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Abstract: Anticancer peptides (ACPs) are short protein sequences; they perform functions like
some hormones and enzymes inside the body. The role of any protein or peptide is related to its
structure and the sequence of amino acids that make up it. There are 20 types of amino acids in
humans, and each of them has a particular characteristic according to its chemical structure. Current
machine and deep learning models have been used to classify ACPs problems. However, these
models have neglected Amino Acid Repeats (AARs) that play an essential role in the function and
structure of peptides. Therefore, in this paper, ACPs offer a promising route for novel anticancer
peptides by extracting AARs based on N-Grams and k-mers using two peptides’ datasets. These
datasets pointed to breast and lung cancer cells assembled and curated manually from the Cancer
Peptide and Protein Database (CancerPPD). Every dataset consists of a sequence of peptides and their
synthesis and anticancer activity on breast and lung cancer cell lines. Five different feature selection
methods were used in this paper to improve classification performance and reduce the experimental
costs. After that, ACPs were classified using four classifiers, namely AdaBoost, Random Forest
Tree (RFT), Multi-class Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). These
classifiers were evaluated by applying five well-known evaluation metrics. Experimental results
showed that the breast and lung ACPs classification process provided an accurate performance that
reached 89.25% and 92.56%, respectively. In terms of AUC, it reached 95.35% and 96.92% for both
breast and lung ACPs, respectively. The proposed classifiers performed competently somewhat
equally in AUC, accuracy, precision, F-measures, and recall, except for Multi-class SVM-based feature
selection, which showed superior performance. As a result, this paper significantly improved the
predictive performance that can effectively distinguish ACPs as virtual inactive, experimental inactive,
moderately active, and very active.

Keywords: anticancer peptides; amino acid repeats; N-Grams; machine learning; ensemble learning

1. Introduction

Cancer or malignant tumors are common terms for many diseases that can affect
any part of the human body. Cancer has one discriminant feature: the rapid growth
and production of abnormal cells that grow beyond their actual boundaries, infecting
adjoining parts of the human body and spreading to other parts; this process is called
metastasis. Metastases are the primary cause of millions of cancer deaths every year,
especially breast and lung cancer [1]. Conventional cancer treatment procedures, such
as radiotherapy and chemotherapy, are costly and frequently have harmful side effects
on normal cells. Furthermore, cancer cells can develop resistance to currently available
anticancer chemotherapeutic medicines [2]. As a result, developing and anticipating
innovative therapies with specific mechanisms is critical. ACPs are special molecules
compared to the real chemotherapy arsenal accessible to treat cancer. They show a spectrum
of action patterns co-existing in some cancers [3]. Therefore, they represent an alternative
to conventional chemotherapy. In addition, ACPs’ activity depends on their amino acids’
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type, number, and structure. They effectively destroy the cancer cell structure, thereby
inhibiting the proliferation and growth of cancer cells and inducing apoptosis throughout
the electrostatic interaction with the cancer cell membrane according to its structure, ACPs
can be classified into four types: α-helical, β-pleated sheets, random coil, and cyclic. ACPs’
design represents a challenge to researchers since they are expected to be selective to tumor
cells without influencing normal body functions [4].

Traditionally, peptides can be divided into two types: oligopeptides and polypeptides,
where oligopeptides have few amino acids, from 7 to 30 (e.g., A, R, N, D, C, Q, E, G, H,
I, L, K, M, F, P, S, T, W, Y, and V), and includes dipeptides, tripeptides, and tetrapeptides.
In contrast, polypeptides have many amino acids with more than 20 residues [5]. ACPs
are divided into two categories: those toxic to both cancerous and normal cells with little
indication of selectivity, and those toxic to cancer cells but not to normal mammalian cells
or erythrocytes [6].

It is difficult to identify distinct ACPs quickly and effectively to understand their
anticancer mechanisms better and develop new anticancer drugs. Many experimental
methods for identifying and developing novel ACPs have been developed. However, they
are usually time-consuming, expensive, and difficult to perform at high throughput. As a
result, the enormous therapeutic importance of ACPs requires the development of highly
effective prediction algorithms [7,8].

Recently, many different experimental methods have been proposed to classify APCs
using either machine or deep learning.

However, there are certain limitations associated with the previous methods. The
main limitation includes the type and quantity of dataset selection. In other words, pre-
vious methods focused on the binary classification of ACPs only (ACPs and non-ACPs),
regardless of the ACPs type (e.g., cancer or lung). This creates a difficult situation for
the experimental scientist in testing a particular type and classification of ACPs. Another
important drawback of the previous methods is that AARs, which play a fundamental role
in the function and structure of the peptides, are neglected, and this causes an inability to
distinguish between peptides having similar structures but different activities. The issues
above motivate us to propose a method that addresses the above-mentioned limitations.
Therefore, this paper combines Natural Language Processing (NLP) and ensemble learning
algorithms to classify breast and lung ACPs. Furthermore, we used two datasets (breast and
lung cancer datasets) to perform a statistical evaluation and improve the robustness and
reliability of the average performance. This paper has three contributions: first, different
sizes of N-gram and k-length substrings (k-mers) were used to analyze the sequence of
amino acids, specially AARs. Second, the proposed ensemble learning model improved the
average prediction performance compared to that of any single machine learning model.
Third, feature selection enabled ensemble learning to train faster by reducing the complexity
of a model.

The rest of this paper is organized as follows. In Section 2, related works are discussed.
In Section 3, the breast and lung databases are presented. In Section 3, feature extraction for
peptides is illustrated. In Section 4, five feature selection methods are introduced. Section 5
provides the details of four classifiers. Section 6 demonstrates all experimental results. The
last section presents the conclusions.

2. Related Work

This section highlights the works on ACPs classification using well-known techniques,
either traditional machine or deep learning techniques. All works only classify ACPs into
two labels: ACPs (positive) and non-ACPs (negative), using different datasets, as shown
in Table 1.

Machine learning techniques require hand-crafted feature extraction to represent pep-
tide sequences for classification tasks. These features are divided into five groups: binary
profiles, composition-based features, structure-based features, patterns, and evolutionary
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information. In contrast, the composition-based features are amino acid index, amino acid
composition, dipeptide composition, and physicochemical-based features [9].

Recently, some methods in the classification of ACPs have been developed. For exam-
ple, iACP describes a sequence-based predictor built by optimizing the g-gap dipeptide
components. Rigorous cross-validations have proved that the new predictor has signifi-
cantly outperformed existing predictors for accuracy and overall stability. Furthermore,
it uses the main concept of SVM to build a separating hyper-plane that maximizes the
difference between the positive and negative datasets [10].

MLACP constructed SVM and RFT algorithms for predicting ACPs from amino acid
sequence parameters using the Hajisharifi dataset [11]. SAP used only 400-dimension
features with g-gap dipeptide features that were collected from the Hajisharifi dataset, and
then the irrelevant features were removed using the features selection method. When SVM
or LibD3C are used, the 400-dimension features perform better than the RFT model [12].
mACPpred applied the feature selection approach on seven feature encodings collected
from the independent dataset. These important features are then fed into an SVM classifier
to develop the prediction model [13]. ACPs are used to extract a 19-dimensional feature
model with lower dimensions and better performance than those of specific existing
approaches. The selected features are then fed into three classifiers, SVM, RFT, and LibD3C,
using the Hajisharifi dataset [14]. In cACP-2LFS, three different nature encoding approaches
are used to extract essential features from peptide sequences. However, K-space amino
acid pair (KSAAP) is applied to extract highly linked and valuable descriptors. In addition,
a unique two-level feature selection (2LFS) technique is used to select important features
and reduce the dimensionality of the proposed descriptors [15]. AntiCP 2.0 is an improved
version of AntiCP, which was created to predict anticancer peptides using various input
features accurately and implement the Extra Tree classifier model on two datasets: main
and alternate datasets [16].

Unfortunately, these exciting techniques rely on one-experience-based, hand-crafted
features, which have two limitations; The ability to represent models to a certain extent and
the lack of adaptability to a different dataset, which limits the improvement of predictive
performance and affects the robustness of predictive models [17]. Therefore, many works
used deep learning for extracting and combining spatial features from various datasets.
For example, ACP-DL constructed a deep learning long short-term memory (LSTM) neural
network model to effectively predict novel ACPs using a feature representation method
incorporating binary profile features and a k-mer sparse matrix [18].

Table 1. Summary of the related work.

References No. Method Dataset No. of Non-ACP vs. ACP Classifier

[10] iACP Hajisharifi 206 non-ACP 138 ACP SVM

[11] MLACP CancerPPD 206 non-ACP 138 ACP SVM and RFT

[12] SAP Hajisharifi 206 non-ACP 138 ACP SVM

[13] mACPpred Independent dataset 157 non-ACP 157 ACP SVM

[14] Li, Qingwen, et al. Hajisharifi 206 non-ACP 138 ACP SVM, RFT, and LibD3C

[15] cACP-2LFS CancerPPD 150 non-ACP 150 ACP FKNN, SVM and RFT

[16] AntiCP 2.0 Main dataset 861 non-ACP 861 ACP Extra Tree

[18] ACP-DL ACP740 and ACP240 364/111 non-ACP 376/129 ACP LSTM

[19] xDeep-AcPEP CancerPPD 65 non-ACP 85 ACP CNN

[20] ACP-MHCNN Independent dataset 364/111 non-ACP 376/129 ACP CNN

[21] DLFF-ACP CancerPPD 65 non-ACP 85 ACP CNN

[22] ACPNet Independent dataset 364/111 non-ACP 376/129 ACP RNN
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Another method, xDeep-AcPEP, identifies effective ACPs in rational peptide design
for therapeutic purposes based on CNN to predict biological activity (EC50, LC50, IC50,
and LD50) against six tumor cells, including those of the breast, colon, cervix, lung, skin,
and prostate [19]. Finally, three methods, like ACP-MHCNN, DLFF-ACP, and ACPNet,
extract and combine discriminative features from different information sources using CNN
to distinguish ACPs. These methods employ three different types of peptide sequence
information, peptide physicochemical properties, and auto-encoding features linking the
training process [20–22].

In the context of ACPs classification, deep learning is not automatically suitable for
small data situations to make accurate decisions. It might not be the best solution for not
large-scale datasets.

Here, we used the biological activity data of two famous tissue types (breast and lung)
from CancerPPD to train and test using the ensemble learning method to improve the
classification task. In addition, we distinguished breast and lung ACPs as virtual inactive,
experimental inactive, moderately active, and very active, rather than two binary classes
(ACPs and non-ACPs). Consequently, this paper significantly improves the predictive
performance compared with that of other state-of-the-art methods.

3. Datasets

This paper used two datasets of peptides pointed to breast and lung cancer. These
peptides’ datasets were assembled and curated manually from the Cancer Protein and
Peptides Database (CancerPPD) [23] by authors in [24] to predicate biological activities
such as LD50 (Lethal Dose 50%), LC50 (Lethal Concentration 50%), EC50 (Median Ef-
fective Concentration), and IC50 (Inhibitory Concentration 50%) against lung and breast
cancer cells.

Experimentally, peptides’ activity of anticancer was tested; only 53 peptides in the
CancerPPD database possess low micromolar activity (EC50, IC50, or LC50 < 5 µM).
Therefore, the authors in [24] split this anticancer activity of peptides into four classes
according to µM: virtual inactive, experimental inactive, moderately active, and very active,
as shown in Table 2; In other words, these classes represent the activities against breast and
lung cancer cells. The breast cancer dataset contains 949 peptides, while the lung cancer
dataset contains 901 peptides.

Table 2. Description of anticancer peptides dataset.

Cancer Types Class EC50, IC50, or LC50 No. of Peptides

breast cancer virtual inactive >50 µM 750

breast cancer experimental inactive >50 µM 83

breast cancer moderately active up to 50 µM 98

breast cancer very active ≤5 µM 18

lung cancer virtual inactive >50 µM 750

lung cancer experimental inactive >50 µM 52

lung cancer moderately active up to 50 µM 75

lung cancer very active ≤5 µM 24

In the case of ties, the less active class was chosen (>50 µM). Because the CancerPPD
is biased towards active peptide annotation, a set of virtual inactive peptides have been
built by randomly collecting and extracting 750 alpha-helical peptides from crystalline
structures recorded in the Protein Data Bank (7–30 amino acids) [24]. As a result, the total
number of inactive peptides (virtual and experimental inactive) for breast and lung cancers
was 833 and 803, respectively. However, this created a state of imbalance in the dataset.
To overcome this problem, we used five well-known evaluation metrics: AUC, accuracy,
precision, F-measures, and recall.
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4. Features Extraction for Peptides

Amino acid repeats are abundant in every peptide sequence because these repeats
reflect the inherent biological properties of the peptide [25]. In this paper, we applied
an effective approach, namely k-mers, to extract these biological properties of the pep-
tide. k-mers are primarily used with nucleotides (i.e., A, T, G, and C) in computational
genomics [26], but we used k-mers with 20 amino acids. The primary approach is to break
down the peptide into four different types of k-mers (k = 1, 2, 3, and 4) that represent the
following amino acid profiles:

1. A monopeptide has a single amino acid (k = 1).
2. A dipeptide has two amino acids (k = 2).
3. A tripeptide has three amino acids (k = 3).
4. A tetrapeptide has four amino acids (k = 4).

The permutation index of k-mers can be represented as peptide function Pk. P
stands for a peptide sequence of 20 amino acids. For example, if we convert a peptide
sequence (FAKALAKLAKKLL) into a single character k = 1 (one amino acid), F is one of the
20 possible elements of monopeptide. Similarly, FA has 400 possible elements of dipeptides;
FAK has 8000 possible elements of tripeptides. Finally, FAKA has 160,000 possible elements
of tetrapeptides.

In peptides classification, N-Grams is a consecutive subsequence of the primary
structure of a peptide sequence of a length n, extensively used in NLP tasks. Where n is
also the number of amino acids that are extracted from each candidate peptide sequence.

Each sequence from the ACPs dataset is divided into an overlapping subsequence of
2-mers, 3-mers, and 4-mers to extract encoded N-Grams. After that, from each of these k-
mers, we extract N-Grams of sizes 2, 3, and 4, as shown in Figure 1. In this paper, unigrams
(n = 1) are skipped because they do not reflect any biological representations, thus, we
skipped n = 1 when (k = 1).
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The weka word2vec tool was utilized to compute vector representations of a peptide,
then, the number of features extraction depended on the n values using the following formula:

No. of features =
n

∑
k=1

pk (1)
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For example, if we consider n = 3 (3-Grams), then the total number of peptides features
of k = 1, . . . , 3, will be:

No. of featuers = p1 + p2 + p3 (2)

5. Proposed Feature Selection Methods

The major problem of the N-Grams model is that it generates features space with
high dimensions and extreme spacing. In other words, most of these features have zero
or empty values, and others give a number of occurrences of a given subsequence in the
peptide. Furthermore, many relevant features have a high correlation degree with the class
and low correlation with other features. Thus, these features provide essential information
about the functions and structure of the peptide and positively affect the performance of
the classifier and running time. In contrast, irrelevant or redundant features are removed
from the original features vector. Therefore, in this paper, five features selection methods
were successfully applied to make a comparative study of these methods and investigate
the best performance of the proposed model.

These methods are Information gain [27], Gini index [28], Chi-square (X2) [29], Re-
lief [30], and Correlation-Based Feature Selection (CBFS) [31].

6. Classifiers

The architecture of the proposed model consists of four stages: feature extraction,
feature selection, classification, and voting process. The framework of the model is shown
in Figure 2.
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In the first stage, we extracted important features using k-mers and encoded N-Grams
from each peptide sequence. Experimentally, to choose the best value for k in a k-mers
model, it is necessary to find the suitable trade-off between the accuracy and the execution
time. Therefore, one possible approach is to increase the value of k by one from k = 2 to
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k = 4. At the same time, k = 1 or n = 1 is skipped because they do not reflect any biological
representations. In contrast, we chose k = 4 since it is a common choice with large training
corpora and it gives higher accuracy than other k values do, whereas a k = 2 is often used
with smaller ones. Subsequently, the optimal k or n values can be considered a set leading
to the highest prediction accuracy.

In the second stage, five features selection methods were successfully applied to
investigate the best performance of the proposed model. Thirty-five highest ranked features
out of 8420 features of the 3-Grams profile were selected using the breast ACPs dataset.
Thirty-one highest ranked features out of 168,420 features of the 4-Grams profile were
selected using the lung ACPs dataset. In this paper, computing time was not an issue. To
get high accuracy, we considered a loop in which features were gradually (one by one)
added to the prediction model depending on their importance weight (highest ranked). As
a result, the best feature set could be defined as one that led to the best prediction accuracy.

In the third stage, four well-known classifiers were applied, namely, AdaBoost [32],
RFT [33], Multi-class SVM [34], and MLP [35], using orange data mining software [36]. In
this paper, the prediction model, 5-fold cross-validation, was used with a training size of
66% and a testing size of 33%. All experiments were run on a computer with an Intel(R)
Core (TM) i5-6300U CPU 2.50 GHz using 8 GB of RAM, running Windows 10 Pro. The key
parameters of each classifier are shown in Table 3.

Table 3. Key parameters of four classifiers.

Classifier Key Parameters

AdaBoost

Base estimator: Tree
Number of estimators: 50

Learning rate: 1
Classification algorithm: SAMME.R

Regression loss function: Linear

RFT

Number of trees:10
Number of attributes at each split:5

Limit depth of individual tree: 3
Don’t split subset smaller than: 5

Multi-class SVMs

Cost©: 1
Regression loss epsilon (E): 0.10

Kernel: RBF
Numerical tolerance: 0.0010

Iteration limit: 100

Multi-Layer Perceptron

Neurons in hidden layers: 100
Activation function: ReLu

Solver: Adam
Regularization: 0.0001

Maximum number of iterations: 200

Finally, these classifiers were combined using the voting process model to enhance the
proposed model’s performance by choosing the best classifier.

7. Results and Discussion
7.1. Performance Comparison with Different Amino Acid Profiles

For comparison with different N-Grams (2-Grams, 3-Grams, and 4-Grams), the average
of the classification results of breast and lung ACPs using four classifiers are recorded in
Figures 3 and 4, respectively. In addition, these classifiers were adopted to execute five-fold
cross-validation without using feature selection methods. As we can see in Figure 3, the 3-
Grams breast ACPs classification achieved the best performance, attaining an average AUC,
Accuracy, F1-measures, Precision, and Recall of 94.08%, 89.28%, 88.60%, 88.19%, and 89.28,
respectively. However, 2-Grams and 4-Grams had good classification results. In contrast,
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the experimental metrics in Figure 4 show that the 4-Grams lung ACPs classification
achieved the best performance in AUC; it was 94.94%. At the same time, 2-Grams lung
ACPs classification achieved the best performance and average Accuracy, F1-measures,
Precision, and Recall of 91.51%, 91.18%, 91.35%, and 91.51, respectively. However, 3-Grams
had excellent classification results.
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7.2. Performance Comparison with Different Features Selection Methods References

Selecting the AARs that are extracted from each candidate peptide sequence is ex-
tremely important. According to the validity of all previous experiments that directly
impacted the classification process, we used the optimal values of 3-Grams and 4-Grams
because they gave high AUC, Accuracy, Precision, F-measures, and Recall as they were
used in large training corpora. After that, we applied five feature selection methods that
used only 3-Grams and 4-Grams to facilitate comparison with these methods. Figure 5
shows the breast ACPs classification performance by selecting 35 highest ranked features
out of 8420 features of the 3-Grams profile.
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Figure 5. Performance of five feature selection methods on the breast ACPs using only 35 features.

Similarly, Figure 6 shows the lung anticancer peptides classification performance by
selecting 31 highest ranked features out of 168,420 features of the 4-Grams profile.
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Figure 6. Performance of five feature selection methods on the lung ACPs using only 31 features.

All experimental results in Figure 5 show that the AUC, Accuracy, F1-measures,
Precision, and Recall of the feature selection-based breast ACPs classification were about
0.29%, 1.09%, 1.4%, 1.93%, and 1.09% higher than those of the breast ACPs classification
without feature selection. Similarly, all experimental results in Figure 6 show that the AUC,
Accuracy, F1-measures, Precision, and Recall of the feature selection-based lung ACPs
classification were about 0.74%, 0.75%, 0.57%, 0.29%, and 0.75% higher than those of the
lung ACPs classification without feature selection. As a result, the average results of four
classifiers on the five-fold cross-validation showed that Information gain, Gini index, X2,
Relief, and CBFS were relatively stable, and CBFS had the best overall effect. Thus, optimal
feature selection reached the level of best performance with 35 and 31 features using the
breast and lung cancer dataset.
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7.3. Performance Comparison with Multiple Classifiers

Because of the validity of all previous experiments that directly impacted the classi-
fication process, we chose only CBFS to classify breast and lung breast ACPs using four
classifiers (AdaBoost, RFT, Multi-class SVM, and MLP). First, monopeptide, dipeptide,
and tripeptide acids were extracted from the breast ACPs dataset, and we selected the
35 highest ranked features based on CBFS, as shown in Figure 7. Second, monopeptide,
dipeptide, tripeptide, and tetrapeptides acids were extracted from the lung ACPs dataset,
and we selected the 31 highest ranked features based on CBFS shown in Figure 8. Con-
ventionally, these extracted features were fed to four different classifiers. In the prediction
models, five-fold cross-validation was used with a training size of 66% and testing size
of 33%. Multi-class SVM showed superior performance on breast ACPs dataset than
other classifiers did in terms of AUC, Accuracy, F1-measures, Precision, and Recall with
95.45%, 88.62%, 87.67%, 87.96%, and 88.62, respectively. In contrast, Multi-class SVM also
showed superior performance on lung ACPs compared to that of other classifier datasets
in terms AUC, Accuracy, F1-measures, Precision, and Recall with 96.92%, 92.56%, 92.12%,
92.60%, and 92.65, respectively. Overall, the above analysis indicates that all four classifiers’
performances were similar regardless of the datasets.
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Figure 7. Performance of four classifiers using the breast ACPs.

7.4. Performance Comparison with State of the Art

This section compares the proposed method with MLACP, cACP-2LFS, xDeep-AcPEP,
and DLFF-ACP as state of the art [11,15,19,21], as shown in Table 4. It was not easy to
directly compare the previous methods for two reasons. First, all mentioned methods
in Section 2 did not consider any cancer types (e.g., breast or lung cancer). The other
reason was that the purposes of these methods were almost identical, focusing only on the
classification of ACPs into binary classes (non-ACP and ACP). However, we compared
previous works, which used the same database (CancerPPD). In terms of accuracy, the
experimental results showed as follows:

1. The proposed breast ACPs method outperformed all the mentioned methods, except
for cACP-2LFS, because a minimal dataset was used (150 non-ACP 150 ACP) with
20 features only.

2. The proposed lung ACPs method outperformed all mentioned methods.
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Table 4. Performance comparison with the state of the art.

Method Classifier No. of Features Accuracy Predictions

MLACP SVM and RFT 20, 400, 5, and 11 88.7% 206 non-ACP 138 ACP

cACP-2LFS FKNN, SVM and RFT 20 93.72% 150 non-ACP 150 ACP

xDeep-AcPEP CNN - 82.42% 65 non-ACP 85 ACP

DLFF-ACP CNN - 82% 65 non-ACP 85 ACP

Proposed breast ACPs Ensemble learning 35 89.25%
750 virtual inactive, 83 experimental
inactive, 98 moderately active, and

18 very active

Proposed lung ACPs Ensemble learning 31 95.35%
750 virtual inactive, 52 experimental
inactive, 75 moderately active, and

24 very active

In this paper, we used the biological activity data on two famous tissue types (breast
and lung) and distinguished breast and lung ACPs as virtual inactive, experimental inactive,
moderately active, and very active, rather than two binary classes (ACPs and non-ACPs).

As a result, the classification outcomes reveal that our proposed method achieved
improved performance accuracy compared to that of the state of the art so far.

8. Conclusions

This paper proposes a new model that combines NLP and ensemble learning algo-
rithms to efficiently and accurately classify breast and lung ACPs. Specifically, we offer a
novel feature extraction method by extracting AARs using N-Grams. Then, five feature
selection methods were used to improve classification performance and reduce the exper-
imental costs. Finally, we utilized four classifiers, AdaBoost, RFT, Multi-class SVM, and
MLP, and applied them on two datasets. Experimental results reveal that (1) The 3-Grams
profile (monopeptide, dipeptide, and tripeptide acids) of the breast ACPs classification
achieved the best performance relative to that of other profiles. (2) The 4-Grams profile
(monopeptide, dipeptide, tripeptide, and tetrapeptides acids) of the lung ACPs classifica-
tion achieved the best performance compared to that of other profiles in terms of AUC. At
the same time, 2-Grams also achieved the best performance but with other classification
matrices. (3) All feature selection methods like Information gain, Gini index, X2, Relief,
and CBFS were relatively stable, and CBFS had the best overall effect in breast and lung
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cancer. (4) The performances of the four classifiers were similar regardless of the datasets,
but Multi-class SVM-based CBFS showed superior performance in the breast and lung
classification. As a result, the impact on classification performance depended on four
factors: the size of N-Grams, feature selection methods, the number of selected features,
and machine learning algorithms. Thus, this paper significantly improves the predictive
performance that can effectively distinguish ACPs as virtual inactive, experimental inactive,
moderately active, and very active.
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