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Abstract: This study investigates multiple synchronizations of distributed fractional-order chaotic
systems. These systems consider unknown parameters, disturbance, and time delays. A robust
adaptive control method is designed for multistage distributed fractional-order chaotic systems.
In this paper, system parameters are changed step by step. Using Lyapunov’s function, while the
synchronization error convergence to zero is guaranteed, adaptive rules are designed to estimate
the parameters. Then, a secure communication scheme is proposed using the new chaotic masking
method. Finally, the simulations are performed on a chaotic system of distributed Duffing fractional
order. The results show the high efficiency of the proposed synchronization scheme using robust
adaptive control, despite the parametric uncertainties, external disturbance, and variable and un-
known time delays. Then, the simulations were performed on the sinusoidal signals of the message in
the application of secure communications. The results showed the success of the proposed masking
scheme with synchronization in coding and decoding information.

Keywords: adaptive-robust synchronization; Lyapunovstability; time delay; secure communication;
chaotic masking

1. Introduction

Chaotic systems are nonlinear systems sensitive to their initial conditions. One of the
applications of chaos is the synchronization of chaotic systems in which the state paths
of a slave system follow the state paths of a master system. Synchronization of chaotic
systems is used in secure communications [1]. As an advanced form of correct order calcu-
lations, fractional calculations date back to the 17thcentury. However, their application in
control science dates back to recent centuries. Fractional differential equations give a more
precise description than integer equations. Fractional order equations have memory and
inheritance properties that provide better descriptions for different processes compared
to correct order calculations. In recent years, the synchronization of fractional chaotic
systems has received much attention [2–6]. For instance, Mirrezapour et al. (2021) used
a new fractional slide mode controller based on the PID controller structure to synchronize
the fractional-order chaotic system with uncertainty and disturbance [7]. Also, a new
fractional-order integral sliding mode control has been used to stabilize and synchronize
N-dimensional chaotic systems [8]. Comparative analysis between previous control tech-
niques was performed through different time-domain functions such as sitting time, error
indexes, and control energy measurement. In another study, Wu et al. [9] performed image
synchronization of the inner layer of the finite-time derivative of the Caputo fraction of
two-layer networks using a sliding mode. Yadav et al. (2021) investigated the exponential
synchronization of fractional-order combined chaotic systems and their applications in
digital cryptography [10].
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A distributed order differential equation is a continuous generalization of the time-
fractional order. If the density function takes a single impulse function in the distributed
integral, the time-differential equation of the distributed order is reduced to a single or-
der type. However, if the linear combination of several impact functions is considered
a non-negative density function, then the multiple expression is retrieved [11]. This study
presents distributed-order fractional calculus (DOFC) mathematics, including analytical
and numerical methods. Then, the applications of DOFC were presented in the fields
such as viscoelasticity, transfer processes, and control theory. Katsikadlis (2014) proposed
a numerical solution for solving distributed fractional differential equations [12]. Later, Li
et al. (2016) analyzed the solutions of a distributed time-fraction differential equation and
its application to an inverse problem [13]. In [14], the numerical solution of the fractional
equation with the Bagley-Torvik distributed order was presented. These authors offered
two numerical methods for solving the Bagley-Torvik equation of distributed order fraction.
In [15], a numerical solution is presented for distributed fractional order equations by
hybrid functions. This method is based on the approximation of hybrid functions. The
Riemann-Liouville operator was used for hybrid functions. Afterward, this operator was
used to convert the distributed fractional differential equations to a system of algebraic
equations. In [16], stability analysis of distributed fractional order differential equations
was performed. The authors analyzed the stability of three classes of distributed order frac-
tional equations according to the non-negative density function. In [17], the time variable
distributed fractional-order equation was studied, analyzed, and approximated. In [18], the
distributed fractional-order equation was studied in finite domains. This equation provides
robust solutions and random analogs for distributed fractional order equations in finite
domains with Dirichlet boundary conditions. Furthermore, the research [19] represent
other studies on distributed fractional order.

Multi-mode synchronization is another type of synchronization that has attracted
much attention among researchers. This technique is more complex and therefore more
practical than conventional synchronization. In this type of synchronization, two or more
slave systems follow a master system. In [20], chaotic control and anti-synchronization of
the combined were performed on a new fractional chaotic system. Synchronization was
performed on 12 fractional-order chaotic systems using a sliding mode. Then, the synchro-
nization technique was implemented as an application of secure communications [21,22].
In their design, the state variables of the two master systems are synchronized with the
state system variables of the slave system. Ricky Taki and Windy’s chaotic systems were
considered the master systems, and Chen’s system was the slave system in the uncertain
presence of the parameters [23].

In [24], chaotic absorbers that exist only in the fractional-order state have been inves-
tigated. Self-excited chaotic attractors were also considered. The results were supported
by the calculation of the set of attractors, bifurcation, and Lyapunov exponent spectrum.
Advanced applications of fractional differential operators in science and technology were
studied in [25]. A new fractional-order chaotic system was introduced in [26]. Lyapunov
exponent, Lyapunov spectrum, and bifurcation diagrams were calculated and chaotic
attractors were investigated. Then, its application in linear control was explained. A non-
standard finite difference scheme for unknown modelling and synchronization of a new
fractional-order chaotic system including quadratic features was studied in [27]. In [28], the
stability of Routh-Hurwitz and periodic Gaussian attractors in a fractional order model was
investigated along with the application of N in the COVID-19 epidemic. In [29], dynamic
analysis and adaptive synchronization were performed using a new fuzzy adaptive sliding
mode control method. In [30], the control and synchronization problem of fractional-order
chaotic satellite systems was studied using adaptive control and feedback techniques. The
new Routh-Hurwitz stability conditions were applied for arbitrary orders. Also, the local
stability of arbitrary orders was checked. The conditions for approximating the periodic
solution in this model were discussed with Hopf’s bifurcation theory [31]. The characteris-
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tics of nonlinear reverberation such as the presence of chaos were proved with the help of
bifurcation diagrams, Lyapunov expressions, and Marotto’s theorem [32].

Secure communications were implemented by Khan et al. (2020), using a parallel
synchronization technique on a new fractional-order chaotic system [33]. Yu et al. (2019)
presented an analysis and realization of a five-dimensional hyper-chaotic four-blade mem-
ristor system using active control synchronization with its application in secure communica-
tions [34]. Zhao et al. [35] performed an observer-based synchronization of chaotic systems
with additional square constraints and evaluated its application in secure communications.
In another study, observer-based synchronization of chaotic systems was studied by con-
sidering additional constraints and their application in secure communications. Samimi
et al. (2020) provided secure communications based on chaotic synchronization using emo-
tional learning [36]. Luo et al. (2019) used time-limited modified image synchronization
of multi-mode unknown chaotic systems and their application in secure communications
using DNA encoding [37]. Secure communication using matrix image synchronization was
provided by Khan et al. [38].

According to previous studies, using adaptive control multi-mode synchronizations
for fractional-order chaotic systems has not been considered, despite their uncertainties
and time-varying parameters. The main part of this research is using distributed fractional-
order derivatives instead of ordinary fractional-order derivatives, which have not been
considered in previous similar studies. The stability of the distributed fraction order system
was proved by Lyapunov’s theorems and theory. This paper considers parametric and
structural uncertainties, disturbance, and unknown delays. Using the obtained adaptive
rules, the stability of the closed-loop system in the presence of disturbance and uncertainty
is guaranteed. In addition, the chaotic masking method uses distributed fractional order
synchronization in secure telecommunications to transmit the signal reliably.

The performance of the proposed method was tested by performing some simulations
based on three distributed fractional-order duffing systems with unknown parameters,
external disturbance, and unknown delay. Then, this distributed fraction order synchroniza-
tion scheme is used in secure communications. Finally, the results of secure communications
are tested on signals. The results show the robustness of the proposed adaptive control
scheme. The results also indicate the stability of the system over synchronization time.

The remainder of this paper is organized as follows. Section 2 includes the formulation
of the proposed method. In Section 3, the concepts related to the comparative synchro-
nization of the multi-mode distributed fractional order are explained by considering the
unknown parameters in the transition state. Then, the simulation results are given in
Section 4. Finally, in Section 5, simulations related to secure communications are tested on
message signals.

2. Problem Formulation

Distributed fractional-order derivatives are special and generalized forms of fractional-
order models which are used to describe the equations of viscoelastic systems well. At
first in this section, the first distributed fractional-order systems are presented. Then,
multiple synchronizations of distributed fractional-order chaotic systems are proposed.
The adaptive controller is designed to estimate unknown parameters using Lyapunov’s
theory of stability.

2.1. Distributed Fractional-Order Derivative

Several numerical definitions have been proposed to solve differential equations based
on simple implementation and performance in research [39]. In this article, the definition
of Caputo is used. The definition of the Caputo fraction derivative is as follows [39]:

Dq f (x) = Iβ−qh(β)(x), q > 0 (1)
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where h(β) represents the derivative of the order βth of h(x), β = [q] is the integer com-
ponent of first number that is less than q. The distributed fractional order is described
as follows [40]:

Iqg(x) =
1

Γ(q)

∫ x

0
(x− t)q−1g(t)dt, q > 0doDqx(t) =

∫ 1

0
m(q)Dqx(t)dq, m(q) > 0 (2)

where Γ(q) is a gamma function and the density function is defined on the interval [0, 1].

doDq is a distributed fractional derivative operator. If q is constant, it becomes a normal
fractional-order derivative, but if q is allowed to distribute, that is, it changes in a range,
then it becomes a distributed fractional-order derivative which range is denoted by m(q).
Stability analysis of distributed fractional systems is guaranteed by Lyapunov’s direct
method and determination of necessary and sufficient stability conditions with the con-
cept of Mittag-Leffler [41] and stability analysis based on convex Lyapunov functions for
nonlinear systems is shown [42].

Lemma 1. [41–43]: Suppose h(t) ∈ R is a continuous and derivative function. Then we have
for t ≥ t0:

doDqh2(t) ≤ 2h(t)·doDqh(t) (3)

Lemma 2. [41–43]: Suppose h(t) ∈ Rn is a derivative and continuous function. Then we have
for t ≥ t0 :

doDqhT(t)h(t) ≤ 2hT(t)·doDqh(t) (4)

Theorem 1. [44,45]: Assume that x = 0 is the equilibrium point of the distributed fractional order
system (5) and the definition domain includes the origin. Assume that V(t.x(t)) is a derivative and
continuous Lipschitzfunction:

doDqx(t) = f (x.t) (5)

a1‖x‖a ≤ V(t.x(t)
)
≤ a2‖x‖ab (6)

doDqV(t.x(t)) ≤ −a3‖x‖ab (7)

where 0 < q < 1 and a1. a2.a3.a.b are arbitrary and positive constants. Then x = 0 is stable in
terms of Mittag-Leffler.

Theorem 2. [45,46]: For a distributed fractional order system, Lyapunov V(x) is as follows:

doDqV(t.x(t)) ≤
(

∂V
∂x

)T
·doDqx(t) =

(
∂V
∂x

)T
· f (x.t) (8)

Since the implementation of Equation (2) is continuously difficult, the following special
cases are considered:

(1) If m(q) = δ(q− q0) (where δ(q− q0) is the impact function), we have the impact
function based on the screening property:

doDqx(t) =
∫ 1

0
δ(q− q0)Dqx(t)dq = Dq0 x(t) (9)

(2) If m(q) = ∑k
i=1 δ(q− qi), then:

doDqx(t) =
∫ 1

0

k

∑
i=1

δ(q− qi)Dqx(t)dq =
k

∑
i=1

Dqi x(t) (10)

In this case, sincewe have several countable derivatives, it can be implemented.
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2.2. Multi-State Adaptive Synchronizations

Figure 1 shows the multi mode synchronizations of a master system with several
slave systems.
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The chaotic system of the master distributed fractional-order is with unknown param-
eters as follows [43,44]:

doDqx1(t) =
∫ 1

0
m(q)Dqx1(t) = f1(x1) + H1(x1)θ1(t) (11)

where x1(t) = [x11.x12 · · · x1n]
T are system state vectors, f1(x1(t)) = [ f11. f12 · · · f1n]

T

is a continuous function. H1(x1(t)) = [H11.H12. · · · .H1n]
T is the matrix function and

θ1(t) = [θ11.θ12 · · · θ1n]
T is the master system parameters. They are unknown and variable.

The N-1 chaotic systems with control functions are as follows [45,46]:

doDqxi(t) =
∫ 1

0
m(q)Dqxi(t) = fi(xi) + Hi(xi)θi(t) + ui−1(t) i = 2.3 · · ·N (12)

where xi(t) = [xi1.xi2 · · · xin]
T the state vector of ith system, fi(x1(t)) = [ fi1. fi2. · · · . fin]

T con-
tinuous function, Hi(xi(t)) = [Hi1.Hi2 · · ·Hin]

T the matrix function, θi(t) = [θi1.θi2 · · · θin]
T

the basic parameters of ith slave system and ui−1(t) = [ui−1.1(t).ui−1.2(t) · · · ui−1.n(t)]
T are

control function of ith slave system. Therefore, according to Equations (11) and (12), the
synchronization of the chaotic system with the control function is stated as follows:

doDqx1(t) =
∫ 1

0 m(q)Dqx1(t)dq = f1(x1) + H1(x1)θ1

doDqx2(t) =
∫ 1

0 m(q)Dqx2(t)dq = f2(x2) + H2(x2)θ2 + u1(t)
...

doDqxN(t) =
∫ 1

0 m(q)DqxN(t)dq = fN(xN) + HN(xN)θN + uN−1(t)

(13)

In multi-mode synchronization form, the distribution synchronization error is given
as follows:

ei−1(t) = xi(t)− x1(t) i = 2.3 · · ·N

Definition 1. For N chaotic systems of the distribution fractional order expressed by (13), if the
adaptive controllers u_ (i − 1) (t) exist as follows, the error dynamics are defined as follows:

doDqei−1(t) =
∫ 1

0
m(q)Dqei−1(t)dq = fi(xi)− f1(x1) + Hi(xi)θi − H1(x1)θ1 + ui−1(t) i = 2.3 · · ·N − 1 (14)

The required conditions are:

lim
t→∞
‖ei−1(t)‖ = lim

t→∞
‖xi(t)− x1(t)‖ → 0 i = 2.3 · · ·N
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If established, then multiple synchronizations between N distribution chaotic systems
with unknown parameters are achieved. The design of controllers and adaptive rules for
achieving the goal based on the Lyapunov function is established by the synchronization of
the transition mode. The control rule for u1(t).u2(t).u3(t) · · · uN−1(t) is designed as follows:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i + H1(x1)θ̂1 + ki−1ei−1 i = 2.3 · · ·N − 1 (15)

Therefore, errors of dynamics distribution chaotic system are given as follows:

doDqei−1(t) = Hi(xi)θ̃i − H1(x1)θ̃1 + ki−1ei−1 i = 2.3 · · ·N − 1 (16)

where θ̂i is estimated and θ̃i(t) = θi(t)− θ̂i(t) is an approximate distribution system error
as follows:

ki−1 < 0.

2.3. Synchronizations of Distributed Fractional Order in the Presence of Disturbance, Unknown
Time Delay and Uncertaintyin Systems

The Distributed master and slave system with disturbance, time delay and uncertainty
are as follows:

doDqx1(t) = f1(x1) + H1(x1)θ1 + F1(x1(t− τ1)) + ∆ f1(x1) + D1(t)

doDqx2(t) = f2(x2) + H2(x2)θ2 + F2(x2(t− τ2)) + ∆ f2(x2) + D2(t) + u1(t)
...

doDqxN(t) = fN(xN) + HN(xN)θN + FN(xN(t− τN)) + ∆ fN(xN) + DN(t) + uN−1(t)

(17)

It is assumed that Fi(xi(t− τi)) are Lipschitz, uncertainties and disturbances are
bounded but with an unknown boundary:

|∆ fi(xi)| ≤ γigi(xi) . |Di(t)| ≤ di i = 1.2 . . . N
|Fi(xi(t− τi))− Fi(xi(t− pi))| ≤ li|τi − pi|

where γi, li and di are constant but unknown and gi(xi) is definite and positive. The error
dynamic ofdistributed system is described as follows:

doDqei−1(t) =
∫ 1

0 m(q)Dqei−1(t)dq
= fi(xi)− f1(x1) + Hi(xi)θi − H1(x1)θ1 + Fi(xi(t− τi))− F1(x1(t− τ1))
+∆ fi(xi)− ∆ f1(x1) + Di(t)− D1(t) + ui−1(t) i = 2.3 · · ·N − 1

(18)

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i + H1(x1)θ̂1 + ki−1ei−1 − Fi(xi(t− τ̂i))
+F1(x1(t− τ̂1)) + ui−1(t) i = 2.3 · · ·N − 1

(19)

where θ̂i, τ̂i are estimations of θi, τi and ui−1(t) is the part of the control function ofdis-
tributed system, which is introduced below. By placing the control function in (18), the
error dynamics are given as follows:

doDqei−1(t) = Hi(xi)θ̃i − H1(x1)θ̃1 + ∆ fi(xi)− ∆ f1(x1) + Di(t)− D1(t) + ki−1ei−1 + Fi(xi(t− τi))
−F1(x1(t− τ1))− Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1)) + ui−1(t), i = 2.3 · · ·N − 1

(20)

Theorem 3. Distributed system error dynamics (20) under control law (42) and the update rules
(36–41) are stable and the synchronization errors converge to zero despite uncertainty, time delay
and disturbance.

Proof. By explaining Lyapunov function of distributed system as follows:

V =
1
2
(Ve + Vθ + Vγ + Vd + Vτ) (21)
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where in:

Ve =
N

∑
i=2

ki−1eT
i−1ei−1, Vθ =

N

∑
i=2

θ̃T
i θ̃i + θ̃T

1 θ̃1

Vγ =
N

∑
i=2

γ̃i
2 + γ̃1

2 , Vd =
N

∑
i=2

d̃i
2 + d̃1

2 , Vτ =
N

∑
i=2

liτ̃i
2 + l1τ̃1

2

θ̃i = θi − θ̂i, γ̃i = γi − γ̂i, d̃i = di − d̂i, τ̃i = τi − τ̂i .

�

By calculating the distributed fractional derivative of Lyapunov function and replacing
control function (21):

doDqV ≤
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1 + ∆ fi(xi)− ∆ f1(x1) + Fi(xi(t− τi))− Fi(xi(t− τ̂i))− F1(x1(t− τ1) )

+F1(x1(t− τ̂1)) + Di(t)− D1(t) + ki−1ei−1) + θ̃T
i doDq θ̃i + γ̃idoDqγ̃i + d̃idoDqd̃i + liτ̃idoDqτi

+ui−1(t)] + θ̃T
1 doDq θ̃1 + γ̃1doDqγ̃1 + d̃1doDqd̃1 + l1τ̃1doDqτ1

(22)

If ui
j , ∆ fi

j, Di
j, ej

i−1 is the component jth of the vectors ui−1(t), ∆ fi, Di, ei−1, respec-
tively, then:

doDqV ≤
N
∑

i=2

n
∑

j=1
ej

i−1

(
∆ fi

j − ∆ f1
j + Di

j − D1
j + Fi(xi(t− τi))− Fi(xi(t− τ̂i))− F1(x1(t− τ1)) + F1(x1(t− τ̂1))

+ui−1
j) +

N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i doDq θ̃i] +
N
∑

i=2

(
γ̃idoDqγ̃i + d̃idoDqd̃i + liτ̃idoDqτi

)
+

N
∑

i=2
ki−1eT

i−1ei−1 + γ̃1doDqγ̃1 + d̃1doDqd̃1 + l1τ̃1doDqτ1 + θ̃T
1 doDq θ̃1

(23)

Therefore:

doDqV ≤
N
∑

i=2

n
∑

j=1
[
∣∣∣ej

i−1

∣∣∣(∣∣∆ fi
j
∣∣+ ∣∣∆ f1

j
∣∣+ ∣∣Di

j
∣∣+ ∣∣D1

j
∣∣+ |Fi(xi(t− τi))− Fi(xi(t− τ̂i))|

+|−F1(x1(t− τ1)) + F1(x1(t− τ̂1))|) + ej
i−1ui−1

j] +
N
∑

i=2

(
γ̃idoDqγ̃i + d̃idoDqd̃i + liτ̃iDqτi

)
+

N
∑

i=2
ki−1eT

i−1ei−1 +
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i Dq θ̃i] + γ̃1doDqγ̃1 + d̃1doDqd̃1

+l1τ̃1doDqτ1 + θ̃T
1 doDq θ̃1

(24)

The disturbance and uncertainty boundary condition can be extended to the compo-
nents of ∆ fi and Di(t) as follows:∣∣∣∆ fi

j
∣∣∣ ≤ max

j

∣∣∣∆ fi
j
∣∣∣ ≤ |∆ fi(xi)| ≤ γigi(xi)∣∣∣Di

j(t)
∣∣∣ ≤ max

j

∣∣∣Di
j(t)
∣∣∣ ≤ |Di(t)| ≤ di

which we have by substituting in (24):

doDqV ≤
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(γigi(xi) + γ1g1(x1) + di + d1 + li|τ̃i|) + ej
i−1ui−1

j
]
+

N
∑

i=2

(
γ̃idoDqγ̃i + d̃idoDq d̃i + li τ̃idoDqτi

)
+

N
∑

i=2
ki−1eT

i−1ei−1 +
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i doDq θ̃i] + γ̃1doDqγ̃1 + d̃1doDq d̃1

+l1τ̃1doDqτ1 + θ̃T
1 doDq θ̃1

(25)

If ui−1
j(t) (distributed system) is defined as follows:

ui−1
j(t) = −(γ̂igi(xi) + γ̂1g1(x1) + d̂i + d̂1 + l̂i + l̂1)·sgn(ej

i−1(t)) (26)
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Through the estimation of disturbance and uncertainty bounds in ui−1
j(t), an effort control

was made to eliminate the effects of disturbance, delay, and uncertainty as much as possible for
distributed system. Therefore, Lyapunov function derivatives will be negative by selecting the proper
update rules, and ultimately, the convergence of errors will guarantee zero.

Then

doDqV ≤
N
∑

i=2

n
∑

j=1

[∣∣∣ej
i−1

∣∣∣(γ̃igi(xi) + γ̃1g1(x1) + d̃i + d̃1 + li|τ̃i|
)]

+
N
∑

i=2

(
γ̃idoDqγ̃i + d̃idoDq d̃i + li τ̃iDqτi

)
+

N
∑

i=2
ki−1eT

i−1ei−1 +
N
∑

i=2
[eT

i−1

(
Hi(xi)θ̃i − H1(x1)θ̃1

)
+ θ̃T

i doDq θ̃i] + γ̃1doDqγ̃1 + d̃1doDq d̃1

+l1τ̃1doDqτ1 + θ̃T
1 doDq θ̃1

(27)

The rules updating estimation errors of distributed system are as follows:

doDqγ̃i = −(gi(xi)
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ αiγ̃i) i = 2.3 . . . N (28)

doDqγ̃1 = −(
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣g1(x1) + α1γ̃1) (29)

doDq d̃i = −(
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ βi d̃i) i = 2.3 . . . N (30)

doDq d̃1 = −(
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ β1d̃1) (31)

doDqτ̃i = −(
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µi τ̃i) i = 2.3 . . . N (32)

doDqτ̃1 = −(
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µ1τ̃1) (33)

doDq θ̃i = −(Hi
T(xi)ei−1 + σi θ̃i)i = 2.3 . . . N (34)

doDq θ̃1 = −(
N

∑
i=2

H1
T(x1)ei−1 + σ1 θ̃1) (35)

where αi, βi, σi, µi are positive. By placing the above update rules in (27), we have:

doDqV ≤
N

∑
i=2

ki−1eT
i−1ei−1 −

N

∑
i=1

(αiγ̃i
2 + βi d̃i

2 + µi τ̃i
2)−

N

∑
i=1

σi θ̃
T
i θ̃i < −µV(t),

where µ = min
i
(αi, βi, σi, µi,−ki−1) > 0. Therefore according to the theorems (1) and (2) and being

Hurwitz ki−1 < 0, the stability of the system according to Mittag-Leffler is also confirmed. The
convergence of synchronization errors to zero is also guaranteed despite uncertainty and disturbance.

The estimations updating rules of distributed system are obtained as follows:

doDqγ̂i = gi(xi)
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ αiγ̃i, i = 2.3 . . . N (36)

doDqγ̂1 = g1(x1)
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ α1γ̃1. (37)

doDq d̂i =
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ βi d̃i, i = 2.3 . . . N. (38)

doDq d̂1 =
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ β1d̃1. (39)

doDqτ̂i =
n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µi τ̃i, i = 2.3 . . . N (40)
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doDqτ̂1 =
N

∑
i=1

n

∑
j=1

∣∣∣ej
i−1

∣∣∣+ µ1τ̃1 (41)

Therefore, the final control function of distributed system is as follows:

ui−1(t) = − fi(xi) + f1(x1)− Hi(xi)θ̂i(t) + H1(x1)θ̂1(t) + Ki−1ei−1(t)− Fi(xi(t− τ̂i)) + F1(x1(t− τ̂1))

−sgn
(

ej
i−1(t)

)
.(γ̂igi(xi) + γ̂1g1(x1) + d̂i + d̂1) i = 1.2 · · ·N − 1

(42)

The presence of the sign function (sgn(ej
i−1(t))) in the control law leads to a discontinuity in

the control function (42) of distributed system. To solve this problem, the symbol function can be
replaced with the function (tanh(ej

i−1(t))).

3. Encryption Method with Chaotic Masking
Chaotic signals behave in a complex way that makes their behavior unpredictable. This paper

uses chaotic signals as a carrier in the use of secure communications [45]. In this method, the message
signal is collected as a nonlinear combination of the state vectors of the distributed master system.
In other words, the message signal information is hidden by the chaotic states of the distribution
system. This can establish security in the telecommunication channel. On the receiver side, the
message signal can be recovered by a synchronization error between the master system and slave
system of the distributed fractional order. The message signal is recovered on the receiver side,
ensuring that the synchronization error goes to zero. The presence of parametric uncertainties and
disturbance signals in the master and slave system of distributed systems can increase the security of
the communication channel.

In the following, we present our proposed method for chaotic masking for a distributed
fractional-order system.

Suppose m(t) is a message. We encrypt this message with a proper map:

m0(t) = Λ(m(t), f (t), a) (43)

where Λ(m(t), f (t), a) is a definite and continuous function as the map, and f (t) is a definite and
continuous signal as a coder. For instance, we can define Λ(m(t), f (t), a) as follows:

Λ(m(t), f (t), a) = tanh(a·m(t) + f (t)) ,
f (t) = 0.2sin(10t) + 0.1sin(20πt) + 0.05cos(2πt), a ∈ R

(44)

where a is a coefficient so that |a·m(t) + f (t)| ≤ 4 will stand.
Signals m0(t) and f (t) will be masked as follows and transmitted in two components different

from the distributed fractional-order chaotic system:

m̃(t) = m0(t) +
n
∑

i=1
λixi

f̃ (t) = f (t) +
n
∑

i=1
µixi

(45)

The receiver initially obtains the estimation of signals m0(t) and f (t). Then, it will calculate
m̂0(t), and ultimately, we will calculate m̂(t) as follows:

m̂0(t) = m̃(t)−
n
∑

i=1
λiyi =

m0(t) +
n
∑

i=1
λixi −

n
∑

i=1
λiyi = m0(t) +

n
∑

i=1
λiei → m0(t)

(46)

f̂ (t) = f̃ (t)−
n

∑
i=1

µiyi = f (t) +
n

∑
i=1

µixi −
n

∑
i=1

µiyi = f (t) +
n

∑
i=1

µiei → f (t) (47)

To recover the signal of message m(t), we can do as follows:

m0(t) = Λ(m(t), f (t), a)→ m̂0(t) = Λ
(

m̂(t), f̂ (t), a
)
= tanh

(
a·m̂(t) + f̂ (t)

)
⇒ m̂(t) = 1

a (tanh−1
(

m̂0(t)− f̂ (t)
) (48)

Figure 2 shows the masking in multiple synchronizations for the distributed fractional order system.
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4. Simulation and Results for the Duffing Distributed Fractional Order System
The two chaotic duffing systems of distribution fractional order are defined as master and slave [46]:
This section shows the results of synchronizing the duffing chaotic system for the distributed

fractional order. The distribution master system is presented as follows:
doDqx1(t) = x2(t)

doDqx2(t) = x1(t)− a1x1(t)2x2(t) + a1x2(t)
a2 cos(w0t) + F(x(t− τ1))

+∆ f (x((t), t))
+d1(t)

(49)

The coefficients of the distribution fractional are as follows

M(q) = r1δ(q− q1) + r2δ(q− q2)
q1 = 0.2, q2 = 0.4
r1 = 0.2, r1 = 0.9

F(x(t− τ11),) = x(t− τ11)
w0 = 2.467

∆ f (x((t), t)) = 0.7sin(5x1(t) + 2x2(t))

And the initial values of the variables, disturbance, and uncertainty are considered as follows:

x(0) = [0.1, 0.1], τ1 = 3 a1 = 5, a2 = 5

The chaotic duffing system for slave 1 is as follows
doDqy1(t) = y2(t) + u11

doDqy2(t) = y1(t)− a′1y1(t)2y2(t) + a′1y2(t)
a′′1 cos

(
w′0t
)
+ G(y(t− τ21))

+∆g(y((t), t))
+d2(t) + u12

(50)

The distribution fractional-order coefficients for the slave system (50) are as follows:

M(q) = r1δ(q− q1) + r2δ(q− q2)
q1 = 0.2, q2 = 0.4
r1 = 0.2, r1 = 0.9

G(y(t− τ11),) = sin(y1(t− τ21))y2(t)
w′0 = 2.450

∆g(y((t), t)) = 0.6sin(5y1(t) + 2y2(t))

And the initial values of the variables, disturbance, and uncertainty for the slave system (50) are
considered as follows:
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x(0) = [0.2, 0.3], d1(t) = 0.5 sin(5t)+ (0.7 cos(4t))2 τ2 = 3.5a′1 = 4.8, a′2 = 5.1,

To synchronize, first, it must be converted into a standard problem. For this purpose, by
defining the variables zi as z3 = x2, z1 = x1, the master system is transformed as a non-distributed
fractional-order derivative:

Dqz1(t) = z2(t) , q = 0.2
Dqz2(t) = − r1

r2
z2(t) + 1

r2
z3(t)

Dqz3(t) = z4(t)
Dqz4(t) = 1

r2
(z1(t)− a1z1(t)2z3(t) + a1z2(t)

a2 cos(w0t) + F(z(t− τ1))
+∆ f (z((t), t))

+d1(t))− r1
r2

z4(t)

(51)

The slave system will also be as follows by changing the variable (v3 = y2, v1 = y1):

Dqv1(t) = v2(t) , q = 0.2
Dqv2(t) = − r1

r2
v2(t) + 1

r2
v3(t)

Dqv3(t) = v4(t) + u11(t)
Dqv4(t) = 1

r2
(v1(t)− a′1v1(t)2v3(t) + a′1v3(t)

a′2 cos
(
w′0t
)
+ G(v(t− τ21))

+∆g(v((t), t))
+d2(t))− r1

r2
v4(t) + u21(t)

(52)

The dynamic equations are as follows:

Dqe11(t) = e12(t) , q = 0.2
Dqe12(t) = − r1

r2
e11(t) + 1

r2
e13(t)

Dqe13(t) = e14(t) + u11(t)
Dqe14(t) = 1

r2
(e11(t)− a′1v1(t)2v3(t) + a′1v3(t)

a′2 cos
(
w′0t
)
+ G(v(t− τ21)) + ∆g(v((t), t))

−(−a1z1(t)2z3(t) + a1z2(t) + a2 cos(w0t) + F(z(t− τ1))
+∆ f (z((t), t))) + d2(t)− d1(t))− r1

r2
e14(t) + u21(t)

(53)

The control effort to synchronize the slave (1) system with the master system is as follows:

u11(t) = KT
1 E1

u12(t) = −(v1(t)− a′1v1(t)2v4(t) + a′1v4(t) + a′2 cos
(
w′0t
)
+ G(v(t− τ̂2))

)
+
(
z1(t)− a1z1(t)2z4(t)+

a1z4(t) + a2 cos(w0t) + F(z(t− τ̂1)))− k0e14 − sign(e14)
(
γ̂1 + γ̂2 + δ̂1h1(z) + δ̂2h2(v)

) (54)

Figure 3 shows the phase curve and Lyapunov exponents of the Duffing distribution master
and slave system. It also shows both the master and slave systems exhibit chaotic behavior over time.

Figure 4 shows the disturbance and uncertainty in the master-slave distribution system.
The following is the control effort curve for the slave (1) distribution system for the two-time

intervals.
Figure 5 shows that the control effort is initially increased and then tends to zero.
Figure 6 shows the error curve for tracking the state of slave and master system variables of

number 1.
As can be seen from Figure 6, the tracking error is reduced to zero at the appropriate speed,

indicating that our synchronization is appropriate and that the control effort to track the master
system by the slave system is appropriate and the system remains stable.

Now, the slave distributed system (2) with different initial values for tracking the master
distributed system is expressed as follows:

doDqw1(t) = w2(t) + u21

doDqw2(t) = w1(t)− a′′1 w1(t)2w2(t) + a′′1 w2(t)
a′′2 cos

(
w′′0 t

)
+ G(w(t− τ3))

+∆g(w((t), t))
+d2(t) + u22

(55)
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The initial values for the distribution slave(2) system are considered as follows:

M(q) = r1δ(q− q1)
+r2δ(q− q2)

q1 = 0.2, q2 = 2q1
r1 = 0.2, r1 = 0.9

G(w(t− τ3),) = sin(y1(t− τ3))

x(0) = [0.2, 0.3],
∆g(y((t), t))
= 0.6sin(7y1(t)
+6y2(t))

d2(t) = (0.7 sin(3t))2

+0.7 cos(4t)
a′′1 = 5.2, a′′2 = 5.2,

w′′0 = 2.350

Now to convert the distributed slave system to a normal fraction order system (for simulation),
we will have a variable (β3 = w2, β1 = w1):

Dqβ1(t) = β2(t) , q = 0.2
Dqβ2(t) = − r1

r2
β1(t) + 1

r2
β3(t)

Dqβ3(t) = β4(t) + u21(t)
Dqβ4(t) = β1(t)− a′′1 β1(t)2β3(t) + a′′1 β3(t)

a′′2 cos
(
w′′0 t

)
+ G(β(t− τ3))

+∆g(β((t), t))
+d2(t) + u22(t)

(56)

Also, the dynamic equations of the error after changing the variable are as follows:

Dqe21(t) = e22(t) , q = 0.2
Dqe22(t) = − r1

r2
e21(t) + 1

r2
e23(t)

Dqe23(t) = e24(t) + u21(t)
Dqe24(t) = 1

r2
(e21(t)− a′′1 β1(t)2β3(t) + a′′1 β3(t)

a′′2 cos
(
w′′0 t

)
+ G(β(t− τ21)) + ∆g(β((t), t))

−(−a1z1(t)2z3(t) + a1z2(t) + a2 cos(w0t) + F(z(t− τ1))
+∆ f (z((t), t))) + d2(t)− d1(t))− r1

r2
e24(t) + u21(t)

(57)

The control effort to track Slave System (2) with the Distribution Master system is designed
as follows:

u11(t) = KT
2 E2

u21(t) = −(β1(t)− a′′1 β1(t)2β3(t) + a′′1 β3(t) + a′′1 cos
(
w′′0 t

)
+

G(β(t− τ̂21))) +
(
z1(t)− a1z1(t)2z4(t) + a1z4(t) + a2 cos(wt)+

F(z(t− τ̂1)))− k0e24 − sign(e24)
(
γ̂1 + γ̂2 + δ̂1h1(z) + δ̂2h2(β)

) (58)

In Figure 7, the tracking curve of the state variables of the slave system (2) is plotted with the
master system of the distributed fractional order.

As Figure 7 shows, the tracking error of the slave system(2) with the master system of the
duffing distribution fractional rate quickly converges to zero, indicating a proper synchronization of
the proposed system. It can also be seen that the slave system followed the master system well and
very quickly.

The following is a control effort at different time intervals for the slave system (2).
As can be seen from Figure 8, at first, the control effort was high for tracking, but after a while,

the effort was reduced, which indicates the stability of the proposed design. Figure 9 shows that the
estimation errors were high in the initial times but after 0.6 s reached zero.
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5. The Results of Chaotic Masking Experiments in Secure Communications
This section describes the synchronization results of distributed fractional order chaotic duffing

systems for secure communications. First, the used signal is investigated to perform the experiments.
In the following, the encrypted signals using the synchronization methods of the Duffing distribution
fractional order chaotic systems are shown.

The used signal as the message signal is as follows:

y1(t) = 0.9 sin(2t) + 0.75 cos(πt− 1) + 1.05 sin(2πt− 0.5) + 0.65 cos(0.5πt− 0.3)
y2(t) = 0.9 sin(2t) + 0.75 cos(πt− 1) + 1.05 sin(2πt− 0.5) + 0.65 cos(0.5πt− 0.3)

y3(t) = 0.3 sin(2t) + 0.45 cos(πt− 1) + 0.35 sin(2πt− 0.45) + 0.35 cos(0.5πt− 0.63)
(59)

The diagram of the chaotic masking error for the distribution system is shown in Figure 10.
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It can be seen from Figure 10 that the error related to the masking method in all three curves is
very small in the range of two thousandths.

Figure 11 shows the message signal curve with the estimated signal.
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It can be seen from Figure 11 that the original message signal is well approximated by the
synchronization method and the chaotic masking scheme. Figure 12 shows the x1 signal curve with
the message signal.
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It can be seen from Figure 12 that the signal M1(t) is well encoded by the chaotic signal x1(t).
So that it is not recognizable.

Figure 13 shows that the M2 message signal is encoded by the chaotic signal x1. As can be seen,
the M2 message signal is not detectable.
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In Figure 14, the M3 message signal is encoded by the chaotic signal x1. It is impossible to detect
the M3 message signal.
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6. Discussion
Using chaos in communications is among the most important ways to maintain information in

communication systems. Recently, synchronization methods in secure communications have been the
subject of intense research. According to research, synchronization is very effective in data encryption.
This study presents secure communications according to multi-state chaotic synchronization of
distributed fractional order based on robust adaptive control, which has not been considered in
previous works. In this research, the synchronization is based on the multi-mode adaptive control
method and the chaotic system of the Duffing fractional-order for signal encryption, followed by
some experiments on the signals. In the next step, the secure communication method based on the
synchronization of the distributed fractional-order chaotic system is applied to the standard signal.
The unknown delay factor in systems complicates the synchronization problem. The technique of
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covering chaotic systems is used to encrypt signals. Then, simulations are performed on a distributed
orderly Duffing chaotic system to test the proposed synchronization method’s efficiency. Experimental
results show the success of the Duffing distributed fraction synchronization method. Changing the
derivative order makes the distribution system’s behavior different. This issue is an essential point
in cryptography that reduces the possibility of decoding. The result of controlling rules is clear as a
continuous function.

Table 1 indicates the high efficiency of the proposed method compared to other studies. Accord-
ing to this table, it can be seen that our proposed method is different from other researches.

Table 1. Comparison of the proposed method with other related works.

Reference Disturbance Uncertainty Type Order Time Delay Unknown
Parameters

[45]
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[47]  × Integer-order × × 

[38] × × Fraction-   This study uses chaotic signals as a cover for message signals. In this mechanism, it was
assumed that the system parameters and delay were unknown. In addition, parametric uncertainties
and disturbance were considered in the analyses. As a result, a great deal of complexity was applied
to synchronization, resulting in greater security in communications applications. The advantage
of the proposed method is in using distributed fractional-order calculations instead of ordinary
fractional-order calculations, which can provide more complexity in synchronization and security in
sending communication signals. The results show that the proposed method is robust to disturbance
and uncertainties. Also, the results were successful in coding and decoding the signal information.
The main objective is to develop a multi-mode synchronization method for systems with distributed
fractional order derivatives. Duffing’s chaotic system may have been used in various cases of
synchronization. Nevertheless, despite the unknown delay, it has not been used in the case where the
derivative is of distributed fractional order.

For future work, using distributed fractional-order derivatives is recommended for other
applications of synchronization of chaotic systems [49]. Also, using fuzzy methods types 1 and 2 is
recommended regarding their intelligent nature. Sincefuzzy systems can provide better performance
against uncertainties in the absence of fuzzy, the proposed method can also be used to transmit
medical images, EEG, and ECG signals safely.

7. Conclusions
This paper investigates the multi-state synchronization of distributed fractional chaotic systems

in the presence of uncertainty, disturbance, time delays, and unknown parameters. Parameter setting
rules were obtained to converge the synchronization errors into zero with the presence of uncertainty.
Rules were also set for estimating disturbance and uncertainty boundaries. In addition, the proposed
method for synchronization ensures that the parameter estimation error, disturbance boundaries,
and uncertainties converge to zero. The control rule was designed so that there was no problem with
chattering. In addition, unknown delays were considered. Then adjustment rules were designed to
estimate these delays. Next, a new chaotic masking scheme was proposed to encode information
about message signals according to the synchronization method.

The results’ accuracy was checked by performing some simulations to synchronize the chaotic
system of the Duffing distributed fractional order. The results showed that synchronization was well
achieved for both slave systems. Furthermore, the efficiency of the proposed encryption method
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was evaluated by applying the results to signal encryption. Afterward, simulations were performed
in a secure communication application. Message signals were first masked and then retrieved by
synchronization error on the receiver side. The results showed the successful use of cryptography on
these signals. Overall, the proposed design was successful, according to the simulation results. Our
higher efficiency results demonstrate the superiority of the proposed method.
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