 0.93 0.92 0.91 0.99 1 1 0.9 0.96 0.97 0.91 0.89 0.9 0.89 0.93 0.94 0.97 0.98 0.95 0.89
FR13 0.92 0.97 0.93 0.93 0.99 0.93 0.91 0.99 0.99 0.93 0.92 0.93 0.93 0.94 0.96 0.96 0.99 0.93 0.91 0.96
FR14 0.97 0.92 0.93 0.95 0.96 0.89 0.91 0.92 1 0.95 1 0.91 0.97 0.98 0.92 1 0.98 0.92 0.95 0.91
FR15 0.97 0.92 0.91 0.93 0.93 0.92 0.95 0.94 0.97 0.94 0.92 0.94 0.95 0.9 1 0.93 0.95 0.93 0.93 0.94
FR16 0.95 0.92 0.91 0.88 0.95 0.93 0.95 0.94 1 0.95 0.89 0.93 0.96 0.97 0.92 0.91 0.97 0.94 0.92 0.93

D4 FR1 0.96 0.94 0.91 0.89 0.92 0.94 0.9 0.94 0.91 0.93 0.9 0.92 0.93 0.95 0.89 0.91 0.91 0.93 0.90 0.93
FR2 0.96 0.94 0.92 0.9 0.92 0.93 0.94 0.89 0.99 0.96 0.88 0.89 0.91 0.94 0.95 0.95 0.95 0.94 0.91 0.89
FR3 0.98 0.97 0.91 0.89 0.95 0.99 0.92 0.97 0.93 0.96 0.95 0.97 0.97 0.96 0.93 0.94 0.94 0.97 0.93 0.97
FR4 1 0.98 0.94 0.92 0.94 0.89 0.89 0.9 0.91 0.97 0.93 0.95 0.95 0.93 0.92 0.89 0.92 0.93 0.91 0.92
FR5 1 0.98 0.92 0.92 0.97 0.99 1 1 1 0.99 0.99 1 0.99 1 0.98 0.98 0.98 0.99 0.99 1.00
FR6 1 0.99 0.93 0.94 0.93 0.96 0.94 0.92 0.98 0.93 0.96 0.94 0.92 0.93 0.94 0.95 0.95 0.94 0.95 0.93
FR7 0.98 0.97 0.93 0.93 0.94 0.95 0.97 0.92 0.99 0.95 1 0.96 0.96 0.99 0.98 0.95 0.96 0.95 0.98 0.94
FR8 0.99 0.95 0.92 0.91 0.93 0.95 0.94 0.91 0.92 0.94 0.91 0.9 0.95 0.94 0.94 0.92 0.92 0.94 0.92 0.90
FR9 0.98 0.99 0.94 0.93 0.95 0.89 0.94 0.95 0.95 0.97 0.95 0.93 0.96 1 0.96 0.98 0.95 0.93 0.94 0.94
FR10 0.98 0.97 0.96 0.92 0.96 0.95 0.94 0.89 0.88 0.89 0.96 0.94 0.91 0.92 0.93 0.95 0.92 0.92 0.95 0.91
FR11 0.95 0.96 0.93 0.89 0.97 1 0.92 0.91 0.93 0.95 0.92 0.91 0.92 0.95 0.96 0.96 0.95 0.97 0.92 0.91
FR12 0.98 0.93 0.89 0.9 0.92 0.96 0.92 0.94 0.96 0.92 0.93 0.95 0.92 0.93 0.97 0.94 0.94 0.94 0.92 0.94
FR13 0.96 0.97 0.92 0.91 0.99 0.93 0.92 0.93 1 0.95 0.97 0.94 0.89 0.92 0.98 0.91 0.99 0.94 0.94 0.93
FR14 0.98 0.94 0.91 0.93 1 0.96 0.93 0.89 1 0.91 0.98 0.95 0.9 0.93 0.93 1 1.00 0.93 0.95 0.92
FR15 0.99 0.91 0.93 0.93 0.98 0.95 0.94 0.91 0.97 0.95 0.97 0.95 0.94 0.95 0.92 0.96 0.97 0.95 0.95 0.93
FR16 1 0.98 0.94 0.91 0.96 0.94 0.95 0.92 0.95 0.97 0.95 0.94 0.91 0.94 0.92 0.96 0.95 0.95 0.95 0.93
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Table 5. Results of TOPSIS for Brain Tumor Dataset with Ranking of Feature Reduction Sequence using Dataset D1.

k-NN LR

FR CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank

FR1 0.234 0.209 0.262 0.237 0.234 0.078 0.024 0.237 16 0.248 0.245 0.248 0.250 0.247 0.041 0.045 0.522 10
FR2 0.240 0.241 0.257 0.253 0.249 0.042 0.043 0.507 10 0.253 0.248 0.240 0.229 0.244 0.056 0.033 0.372 15
FR3 0.248 0.236 0.243 0.251 0.240 0.052 0.034 0.394 14 0.251 0.248 0.251 0.247 0.250 0.037 0.047 0.560 7
FR4 0.242 0.244 0.249 0.243 0.246 0.047 0.040 0.457 12 0.243 0.256 0.213 0.236 0.234 0.076 0.018 0.194 16
FR5 0.255 0.265 0.265 0.267 0.265 0.008 0.078 0.904 1 0.256 0.259 0.259 0.263 0.259 0.016 0.068 0.806 2
FR6 0.253 0.260 0.246 0.261 0.253 0.027 0.063 0.701 4 0.253 0.245 0.251 0.236 0.248 0.044 0.044 0.498 11
FR7 0.237 0.246 0.251 0.259 0.249 0.041 0.048 0.539 9 0.245 0.251 0.265 0.266 0.258 0.023 0.069 0.749 4
FR8 0.250 0.244 0.246 0.248 0.245 0.043 0.042 0.492 11 0.245 0.240 0.238 0.250 0.239 0.054 0.033 0.380 14
FR9 0.248 0.246 0.243 0.240 0.245 0.048 0.027 0.357 15 0.245 0.245 0.273 0.266 0.259 0.025 0.075 0.749 3
FR10 0.255 0.262 0.254 0.248 0.258 0.024 0.065 0.735 3 0.245 0.248 0.251 0.250 0.250 0.038 0.048 0.557 8
FR11 0.250 0.249 0.249 0.251 0.249 0.025 0.049 0.665 7 0.253 0.245 0.259 0.255 0.252 0.029 0.058 0.669 5
FR12 0.253 0.257 0.254 0.243 0.256 0.032 0.058 0.648 8 0.261 0.264 0.262 0.258 0.263 0.014 0.072 0.842 1
FR13 0.261 0.268 0.241 0.251 0.254 0.031 0.069 0.687 5 0.251 0.262 0.240 0.252 0.251 0.039 0.047 0.545 9
FR14 0.263 0.268 0.257 0.253 0.262 0.016 0.076 0.827 2 0.240 0.243 0.246 0.236 0.244 0.054 0.035 0.397 13
FR15 0.255 0.241 0.238 0.237 0.240 0.055 0.039 0.414 13 0.253 0.245 0.246 0.247 0.246 0.043 0.042 0.497 12
FR16 0.253 0.260 0.243 0.259 0.252 0.030 0.061 0.671 6 0.256 0.253 0.251 0.255 0.253 0.029 0.054 0.651 6
V+ 0.263 0.268 0.265 0.267 0.265 0.261 0.264 0.273 0.266 0.263
V− 0.234 0.209 0.238 0.237 0.234 0.240 0.240 0.213 0.229 0.234

DT RF
FR1 0.249 0.251 0.232 0.245 0.241 0.057 0.028 0.332 14 0.244 0.250 0.256 0.250 0.253 0.042 0.054 0.565 8
FR2 0.252 0.256 0.264 0.248 0.261 0.026 0.063 0.709 4 0.241 0.250 0.245 0.239 0.248 0.054 0.044 0.451 12
FR3 0.252 0.246 0.254 0.245 0.250 0.043 0.045 0.513 9 0.252 0.250 0.259 0.239 0.255 0.041 0.056 0.580 6
FR4 0.249 0.256 0.237 0.245 0.247 0.048 0.037 0.435 11 0.246 0.245 0.242 0.237 0.244 0.055 0.038 0.405 14
FR5 0.249 0.273 0.270 0.261 0.272 0.011 0.082 0.882 1 0.274 0.250 0.275 0.261 0.263 0.015 0.081 0.846 1
FR6 0.254 0.240 0.243 0.248 0.242 0.054 0.033 0.378 13 0.252 0.215 0.248 0.242 0.231 0.065 0.026 0.289 16
FR7 0.249 0.243 0.267 0.242 0.255 0.041 0.057 0.584 7 0.244 0.250 0.226 0.237 0.238 0.066 0.037 0.357 15
FR8 0.241 0.251 0.243 0.258 0.247 0.047 0.041 0.464 10 0.246 0.256 0.251 0.258 0.253 0.039 0.058 0.599 4
FR9 0.252 0.254 0.254 0.256 0.254 0.032 0.052 0.618 5 0.255 0.242 0.251 0.263 0.246 0.038 0.051 0.570 7
FR10 0.243 0.240 0.218 0.239 0.229 0.079 0.009 0.098 16 0.238 0.250 0.229 0.261 0.239 0.061 0.044 0.420 13
FR11 0.254 0.232 0.251 0.245 0.241 0.057 0.038 0.400 12 0.246 0.256 0.240 0.245 0.248 0.051 0.048 0.488 11
FR12 0.249 0.248 0.254 0.250 0.251 0.039 0.047 0.545 8 0.244 0.253 0.253 0.247 0.253 0.043 0.054 0.555 10
FR13 0.252 0.254 0.270 0.261 0.262 0.023 0.069 0.752 2 0.255 0.261 0.245 0.239 0.253 0.045 0.058 0.564 9
FR14 0.260 0.265 0.256 0.245 0.261 0.025 0.063 0.713 3 0.249 0.264 0.259 0.266 0.262 0.030 0.074 0.714 3
FR15 0.252 0.243 0.262 0.256 0.252 0.038 0.054 0.589 6 0.257 0.253 0.267 0.261 0.260 0.022 0.071 0.762 2
FR16 0.243 0.246 0.218 0.256 0.232 0.073 0.021 0.227 15 0.255 0.250 0.251 0.250 0.251 0.038 0.052 0.581 5
V+ 0.260 0.273 0.270 0.261 0.272 0.274 0.264 0.275 0.266 0.263
V− 0.241 0.232 0.218 0.239 0.229 0.238 0.215 0.226 0.237 0.231
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Table 6. Results of TOPSIS for Colon Cancer Dataset with Ranking of Feature Reduction Sequence using Dataset D2.

k-NN LR

FR CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank

FR1 0.250 0.241 0.234 0.243 0.238 0.049 0.021 0.304 14 0.244 0.253 0.244 0.233 0.249 0.046 0.046 0.498 12
FR2 0.248 0.252 0.242 0.260 0.247 0.029 0.038 0.564 8 0.247 0.245 0.252 0.251 0.249 0.037 0.045 0.551 11
FR3 0.235 0.238 0.245 0.238 0.242 0.050 0.017 0.252 15 0.239 0.239 0.241 0.243 0.241 0.053 0.032 0.377 15
FR4 0.253 0.241 0.250 0.249 0.246 0.035 0.032 0.473 12 0.242 0.253 0.244 0.248 0.249 0.039 0.049 0.557 10
FR5 0.256 0.265 0.258 0.265 0.262 0.003 0.062 0.955 1 0.257 0.269 0.263 0.264 0.266 0.003 0.080 0.969 1
FR6 0.256 0.252 0.250 0.243 0.251 0.030 0.040 0.570 7 0.255 0.250 0.247 0.256 0.249 0.032 0.052 0.623 8
FR7 0.245 0.228 0.240 0.246 0.234 0.056 0.014 0.201 16 0.247 0.237 0.249 0.246 0.243 0.047 0.034 0.418 14
FR8 0.253 0.249 0.253 0.243 0.251 0.030 0.038 0.555 10 0.252 0.245 0.239 0.243 0.242 0.047 0.040 0.456 13
FR9 0.253 0.252 0.250 0.238 0.251 0.034 0.027 0.445 13 0.249 0.250 0.249 0.254 0.250 0.032 0.051 0.614 9
FR10 0.250 0.252 0.255 0.254 0.254 0.021 0.044 0.678 5 0.255 0.250 0.260 0.254 0.255 0.025 0.057 0.696 4
FR11 0.248 0.260 0.237 0.246 0.248 0.035 0.038 0.522 11 0.244 0.261 0.252 0.254 0.257 0.025 0.062 0.712 3
FR12 0.253 0.252 0.253 0.257 0.252 0.021 0.044 0.681 4 0.255 0.258 0.260 0.251 0.259 0.019 0.063 0.768 2
FR13 0.245 0.244 0.261 0.249 0.252 0.030 0.039 0.560 9 0.247 0.210 0.260 0.254 0.234 0.069 0.031 0.308 16
FR14 0.248 0.265 0.261 0.265 0.263 0.008 0.062 0.889 2 0.249 0.261 0.241 0.251 0.251 0.032 0.058 0.645 6
FR15 0.250 0.254 0.258 0.238 0.256 0.030 0.045 0.598 6 0.260 0.261 0.255 0.240 0.258 0.028 0.063 0.695 5
FR16 0.256 0.254 0.250 0.262 0.252 0.018 0.048 0.721 3 0.257 0.255 0.241 0.256 0.249 0.032 0.057 0.641 7
V+ 0.256 0.265 0.261 0.265 0.263 0.260 0.269 0.263 0.264 0.266
V− 0.235 0.228 0.234 0.238 0.234 0.239 0.210 0.239 0.233 0.234

DT RF
FR1 0.244 0.241 0.245 0.245 0.243 0.051 0.016 0.236 14 0.252 0.215 0.242 0.249 0.228 0.075 0.038 0.335 16
FR2 0.247 0.246 0.251 0.250 0.248 0.040 0.026 0.397 8 0.255 0.242 0.239 0.249 0.241 0.053 0.050 0.485 15
FR3 0.250 0.238 0.242 0.242 0.240 0.055 0.015 0.213 15 0.247 0.258 0.247 0.249 0.253 0.038 0.061 0.612 7
FR4 0.239 0.246 0.237 0.242 0.242 0.055 0.012 0.183 16 0.258 0.253 0.236 0.238 0.245 0.054 0.059 0.521 13
FR5 0.253 0.268 0.267 0.266 0.267 0.006 0.062 0.910 1 0.258 0.267 0.272 0.265 0.269 0.004 0.090 0.959 1
FR6 0.242 0.249 0.253 0.248 0.251 0.039 0.028 0.416 7 0.258 0.248 0.242 0.254 0.245 0.045 0.058 0.562 9
FR7 0.255 0.235 0.251 0.253 0.243 0.048 0.028 0.371 11 0.252 0.253 0.250 0.262 0.252 0.033 0.064 0.661 2
FR8 0.242 0.246 0.234 0.258 0.240 0.052 0.024 0.316 13 0.247 0.250 0.258 0.251 0.254 0.034 0.059 0.639 5
FR9 0.253 0.249 0.261 0.258 0.255 0.027 0.042 0.607 5 0.255 0.242 0.244 0.243 0.243 0.051 0.051 0.498 14
FR10 0.258 0.249 0.245 0.245 0.247 0.042 0.028 0.397 9 0.252 0.253 0.242 0.249 0.247 0.044 0.057 0.563 8
FR11 0.250 0.271 0.253 0.258 0.262 0.019 0.051 0.735 2 0.247 0.256 0.261 0.238 0.258 0.038 0.064 0.631 6
FR12 0.244 0.254 0.240 0.245 0.247 0.045 0.023 0.337 12 0.255 0.248 0.250 0.238 0.249 0.046 0.056 0.549 11
FR13 0.255 0.249 0.251 0.237 0.250 0.044 0.028 0.394 10 0.260 0.248 0.242 0.243 0.245 0.049 0.058 0.541 12
FR14 0.255 0.254 0.261 0.248 0.258 0.027 0.042 0.608 4 0.216 0.250 0.266 0.267 0.258 0.049 0.063 0.562 10
FR15 0.253 0.260 0.256 0.250 0.258 0.025 0.042 0.628 3 0.241 0.258 0.253 0.257 0.256 0.033 0.062 0.653 3
FR16 0.258 0.241 0.251 0.253 0.246 0.042 0.031 0.420 6 0.247 0.256 0.255 0.249 0.256 0.033 0.062 0.650 4
V+ 0.258 0.271 0.267 0.266 0.267 0.260 0.267 0.272 0.267 0.269
V− 0.239 0.235 0.234 0.237 0.240 0.216 0.215 0.236 0.238 0.228
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Table 7. Results of TOPSIS for Breast Cancer Dataset with Ranking of Feature Reduction Sequence using Dataset D3.

k-NN LR

FR CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank

FR1 0.248 0.238 0.241 0.244 0.240 0.043 0.016 0.267 15 0.251 0.241 0.244 0.242 0.243 0.047 0.018 0.275 15
FR2 0.245 0.246 0.238 0.244 0.242 0.040 0.016 0.281 14 0.249 0.254 0.249 0.242 0.252 0.036 0.029 0.446 11
FR3 0.235 0.241 0.243 0.247 0.242 0.042 0.012 0.225 16 0.246 0.241 0.236 0.248 0.239 0.052 0.014 0.216 16
FR4 0.248 0.254 0.238 0.252 0.246 0.032 0.027 0.457 11 0.251 0.254 0.246 0.261 0.250 0.029 0.037 0.563 4
FR5 0.251 0.262 0.259 0.263 0.261 0.006 0.049 0.892 1 0.249 0.265 0.265 0.266 0.265 0.014 0.058 0.811 1
FR6 0.256 0.251 0.238 0.257 0.245 0.031 0.033 0.518 9 0.251 0.238 0.262 0.242 0.250 0.040 0.032 0.447 10
FR7 0.248 0.244 0.257 0.257 0.250 0.024 0.033 0.581 6 0.240 0.249 0.252 0.258 0.250 0.034 0.032 0.484 7
FR8 0.251 0.249 0.246 0.242 0.248 0.033 0.023 0.410 12 0.246 0.241 0.252 0.237 0.246 0.047 0.020 0.301 14
FR9 0.253 0.249 0.246 0.255 0.248 0.026 0.017 0.405 13 0.262 0.260 0.241 0.248 0.250 0.034 0.038 0.527 5
FR10 0.256 0.246 0.254 0.250 0.250 0.024 0.032 0.570 7 0.257 0.260 0.246 0.256 0.253 0.026 0.040 0.609 2
FR11 0.253 0.257 0.249 0.250 0.253 0.021 0.034 0.616 5 0.238 0.257 0.249 0.250 0.253 0.036 0.032 0.468 9
FR12 0.248 0.259 0.251 0.236 0.255 0.030 0.032 0.517 10 0.251 0.265 0.257 0.237 0.261 0.032 0.045 0.579 3
FR13 0.243 0.259 0.259 0.244 0.259 0.023 0.037 0.619 4 0.262 0.246 0.246 0.250 0.246 0.036 0.033 0.475 8
FR14 0.256 0.251 0.262 0.255 0.257 0.014 0.042 0.756 2 0.249 0.236 0.252 0.261 0.244 0.041 0.031 0.431 12
FR15 0.256 0.244 0.254 0.250 0.249 0.027 0.031 0.540 8 0.249 0.244 0.249 0.240 0.246 0.044 0.021 0.319 13
FR16 0.251 0.249 0.262 0.252 0.255 0.018 0.038 0.671 3 0.249 0.246 0.252 0.258 0.249 0.032 0.032 0.504 6
V+ 0.256 0.262 0.262 0.263 0.261 0.262 0.265 0.265 0.266 0.265
V− 0.235 0.238 0.238 0.236 0.240 0.238 0.236 0.236 0.237 0.239

DT RF
FR1 0.243 0.241 0.241 0.238 0.241 0.052 0.009 0.153 16 0.250 0.238 0.254 0.238 0.246 0.046 0.021 0.311 13
FR2 0.251 0.263 0.256 0.260 0.260 0.013 0.046 0.783 2 0.247 0.259 0.257 0.241 0.258 0.032 0.035 0.527 5
FR3 0.254 0.241 0.254 0.249 0.248 0.037 0.028 0.435 8 0.239 0.246 0.243 0.249 0.245 0.043 0.015 0.261 16
FR4 0.243 0.239 0.249 0.244 0.244 0.047 0.016 0.253 15 0.253 0.240 0.246 0.238 0.243 0.047 0.017 0.263 15
FR5 0.251 0.263 0.264 0.262 0.264 0.008 0.053 0.867 1 0.247 0.264 0.262 0.263 0.263 0.015 0.050 0.773 1
FR6 0.246 0.255 0.254 0.246 0.255 0.029 0.032 0.522 7 0.245 0.259 0.259 0.255 0.259 0.022 0.040 0.641 3
FR7 0.248 0.241 0.254 0.252 0.248 0.037 0.027 0.422 10 0.250 0.243 0.259 0.252 0.251 0.031 0.030 0.492 8
FR8 0.254 0.236 0.256 0.252 0.246 0.040 0.030 0.432 9 0.245 0.246 0.246 0.252 0.246 0.038 0.020 0.340 12
FR9 0.246 0.260 0.249 0.252 0.254 0.026 0.034 0.565 3 0.250 0.251 0.254 0.249 0.253 0.029 0.029 0.503 7
FR10 0.257 0.239 0.249 0.246 0.244 0.043 0.025 0.366 12 0.253 0.246 0.246 0.247 0.246 0.038 0.021 0.353 11
FR11 0.237 0.252 0.246 0.244 0.249 0.040 0.022 0.347 14 0.256 0.256 0.241 0.244 0.248 0.037 0.027 0.425 9
FR12 0.254 0.268 0.241 0.246 0.254 0.032 0.040 0.555 5 0.250 0.240 0.238 0.252 0.239 0.046 0.018 0.276 14
FR13 0.257 0.244 0.243 0.254 0.244 0.039 0.028 0.413 11 0.256 0.264 0.249 0.257 0.256 0.019 0.042 0.685 2
FR14 0.257 0.244 0.264 0.244 0.254 0.034 0.038 0.534 6 0.261 0.246 0.243 0.268 0.245 0.032 0.038 0.542 4
FR15 0.251 0.255 0.243 0.265 0.249 0.030 0.037 0.556 4 0.256 0.251 0.251 0.249 0.251 0.029 0.030 0.510 6
FR16 0.251 0.255 0.235 0.244 0.245 0.043 0.024 0.360 13 0.242 0.251 0.249 0.244 0.250 0.039 0.021 0.353 10
V+ 0.257 0.268 0.264 0.265 0.264 0.261 0.264 0.262 0.268 0.263
V− 0.237 0.236 0.235 0.238 0.241 0.239 0.238 0.238 0.238 0.239
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Table 8. Results of TOPSIS for Adenoma Cancer Dataset with Ranking of Feature Reduction Sequence using Dataset D4.

k-NN LR

FR CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank CR1 CR2 CR3 CR4 CR5 S+
i S−

i Pi Rank

FR1 0.245 0.242 0.238 0.249 0.240 0.043 0.014 0.239 15 0.245 0.248 0.246 0.250 0.247 0.032 0.021 0.388 13
FR2 0.245 0.242 0.259 0.244 0.250 0.034 0.031 0.478 9 0.245 0.245 0.254 0.248 0.249 0.031 0.024 0.438 10
FR3 0.250 0.249 0.243 0.260 0.247 0.028 0.028 0.497 7 0.252 0.261 0.254 0.253 0.257 0.015 0.040 0.728 2
FR4 0.255 0.247 0.238 0.254 0.243 0.036 0.023 0.386 13 0.255 0.234 0.256 0.245 0.245 0.038 0.028 0.423 12
FR5 0.255 0.255 0.262 0.265 0.258 0.009 0.049 0.847 1 0.255 0.261 0.261 0.263 0.261 0.004 0.050 0.931 1
FR6 0.255 0.244 0.257 0.246 0.250 0.029 0.032 0.523 6 0.258 0.253 0.246 0.245 0.249 0.029 0.031 0.513 7
FR7 0.250 0.247 0.259 0.257 0.253 0.021 0.038 0.646 3 0.252 0.250 0.251 0.261 0.251 0.021 0.034 0.620 4
FR8 0.252 0.244 0.241 0.254 0.243 0.036 0.022 0.381 14 0.247 0.250 0.248 0.248 0.249 0.029 0.025 0.458 8
FR9 0.250 0.249 0.249 0.257 0.249 0.025 0.016 0.399 12 0.258 0.234 0.256 0.263 0.245 0.034 0.036 0.521 6
FR10 0.250 0.252 0.230 0.244 0.241 0.045 0.014 0.238 16 0.252 0.250 0.235 0.242 0.243 0.041 0.022 0.351 16
FR11 0.242 0.255 0.243 0.246 0.249 0.033 0.022 0.402 11 0.250 0.263 0.251 0.250 0.257 0.019 0.039 0.673 3
FR12 0.250 0.242 0.251 0.246 0.246 0.034 0.025 0.417 10 0.242 0.253 0.243 0.245 0.248 0.035 0.022 0.383 14
FR13 0.245 0.260 0.262 0.238 0.261 0.029 0.042 0.594 5 0.252 0.245 0.251 0.242 0.248 0.033 0.025 0.432 11
FR14 0.250 0.263 0.262 0.241 0.262 0.025 0.045 0.644 4 0.245 0.253 0.240 0.245 0.247 0.036 0.021 0.373 15
FR15 0.252 0.257 0.254 0.252 0.256 0.018 0.037 0.672 2 0.237 0.250 0.251 0.250 0.251 0.032 0.025 0.442 9
FR16 0.255 0.252 0.249 0.244 0.250 0.030 0.027 0.480 8 0.255 0.248 0.256 0.248 0.252 0.025 0.033 0.567 5
V+ 0.255 0.263 0.262 0.265 0.262 0.258 0.263 0.261 0.263 0.261
V− 0.242 0.242 0.230 0.238 0.240 0.237 0.234 0.235 0.242 0.243

DT RF
FR1 0.246 0.241 0.237 0.236 0.239 0.053 0.008 0.132 16 0.243 0.254 0.245 0.240 0.249 0.043 0.020 0.316 12
FR2 0.249 0.251 0.232 0.252 0.242 0.044 0.022 0.337 14 0.246 0.241 0.237 0.251 0.239 0.054 0.016 0.230 15
FR3 0.246 0.246 0.251 0.246 0.248 0.035 0.025 0.416 10 0.243 0.262 0.258 0.248 0.260 0.025 0.039 0.611 2
FR4 0.254 0.238 0.245 0.244 0.242 0.045 0.021 0.316 15 0.252 0.243 0.253 0.235 0.248 0.047 0.020 0.303 14
FR5 0.249 0.267 0.261 0.260 0.264 0.011 0.055 0.831 1 0.252 0.270 0.266 0.259 0.268 0.008 0.057 0.882 1
FR6 0.251 0.251 0.253 0.249 0.252 0.026 0.033 0.557 6 0.257 0.249 0.250 0.251 0.249 0.035 0.028 0.444 8
FR7 0.251 0.259 0.264 0.260 0.262 0.012 0.052 0.815 2 0.254 0.249 0.255 0.251 0.252 0.032 0.031 0.492 4
FR8 0.249 0.251 0.240 0.249 0.246 0.037 0.023 0.380 13 0.249 0.246 0.239 0.243 0.243 0.050 0.012 0.195 16
FR9 0.254 0.251 0.251 0.254 0.251 0.026 0.034 0.572 4 0.254 0.257 0.247 0.259 0.252 0.029 0.035 0.551 3
FR10 0.259 0.251 0.253 0.246 0.252 0.026 0.036 0.576 3 0.252 0.241 0.250 0.251 0.245 0.043 0.023 0.349 11
FR11 0.251 0.246 0.243 0.254 0.244 0.037 0.026 0.408 12 0.243 0.246 0.242 0.253 0.244 0.045 0.021 0.314 13
FR12 0.241 0.246 0.245 0.257 0.246 0.039 0.027 0.410 11 0.246 0.254 0.253 0.248 0.253 0.032 0.029 0.474 6
FR13 0.249 0.246 0.256 0.260 0.251 0.029 0.037 0.567 5 0.249 0.251 0.250 0.240 0.251 0.039 0.022 0.362 10
FR14 0.246 0.249 0.259 0.246 0.254 0.029 0.034 0.539 8 0.254 0.241 0.253 0.264 0.247 0.039 0.036 0.477 5
FR15 0.251 0.251 0.256 0.244 0.254 0.027 0.034 0.551 7 0.254 0.246 0.253 0.253 0.249 0.035 0.029 0.454 7
FR16 0.254 0.254 0.251 0.244 0.252 0.028 0.032 0.534 9 0.249 0.249 0.250 0.253 0.249 0.035 0.027 0.433 9
V+ 0.259 0.267 0.264 0.260 0.264 0.257 0.270 0.266 0.264 0.268
V− 0.241 0.238 0.232 0.236 0.239 0.243 0.241 0.237 0.235 0.239
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Table 9. Ranking and Selection of Top Three FR.

D Classifier Rank1 Rank2 Rank3

D1

k-NN FR5 FR14 FR10

LR FR12 FR5 FR9

DT FR5 FR13 FR14

RF FR5 FR13 FR14

D2

k-NN FR5 FR14 FR16

LR FR5 FR12 FR11

DT FR5 FR11 FR15

RF FR5 FR7 FR15

D3

k-NN FR5 FR14 FR16

LR FR5 FR10 FR12

DT FR5 FR2 FR9

RF FR5 FR13 FR6

D4

k-NN FR5 FR15 FR7

LR FR5 FR3 FR11

DT FR5 FR7 FR10

RF FR5 FR3 FR9

Table 10. Occurrence of Few Top-Ranking FR.

No. of Occurrences of Feature Reductions Wrt Rank

Feature Readuction Rank 1 Rank 2 Rank 3

FR5 15 1

FR14 3 2

FR10 1 2

FR111 1 2

FR15 1 1

FR7 2 1

FR12 1 1 1

FR9 3

FR13 3

FR16 2

FR3 2

FR6 1

FR2 1

6. Discussion

The following are the contribution of this proposed work:

• This research work focuses on the feature selection and classification approaches for
the gene expression cancer data analysis.
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• After going through several research contributions of the last five years, it is observed
that filter approaches are successful for hugely spaced data, as these are simple to
implement and with less computational cost.

• When a single filter approach is applied, the selection approach may not be able to
drop all redundant and insignificant features from the data. This may be due to the
data characteristics and score function used in the selection process.

• Thus, a series of filter approaches is applied to rank the features, and thus, few
top-ranked features are extracted.

• When a series of filter approaches is applied, which sequence will generate a significant
feature is required to be evaluated. Thus, rather than based on a single classifier,
multiple classifiers are used to find out the optimal sequence selection.

• Furthermore, this analysis is statistically proven to come up with optimal results.
• The method is generalizable for other diseases (especially for high-dimensional data),

if the research challenge is similar as in microarray datasets. Since features are different
for the different datasets hence by a little bit of modification, we can solve these issues
such as RNA sequence and methylation data accordingly. If the dimensionality is low,
then four-stage feature selection may not be required.

7. Conclusions and Future Work

After analyzing all the experimental studies and results analysis individually, it is
concluded that the FR5 model works better on the given datasets on all presented classifiers.
Finally, it can be concluded that the feature reduction sequence FR5, i.e., (Correlation-Based
Feature Selection → Chi-Squared Test → Relief Feature Selection → Information Gain) is
found to be the superior approach to other feature reduction combination techniques. This
analysis is implemented on highly spaced medical data. As filter approaches are quite
successful for huge data, this strategy can boost classifier efficiency while requiring little
computing work. Future work of this research analysis can be extended using a few more
successful feature selection approaches such as other filter approaches, wrapper techniques,
and embedded approaches. In this research study, the key challenges are significant feature
selection, as the data are huge. Thus, alternatively, this approach can also be successfully
applied in application areas where similar challenges are seen.
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