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Abstract: Flying ad hoc networks (FANETs) or drone technologies have attracted great focus recently
because of their crucial implementations. Hence, diverse research has been performed on establishing
FANET implementations in disparate disciplines. Indeed, civil airspaces have progressively embraced
FANET technology in their systems. Nevertheless, the FANETs’ distinct characteristics can be tuned
and reinforced for evolving security threats (STs), specifically for intrusion detection (ID). In this study,
we introduce a deep learning approach to detect botnet threats in FANET. The proposed approach
uses a hybrid shark and bear smell optimization algorithm (HSBSOA) to extract the essential features.
This hybrid algorithm allows for searching different feature solutions within the search space regions
to guarantee a superior solution. Then, a dilated convolutional autoencoder classifier is used to
detect and classify the security threats. Some of the most common botnet attacks use the N-BaIoT
dataset, which automatically learns features from raw data to capture a malicious file. The proposed
framework is named the hybrid shark and bear smell optimized dilated convolutional autoencoder
(HSBSOpt_DCA). The experiments show that the proposed approach outperforms existing models
such as CNN-SSDI, BI-LSTM, ODNN, and RPCO-BCNN. The proposed HSBSOpt_DCA can achieve
improvements of 97% accuracy, 89% precision, 98% recall, and 98% F1-score as compared with those
existing models.

Keywords: FANETs; intrusion detection; botnet attack; deep neural network; feature selection; optimization

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have attracted additional focus. The
use of UAVs provides several distinct benefits over standard human-crewed airplanes,
particularly concerning the operative charge, the operator’s protection, the UAVs’ func-
tionality in arduous or risky settings, and their availability for civil implementations [1].
The latest technological developments have made it easy to set up an unmanned aerial
system with a complex topology for crucial operations [2]. Their swift development and
intense involvement in intelligent transportation (IT) has significantly affected the path that
drone societies have attempted to establish for the prospective UAV systems. The present
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decentralized technology advances allow for diverse operations and the correlation of
resources [3]. This technique permits unnecessary the use of crucial elements and enhances
the system’s comprehensive strength [4]. Nevertheless, many contemporary developments
in the network-attached UAV fleet domain concentrate on the path to attaining a drone
network (DN) [5]. Low regard is given to the DN systems’ cyber security, resulting in the
very advanced DN systems being defenseless against diverse STs [6,7].

This assures the data’s secrecy, attainability, and unity while transmitting during
UAV-to-UAV transmission, and the safety of UAV-to-ground-node transmission remains a
major problem experienced by FANETs. In FANETs, UAVs transfer data that encompass
audio, video, image, text, GPS position, and other formats. In transmitting these data, they
must possess a fine QoS, having low delay and error rates [8]. For dependable data delivery,
FANETs send the most significant data in disparate deployments that must be dispatched
in a time-bound way. Hence, the networks’ dependability remains excellent [9].

The compromised FANET-IoT devices (IoTD) in no way exhibit signs of being hacked
and function as zombies for the botmaster (BM) when initiating the attacks [10]. A BN’s
dimensions may remain small, comprising hundreds of bots, while a bigger BN can have
thousands of bots. A few bots will be present on the dark web very inexpensively, while
enormous BNs have heavy costs [11].

There are two kinds of BNs: (i) BNs accepting commands and in consistent interaction
with the BM within a client–server framework; (ii) peer-to-peer bots that communicate in-
dependently with one another and initiate the attacks after obtaining the BM’s commands.
BMs interact with bots by employing the aid of a command-and-control (CnC) server;
the bots remain concealed until the BM gives commands. The concealed bots’ conduct
creates infested bots and a botnet attack (BA), which is an intricate job [12]. The BAs
include the following: (i) scan commands employed in discovering the defenseless IoTD;
(ii) ACK, SYN, UDP, and TCP flooding; (iii) combination attacks employed in starting
a link and transferring the spam into this [13]. The current drawback in UAV-assisted
FANETs is the effective detection of security threats. For that purpose, the feature selec-
tion and classification methods need improvement. The contributions of this study are
described below:

• A new technique is proposed that utilizes the hybrid shark and bear smell optimization
algorithm (HSBSOA) for FS and the deep neural classifiers to enhance the efficient and
precise BN identification approach in FANETs;

• The aim of this study remains in identifying and classifying the implementation-
specified threats, such as scan attacks, DDoS, TCP, UDP, and sync flooding, which are
a few of the typical attacks.

The proposed hybrid HSBSOpt_DCA approach allows for more precise multiclass
classification, including various types of attacks and non-attacks (NAs), and has shown
encouraging results. The organization of remainder of this paper is as follows. Section 2
provides a state-of-the-art literature review. Section 3, the Materials and Methods, discusses
the dataset used and the proposed methods. Section 4 provides a detailed analysis and the
results. Section 5 concludes the article.

2. Related Works

In [14], Fried and Last proposed a novel and optimistic technique of employing
wide-range and publicly accessible flight records for training in machine learning (ML)
paradigms, which could identify anomalous flight designs and was proven to be a coherent
counteractant for many ADS-B attacks. This novel technique varies from the formerly
proffered methodologies, incorporating elementariness with the present ADS-B system.
In [15], Mall et al. discussed unsupervised settings with sensors fixed in specific regions
where the data can be gathered via mobile gadgets that remain attached to a UAV or drone.
The authors initially modeled an appropriate framework and a lightweight convention for
initiating safe transmission amongst the gadgets and the cloud through a portable drone.
This convention also employs the physically unclonable function’s (PUF) advantages for
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creation, which is employed to encrypt the messages in transmission. The familiar Scyther
simulator is employed to stimulate the convention, and the outcomes show that this
convention remains fully secured, preventing confidential data seepage.

In [16], Mairaj et al. attempted to learn the benefits of game-theoretic (GT) imple-
mentations for the avoidance of DDoSAs upon a drone emanating data out of standard
game solutions, and optimized this with an encompassed authenticity concept named
the quantal response equilibrium (QRE). The authors detected possible schemes for every
player via simulations and devised five non-collaborative game scenarios for the DDoSAs’
two versions. In such games, the conventional GT resolution or Nash equilibrium (NashE)
gives data regarding the drone’s suggested modes, the hacker’s favored scheme, and the
GT threshold (TH), presuming that the participants remain exceptionally brilliant.

In [17], Popoola et al. suggested the federated DL (FDL) methodology for zero-day
BA identification to prevent data secrecy seepage in IoT-edge gadgets (IoTEG). This study
utilizes an optimal deep neural network (ODNN) framework for NT classification. A
model parameter server (MPS) distantly organizes the DNN paradigms’ training in several
IoTEGs when the federated averaging algorithm is employed to sum up the local paradigm
updates. A global DNN paradigm is generated after many transmission rounds between
the MPS and the IoTEG.

In [18], Hatzivasilis et al. introduced WARDOG, an awareness and digital forensic
system, which notifies the end-user of the BN’s contamination, reveals the BN framework,
and catches confirmable data, which is then employed in a law court. The accountable
administration system collects the data and automatically creates documentation for each
instance. The document comprises authentic forensic data tracing entire engaged bodies
and their parts in the attack.

In [19], Xi et al. proposed convolutional neural networks (CNNs) with a new deep
learning framework that consists of dilated convolutional neural networks and recurrent
neural networks. These stacked dilated convolutional networks perform effective feature
selection, and the softmax classifier is used to recognize activities, which increases the
accuracy of the classification performance. In [20], Alharbi and Alsubhi proposed a graph-
based machine learning (ML) technique for botnet detection. For feature evaluation,
filter-based theories are used, which exhibit robustness to zero-day attacks. This method
achieved high precision, but its accuracy was moderate. In [21], Sung et al. presented a new
methodology for discovering the malware in GCSs, which employed a fastText paradigm
to generate low-size vectors when compared with the vectors from one-hot encoding (OhE)
and a bidirectional LSTM paradigm for a comparison alongside sequential opcodes (SO).
Furthermore, the API function names were employed to enhance the classification precision
of the SO. In the experimentation, the Microsoft malware classification competency database
was employed, and the family types classified the malware within the database. This
proffered methodology exhibited an execution enhancement of 1.8%, correlating with the
execution of the OhE-related technique.

In [22], Shitharth and Prasad proposed the supervisory control and data acquisition
(SCADA) systems with the Markov chain clustering (MCC) technique, rapid probabilistic
correlated optimization (RPCO) approach, and block-correlated neural network (BCNN)
method to improve the accuracy of the network. However, it failed to reduce the cost-
effectiveness of the process. Several studies have executed intrusion and malware iden-
tification processes. Nevertheless, there is a deficit of research discussing the problems
concerning BN detection and feature extraction, magnitude reductions to repress coun-
terfeit data, overfitting, and meticulous criteria calibration. Many research studies have
employed actual BA databases in actual settings.

Furthermore, studies have analyzed ML paradigms for synthetic BN data devoid of
apportions for feature engineering and an exhaustive overfitting analysis. Many studies
have employed unbalanced live databases for learning and BN identification. The research
studies chiefly concentrate on achieving greater precision, without discussing the con-
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straints of greatly unbalanced databases or acquiring ostensive precision. In Table 1, a
summary is provided with the limitations of the earlier research studies.

Table 1. Summary and limitations of some existing studies.

Ref. Method Name Outcome Limitation Advantage

[14] Recurrent autoencoder
classifier Better classification rate Quality predictions need large

amount of data

Able to manage abundant
amounts of data and input
variables

[15] Physically Unclonable
Function (PUF) Lower packet delivery ratio Lots of labelled data are required for

classification
Great capacity in predicting
models

[16] Quantal response equilibrium
(QRE). More throughput Computational process is expensive

during initialization More flexible

[17] Federated Averaging
Algorithm Less accuracy Vanishing gradient problem is there

while training network More efficient

[18] WARDOG Less speed
Computationally expensive—data
splitting is complicated and it
maintains unbalanced database

Easy to deploy

[19] Dilated Convolutional Neural
Network High accuracy Computationally expensive process Higher classification

performance

[20] Graph-based Machine
learning for botnet detection High precision Accuracy is moderate, needs to be

improved Easy to deploy

[21] Bidirectional LSTM Less complexity Takes long time to process large
neural network

Appealing attributes of
non-linear identification and
control

[22] RPCO-BCNN High accuracy Computationally expensive process More flexible

3. Proposed HSBSOpt_DCA

UAV sets can be linked with one another to function as a relay to transfer the data out
of a remote area (RA) network. Generally, the UAVs possess a mission for a surveillance
operation and an operation to create a relay network for gathering data from RAs, such as
in a desert or jungle. The UAVs’ motility and versatility make it effortless to arrive at these
RAs and give connectivity to the network. Nevertheless, with minor exertion, the attacker
could effortlessly hijack the system. As a result, the deficit of a firm framework and the
vulnerable wireless medium within FANETs make the nodes liable to attackers.

The N-BaIoT database comprises traffic data for pre-processing using the one-hot
encoding method. The pre-processed data are then input in the feature selection step using
the hybrid shark and bear smell optimization algorithm, after which the classification
is performed using a dilated convolutional autoencoder. The proposed HSBSOpt_DCA
(Figure 1) consists of several segments, including the dataset description, pre-processing
employing OhE, FS employing HSBSOA, optimization initialization, odor absorption,
frontward motion (FtM) toward the target, rotatory motion, updating the particle location,
attaining the GS and LS, and classification employing DCAE.
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3.1. Dataset Description

The N-BaIoT database [23] comprises traffic data out of nine Industrial IoTD, whereby
seven gadgets gather instances for eleven classes, and the other two gather data for
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six classes (Ennio_doorbell and Samsung_SNH_1011_N_Webcam). The data consist of
harmless traffic and diverse malevolent attacks such as scan, TCP, UDP, and SYN attacks.
There remains a sum of eighty-nine csv files in the current database’s variant, having sum
dimensions of 7.58 GB and 1,486,418 instances for ordinary and attack happenings. The
2 Bas—MIRAI and BASHLITE—have been classified into ten attack classes (AC) and NA.
The AC includes:

• Scan commands for finding the defenseless IoTD;
• ACK, SYN, UDP, and TCP flooding;
• Combo or combination attacks employed to open a link and transmit the spam into this.

3.2. Pre-Processing Employing OhE

A categorical column (CC) is a column containing classes, where the cardinality
remains minimum in nature. In the N-BaIoT database, four columns are detected as CCs,
specifically ‘Dir’, ‘Proto’, ‘sTos’, and ‘dTos’. The first column comprises seven classes, the
second one comprises fifteen classes, the third one comprises six classes, and the fourth one
comprises five classes. OhE indicates the procedure of transforming CCs into vectors of
zeros and ones. A column with two and three classes has vector lengths of two and three,
respectively. Transforming a five-class CC into a vector of zeros and ones with a length of
five produces multicollinearity problems (MP).

The MP leads to unnecessary data and associated anticipators. The MP could be
resolved by dropping a column’s OhE classes. Thus, a column having five classes possesses
a vector length of four rather than five. Relating to N-BaIoT, the OhE columns’ quantity
for four CCs would be twenty-nine columns currently. Every categorical feature (CF)
exhibiting m feasible categorical values will be converted into a value in Rm employing a
function e, which maps the feature’s jth value into the m-dimensional vector’s jth element.

e(xi) = (0, . . . 1, . . . , 0) i f xi = j (1)

The two arithmetical CFs will be scaled concerning every feature’s average π and
standard deviation β:

n(xi) =
x1− π

β
(2)

Pre-processing transforms NT into an observance sequence in which every observance
will be portrayed as a feature vector (FV). The observances will be selectively labelled by
their class as ‘normal’ or ‘anomalous’. Such FVs will later be appropriate as inputs for data
mining or ML algorithms.

3.3. FS Employing HSBSOA

The motivation behind the shark smell optimization (SSO) algorithm is the shark’s
capability and supremacy in capturing prey by employing a strong sense of smell (SoS)
in a short time. A bear’s olfactory bulb remains many times bigger than the rest of the
beasts when its top job is to forward smell data from the nose toward the brain. In the bear
smell optimization (BSO) methodology, the bear’s SoS is exemplary in seeking foodstuffs at
1000 miles and beyond (known as the global solution (GS)) in optimization). As bears
cannot see foodstuffs that far away, the statistical paradigm centered upon the SoS proposes
a decisive manner for seeking such goals. By merging these two algorithms, a better fitness
value (FtV) could be acquired for the FS procedure.

3.4. Initialization Procedure

The initial solution (IS) for the SSO algorithm’s (SSOA) populace should be produced
haphazardly inside the search space (SSp). Every IS portrays an odor particle (OP) that
exhibits a feasible shark location at the start of the search procedure. The IS vector will be
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illustrated in Equations (3) and (4), accordingly to which X1
i = ith refers to the populace

vector’s starting location and NP = population size refers to the populace’s dimensions:

X1 =
[

x1
1, x1

2, . . . x1
NP

]
(3)

The concerned optimization issue could be conveyed by:

x1
i =

[
x1

i,1, x1
i,2, . . . x1

i,NP

]
(4)

where x1
i,j represents the jth size of the shark’s ith location and ND represents the decision

variables’ numeral. By employing the BSO methodology, the bear’s nose absorbs disparate
smells; every one exhibits a location for movement, since all things possess a distinct odor
in the ecosystem. Notice that several of these are called local solutions (LS). The desirable
foodstuff’s specific smell remains the final solution and is regarded as the GS. Consider
Fi =

[
f c1

i , f c2
i , . . . f cj

i , . . . f ck
i

]
being the ith obtained smell having k elements or particles,

which is designed to solve the optimization issue x1
i =

[
x1

i,1, x1
i,2, . . . x1

i,NP

]
. As the bear

obtains n smells during the breathing duration, the IS remains a matrix FM = [ f cj
i ] N ∗ k.

Presently, as per the glomerular layer procedure and breathing action in a sniff sequence,
DSj

i indicates the jth smell element within ith. Centered upon statistical formulas, we obtain
two conditions, which are t_ inhale ≤ t ≤ t_ exhale and t_ exhale ≤ t with the presence of
fairness, which includes the balanced energy to maintain the traffic in the transmission line:

DSj
i = MGi (t− tinhale) + DSt_ inhale

i + BEi (t− tinhale) (5)

Equation (5) works for the condition t_ inhale ≤ t ≤ t_ exhale, where t_ inhale rep-
resents the inhalation time (IT) and BEi (t− tinhale) denotes the balanced energy required
during the inhalation process:

DSj
i = DSt_ exhale

i ∗ BEt_ exhale
i exp

(
t_ exhale− t

ε exhale

)
(6)

Equation (6) works for the condition t_ exhale ≤ tt_ inhale, where t_ exhale represents
the exhalation time (ET) and BEt_ exhale

i denotes the balanced energy required during the
process of exhalation. In the optimization procedure, the comprehensive duration of a
breathing cycle remains identical to k or the ith smell’s length, and as per the ET and IT the
smell elements are split into 2 sets.

The total balanced energy is the summation of the energy required for the processes of
vital energy (VE) and energy loss (EL) and is mathematically expressed below:

BEtotal = BEvital + BEloss (7)

where BEvital denotes the dissipated energy during the process of inhalation and exhalation
and BEloss denotes the transmission loss that occurs.

3.5. Odor Absorption (OA)

For the process of odor absorption, mitral and granular parts are used to contain the re-
ceptor sensitivity, OA, as well as the input data, which are presented as
OBMG =

(
OB1

MG, OB2
MG, . . . , OBi

MG, . . . , OBN
MG
)
. Presently in this condition, DSj

i = 0
exhibits that there is no smell in the olfactory epithelium prior to the subsequent inhalation.
The non-negative array could be computed as:

OBi
MG(Fi) =

1
k

k

∑
j=1

f
(

f cj
i

)
, f
(

f cj
i

)
∗ S f actor (8)
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where k indicates the odor’s extent in ith odor, while Equation (7) works for two conditions,
which are the threshold values Vt ≤ f cj

i and Vt ≥ f cj
i , where the arrays centered upon the

odors data’s represent the mean value. Here, S f actor denotes the satisfaction factor, whereby
the mathematical expression for this factor is expressed as:

S f actor = W ∗∑N
i=1(1−W) (9)

where N denotes the total number of odor absorption mitral and W denotes the weight
factor. The neural dynamics evolving out of the granular and mitral (GM) layers are
calculated as:

X = −H0ωy(Y)− ∝x X + ∑ L0ωy (X) + DS + (Einitial − Eleast)

Y = W0ωx (x)− ∝y Y + DSc ++(Einitial − Eleast)
(10)

where X = {x1, x2, . . . xn} and Y = {y1, y2, . . . yn} represent the G-M cell (GMC) actions
accordingly; DS = {ds1, ds2, . . . dsn} and DSc = {dsc1, dsc2, . . . dscn} represent the outward
inputs to the mitral and middle of the granule cells, respectively; Einitial denotes the initial
energy and Eleast denotes the lowest energy unit.

3.6. Frontward Motion (FtM) toward the Target

If the blood is discharged into the water, a shark possessing a velocity V goes towards
the powerful OPs in every position to move nearer to the prey (target). Thus, the velocity
within each size will be computed as:

vk
i,1 = µk.R1.

∂(OF)
∂xj

(11)

where k = 1, 2, . . . kmax
∂(OF)

∂xj , which would be the objective function (OF) at location xk
i,1;

kmax indicates the phases’ maximal quantity for the forward motion of the shark, k indicates
the phases’ quantity, µk indicates a value within the interval [0, 1], and R1 is a haphazard
number in the interval [0, 1]. The rise in the odor intensity decides the increase in the
shark’s velocity. Owing to inertia, the shark’s acceleration remains a constraint. Thus,
the present shark’s velocity depends upon its former velocity, which can be utilized by
altering (9), as exhibited in the following expression:

vk
i,1 = µk.R1.

∂(OF)
∂xj

+ ∝ k.R2vk−1
i,1 (12)

where ∝ k portrays the inertia coefficient within the interval [0, 1], vk−1
i,1 portrays the shark’s

former velocity, and R2, like R1, remains a haphazard number in the interval [0, 1]. Because
of the shark’s FtM, its novel location remains Yk+1

i,1 , which is decided depending upon its
former location (xk

i ) and velocity (vk
i ). Hence, the shark’s novel location can be described as:

Yk+1
i,1 = xk

i + vk
i .∆tk (13)

where ∆tki denotes a time interval that can be presumed to be one for simplicity:
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Pseudocode for frontward motion begins
Calculate velocity V

Update the position of target prey
Velocity of each shark (vk

i,1)

vk
i,1 = µk.R1. ∂(OF)

∂xj
Find maximal quantity for forward motion
Release the odor and find its intensity
Update the shark’s novel location
End

3.7. Rotatory Motion (RM)

The shark also possesses an RM that will be employed to discover powerful OPs. The
SSOA procedure can be named the local search (LcS), which can be defined as:

Zk+1,m
i,1 = Yk+1

i + R3.Yk+1
i, (14)

in which m = 1, 2, . . . , M, and R3 denotes a haphazard number in the interval [−1, 1]. In
the LcS, several points (M) will be linked to create closed contour lines and to design the
shark’s RM within the SSp.

3.8. Updating the Particle Location

The shark’s search path will carry on with the RM, since this is nearer to the point of
having a powerful SoS. This feature within the SSOA could be described by:

xk+1
i = argmax

{
OF(Yk+1

i ), OF
(

Zk+1,i
i

)
, . . . OF

(
Zk+1,M

i

)}
(15)

in which xk+1
i portrays the shark’s subsequent location with the greatest OF value.

3.9. Attaining GS and LS

In the process of attaining GS and LS at the initial stage, two values are determined,
which are ωx (X) and ωy (Y), and the expression for this is given below:

ωx (X) = { fx(x1), fx(x2) . . . fx(xn)} (16)

ωy (Y) =
{

fy(y1), fy(y2) . . . fy(yn)
}

(17)

The expressions ωx (X) = { fx(x1), fx(x2) . . . fx(xn)} and ωy (Y) ={
fy(y1), fy(y2) . . . fy(yn)

}
indicate the GMC accordingly; ∝x and ∝y portray the GMC’s

time constants, and their values remain as 0.14; fx and fy simulate the cell output actions
for the GMCs. Thus, we can obtain:

fx(X) =

∝x + ∝x tanh
(

x−ϕ
∝x

)
∝x + ∝x tanh

(
x−ϕ
∝x

) (18)

fy(Y) =

∝y + ∝y tanh
(

x−ϕ
∝y

)
∝y + ∝y tanh

(
x−ϕ
∝y

) (19)

In both Equations (18) and (19), the term ϕ represents the threshold value, and the
values of ∝x and ∝y are 0.14 and 0.29, respectively. Here, the synaptic-strength connection
matrices are calculated, which are represented as H0, W0, and L0, which indicate the
association between the GMCs and the mitral cells. This is computed as:

H0
j
i =

rand()
Th

, W0
j
i =

rand()
Tw

, L0
j
i =

rand()
Tl

(20)
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Th, Tw, and Tl indicate the connection constants, rand() indicates a haphazard value,
dj

i indicates the space between the ith and gth odors based on their data, and the gth odor
indicates the desirable odor for the bear; that is to say, this distance can be described between
every odor (LS) and the intended odor (GS). This exhibits that the supervised operation
centered upon the GS will be utilized while performing the optimization procedure to
enhance the exploitation. As per the above-mentioned explanations, if the brain acquires
all data from the neural action, the disjoining procedure is centered upon the discrepancy
analysis. This procedure will be simulated while centered upon the Pearson correlation.
Hence, this point assists the bear in choosing the finest manner for the subsequent location.
The probability odor components (POC), probability odor fitness (POF), and odor fitness
(OF) are described by:

POCi =
F

max(Fi)
∗midscale (21)

POFi =
OFi

max(OF)
∗midscale (22)

where midscale denotes the lower and upper limits of the odor components. The mathemati-
cal expression for the calculation of midscale is described as:

midscale =
(OCul/OCil) ∗OCil

2
(23)

where OCul and OCil are the lower and upper limits of the odor components, respectively.
The discrepancy between 2 odors can be computed using the expected odor fitness (EOF)
and distance odor component (DOC) formulas as:

DOCi = 1−
∑k

i=1

(
POC1

j − POC2
j

)
√

∑k
i=1

(
POC1

j − POC2
j

)2
∗ d(POCi) (24)

EOFi = (POFi − POFg) ∗ d(POFi) (25)

where g denotes the GS. The values of the odor fitness (EOF) and distance odor components
(DOCs) are measured according to Equations (19) and (20), where the distances of the
probability odor components (POC) and probability odor fitness (POF) are considered. The
mathematical expressions for the calculation of d(POCi) and d(POFi) are given below:

d(POCi) =
√

∑N
k=1(xi − yi) (26)

d(POFi) =
√

∑M
k=1

(
xj − yj

)
(27)

where the distances between the source and destination coordinates are used for the
calculation of the distances of POC and POF; xi, xj denotes the source coordinates and yi, yj
denotes the destination coordinates.

These expressions denote the feasible manner shift. Indeed, these indices describe the
association between the odors that have been reached at the desirable location. It is legibly
exhibited that the brain’s output determines an appropriate manner for the subsequent
location. In the mesh grid region, the distance between entire odors can be centered
upon 2 THs.

In this phase, the HSBSOA can be employed to extract the finest features. Initially,
the shark and bear’s beginning locations will be located to be in the middle of the data.
Next, the fitness or finesse is noted for every position surrounding the shark and bear by
employing the fitness function. Then, the HSBSOA will be implemented to extract the
finest features. In this study we extracted twenty-one features via the HSOSOA out of
every datapoint by implementing twenty-one repetitions. Every repetition possesses just
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one feature extracted with the greatest FtV. While performing each repetition, the shark
and bear’s positions will be updated to be frontward or rotatory-centered upon the FtV.
When the position’s FtV in the shark position’s FM remains above the shark RM’s FtV, the
shark’s location will be updated. The shark’s trajectory will move frontward or rotatory
depending upon the position’s FtV; additionally, the positions that will be viewed using
the HSBSOA can be reviewed.

Pseudocode: HSBSOA Algorithm
Begin: Initialize search space

Indicate the total number of populations
Compute the optimization issue

x1
i =

[
x1

i,1, x1
i,2, . . . x1

i,NP

]
Compute decision variables numeral
Compute local solution (LS) from decision variable

Update the inhale and exhale parameter
Update exhalation time (ET), inhalation time (IT)

Initiate Odor absorption

MG = {MG1, MG2, . . . MGi, . . . MGn}
Compute non-negative array MGi(Oi)
Compute granular and mitral (G-M) layers
Initiate Frontward motionCompute velocity V for each shark

Update kmax for all location

Find shark’s acceleration
Initiate Rotatory motion
Compute local search (LcS)

Updating the particle location

Compute probability odor components
Compute probability odor fitness (POF)
Find the fitness parameter

End

3.10. Classification Employing DCAE

Before introducing DCAE, for detailed comprehension, it remains notable that the
notation ‘dilated convolution’ (DC) portrays a convolution procedure with a dilated filter
(DlF). Generally, the DC is implemented in the wavelet decomposition discipline. As the DC
operant solely employs a similar filter at disparate scales having disparate dilation factors
(DtF), its application in no way encompasses the DlF’s formation. In addition, the dilated
convolutional network can extend the receptive field (RF) dimension, which depends upon
enhancing the DtF instead of expanding the network’s field map (FMp) dimensions.

The layers involved in the process of the ACAE framework are the input layer, con-
volutional layer, DC layer, flatten and reshape layer, recurrent layer, and then finally the
output layer as shown in Figure 2. The dilated convolutional layer is incorporated with a
filter size of (3, 3) and with a dilation size of (1, 2, 4). In order to process the dilation in the
mathematical order, the discrete function is given as Dc = ◦F→ S , while the size of the
discrete filter is mentioned as (2r+1)×(2r+1)

(2r−1) . The math expression for the calculation of the
DC operator © is given below:

(F©k)(x,y) =
r

∑
g=1

r

∑
h=1

F(X, Y) ∗ (vi
ci(X, Y)) ∗ (Lce(X, Y)) ∗ (k(g− h)) (28)
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In Equation (28), the term X represents (x − g), Y represents (y − h), and k : ρr → R ,
which is the discrete filter with a size of (2r+1)×(2r+1)

(2r−1) . Here, vi
ci(X, Y) denotes the corre-

sponding integer index value, which lies between (0 to 5) and Lce(X, Y), denoted as the
entropy loss calculation, which lies between 0 and 10.

Secondly, an improved dilation convolution is developed with the variants XI and YI .
The math expression for the calculation of the improved DC operator ©I is given below.

(F©Ik)(x,y) =
r

∑
g=1

r

∑
h=1

F(XI , YI) ∗ (vi
ci(XI , YI)) ∗ (Lce(XI , YI)) ∗ (k(g− h)) (29)

Thus, the convolutions © and ©I are called one-DC. Here, we presume that
F0, F1, . . . Fn−1 : ◦F2 → S for the remaining DFs and k0, k1, . . . kn−2 : ρ1 → R for the remain-
ing 3 × 3 DsFs. Furthermore, the filters are implemented by aggressively enhancing DtFs
such as 20, 21, . . . 2n−2. Next, the DF ◦Fi+1 could be conveyed as:

◦Fi+1 = α◦Fi × βki for i = 0, 1, 2, . . . g− 2 (30)

Similarly:
◦Fj+1 = α◦Fj × βk j for j = 0, 1, 2, . . . h− 2 (31)

As per the RF description, two sections are present for every component, which are
◦Fi+1 and ◦Fj+1. The terms α and β are the constant values that are used for experimental
purposes and which satisfy the condition (α + β = 1). The math expression for the combined
detection methodology is given below:

M◦F = (◦Fi+1)× (◦Fj+1) =
((

2i+2 − 1
)
∗
(

2i+2 − 1
))
×
((

2j+2 − 1
)
∗
(

2j+2 − 1
))

(32)

Thus, RF remains a square of aggressively enhanced dimensions. In the convolutional layers
(CvLs), the former layer’s FMs will be convolved with multiple convolutional kernels (CKs), especially
FMp. Next, the independent layer’s outcomes added with a bias will be supplied to an activation
function (AF) to create an FM. Presuming that vx,d

i,j remains a value at the xth row for channel d within

the jth FM of the ith layer, the value of vx,d
i,j could be acquired as:

vx,d
i = tan

◦
B1(bi + ∑g

pi−1

∑
p=1

ω
p
ig ∗ (v

x+p,d
(i−1)g) ∗ (o f x+p,d

(i−1)g)) d = 1, 2, 3 . . . D (33)

vx,d
j = tan

◦
B2(bj + ∑h

pj−1

∑
p=1

ω
p
jh ∗ (v

x+p,d
(j−1)h) ∗ (o f x+p,d

(j−1)h)) d = 1, 2, 3 . . . D (34)

where tanh(·) refers to a hyperbolic tangent function for vx,d
i and vx,d

j ; specifically, bi and bj are the

biases for the FM (i, j), g refers to the present FM linked to the (i− 1)th layer, and ω
p
ig and ω

p
jh refer to

a value at location p within CK to which the dimensions are pi and pj, while the terms o f x,d
i and o f x,d

j
are the objective functions.

For the initial block, every CvL layer will be incorporated by (1) a CL that convolves its inputs
with an array of kernels to be learnt in the training stage, (2) a rectified linear unit (ReLU) layer
that maps convolved outcomes by the function relu(v) = max(v, 0);, and (3) a normalization layer
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that normalizes values of disparate FMs in the former layer. The math expression for vi and vj is
given below.

vi = v(i−1)(k + α) ∑
tεG(i)

v2(i− 1)t (35)

vj = v(j−1)(k + β) ∑
tεG(j)

v2(j− 1)t (36)

In Equations (35) and (36), the terms k, α, and β remain the hyper-criteria, and G(i) and G(j)
remain the FMs’ array-incorporated terms during normalization. The ensuing 3 layers remain DC
layers, having disparate dilated factors. For example, in this study we consecutively selected one,
two, and four.

For the next block, centered upon the former exposure, the depth of a minimum of 2 recurrent
layers remains advantageous for processing the concatenative data. This study utilizes a 2-layer
stacked LSTM. Moreover, a ReLU will be used as the AF. The dropout layer is implemented in the
LSTM layer’s input for regularization. Furthermore, recurrent batch normalization is employed to
lessen the internal covariance shift amidst the time phases.

The next block remains a completely linked network layer. This remains akin to a conventional
multilayer perceptron neural network (NN), which maps the latent features into the output classes
(OC). In this layer, the softmax function is described below:

vi,j =
exp(v(i−1)j)

∑c
j=1 exp(v(i−1)j)

(37)

Next, an entropy cost function will be incorporated, centered upon the probabilistic outcomes and
the training instances’ actual labels. In the course of the training stage, all the criteria will be modified to
search for the minimal cost. Additionally, a sliding window (SW) scheme will be utilized to segment
the time sequence signal into signals’ small pieces. In particular, an instance employed by the CNN
remains a 2D matrix comprising r unprocessed samples (with every sample having D features). In
this way, r will be selected to remain as the sampling rate or the finite duration, and the SW’s phase
dimension will be selected to retain a fifty percent overlap between the nearby windows. Hence, the
shorter phase dimension remains the instances’ bigger quantity that experiences greater calculative
workloads. Furthermore, the signals’ small portion will be generally very frequently labelled.

Pseudocode: Proposed Approach
Begin

five classes = CC
categorical feature (CF) = Rm, e

e(xi) = (0, . . . 1, . . . , 0) i f xi = j
Compute average π

Compute standard deviation β

Find n(xi) = x1−π
β

Check the shark’s capability

Capture the prey
EmploySoS
Initiate the smelling process
Achieve global solution
Find the fitness value

Indicate the total number of population
Compute the optimization issue

x1
i =

[
x1

i,1, x1
i,2, . . . x1

i,NP

]
Compute decision variable numeral
Compute local solution (LS) from decision variable

Update the inhale and exhale parameter
Update exhalation time (ET), inhalation time (IT)
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Initiate Odor absorption

MG = {MG1, MG2, . . . MGi, . . . MGn}
Compute Compute non-negative array MGi(Oi)
Compute granular and mitral (G-M) layers

Calculate velocity V
Update the position of target prey
Velocity of each shark (vk

i,1)

vk
i,1 = µk.R1. ∂(OF)

∂xj

Find maximal quantity for forwarding motion
Release the odor and find its intensity
Update the shark’s novel location

Initiate Frontward motion

Compute velocity V for each shark
Update kmax for all locations
Find shark’s acceleration

Initiate Rotatory motion
Compute local search (LcS)

Update the particle location

Compute probability odor components
Compute probability odor fitness (POF)
Find the fitness parameter

Stop

4. Performance Analysis
The dilated convolutional classifier-based botnet detection method (HSBSOpt_DCA) is imple-

mented in Python 3.7 using the Ubuntu 16.04 operating system with 8 GB of RAM. The database
chosen for the feature selection is the N-BaIoT database, which includes the traffic data for nine
industrial IoTD. Seven databases are the gadgets’ gathered instances for eleven classes, and two are
the gadgets’ gathered data for six classes (Ennio_doorbell and Samsung_SNH_1011_N_Webcam). The
experimental outcome will be assessed by measuring the performance matrices, such as the accuracy,
precision, recall, and F1-score. Such criteria will be correlated with four advanced methodologies:
CNN-related SS for DD and its identification (CNN-SSDI), the bidirectional LSTM model (BI_LSTM),
ODNN, and RPCO_BCNN with the proffered HSBSOpt_DCA.

4.1. Performance Matrices
• Accuracy: This provides the capability for comprehensive anticipation generated by the paradigm.

The true positive (TP) and true negative (TN) give the ability to anticipate the intrusion’s
existence or non-existence. The false positive (FP) and false negative (FN) provide the false
anticipation given by the employed paradigm. The mathematical expression for the calculation
of the accuracy is described as [15]:

Accuracy =
TP + TN

TP + TN + FP + FN
(38)

• Precision: Precision is defined as the positive output achieved by the algorithm used in the
proposed model, which lies in the range of (0 to 1). It computes the intrusion classification
paradigm’s victory. It defines the classifier’s probability for anticipating the outcome as positive
if the intrusion exists. It is as called the TP rate. It can be measured as:

Precision(P) =
TP

TP + FP
(39)

• Recall: This is the classifier’s probability of anticipating the outcome as negative if the intrusion
does not exist. It is also known as the TN rate, as mentioned below:

Recall(R) =
TP

TP + FN
(40)
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• F1-Score: This is used to measure the anticipation execution. It is defined as the weighted mean
calculation of the precision and recall. The F1-score lies between 0 and 1. If the score is 1, it
is considered the most acceptable value; if it is 0, it is regarded as weak. The mathematical
expression for the calculation of the F1-score [15] is given below:

F1-Score =
2 ∗ P ∗ R

P + R
(41)

4.2. Results and Discussion
In this section, the metrics such as the accuracy, precision, recall, and F1-score are measured with

respect to 50 and 100 epochs. Each metric calculation on the various epochs is evaluated. The accuracy
calculations with variable epochs numbering 50 and 100 are demonstrated in Figures 3 and 4.
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Figure 3 shows the accuracy calculation for methods such as the CNN-SSDI, BI_LSTM, ODNN,
RPCO_BCNN, and HSBSOpt_DCA. It can be understood from Figure 3 that the proposed HS-
BSOpt_DCA produces better accuracy when compared with other methods with respect to the
50 epochs. Various levels of accuracy are achieved by the CNN-SSDI (73%), BI_LSTM (75%), ODNN
(81%), RPCO_BCNN (90%), and HSBSOpt_DCA (98%) methods. The accuracy achieved by the
proffered HSBSOpt_DCA method is high and is achieved by using the hybrid optimization and
dilated convolution process.
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Figure 4 shows the accuracy calculation for methods such as CNN-SSDI, BI_LSTM, ODNN,
RPCO_BCNN, and HSBSOpt_DCA. The figure proves that the proffered HSBSOpt_DCA method
produces better accuracy than the other methods for 100 epochs. The accuracy scores achieved by
the methods vary for CNN-SSDI (78%), BI_LSTM (82%), ODNN (89%), RPCO_BCNN (95%), and
HSBSOpt_DCA (99%). The accuracy achieved by the proffered HSBSOpt_DCA method is high using
the hybrid shark and bear smell optimization algorithm.

The precision calculations with 50 and 100 epochs are demonstrated in Figures 5 and 6. Figure 5
shows the precision calculation for methods such as CNN-SSDI, BI_LSTM, ODNN, RPCO_BCNN,
and HSBSOpt_DCA. The figure proves that the proffered HSBSOpt_DCA method produces better
precision when compared with the other methods for 50 epochs. The precision scores achieved by
the methods vary for CNN-SSDI (58%), BI_LSTM (69%), ODNN (75%), RPCO_BCNN (93%), and
HSBSOpt_DCA (99%). The precision achieved by the proffered HSBSOpt_DCA method is high using
the hybrid shark and bear smell optimization algorithm.
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Figure 6 shows the precision calculation for methods such as CNN-SSDI, BI_LSTM, ODNN,
RPCO_BCNN, and HSBSOpt_DCA. The figure proves that the proffered HSBSOpt_DCA method
produces better precision when compared with the other methods for 100 epochs. The precision scores
achieved by the methods vary for CNN-SSDI (68%), BI_LSTM (75%), ODNN (81%), RPCO_BCNN
(95%), and HSBSOpt_DCA (99.9%). The precision achieved by the proffered HSBSOpt_DCA method
is high using the hybrid shark and bear smell optimization algorithm.
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The recall calculations with 50 and 100 epochs are demonstrated in Figures 7 and 8. Figure 7
shows the recall calculation for methods such as CNN-SSDI, BI_LSTM, ODNN, RPCO_BCNN, and
HSBSOpt_DCA. The figure proves that the proffered HSBSOpt_DCA method produces better recall
than the other methods for 50 epochs. The recall scores achieved by the methods vary for CNN-
SSDI (85%), BI_LSTM (81%), ODNN (85%), RPCO_BCNN (85%), and HSBSOpt_DCA (91%). The
recall achieved by the proffered HSBSOpt_DCA method is high and is achieved by using the hybrid
optimization and dilated convolution process.
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Figure 8. Recall calculation with 100 epochs.

Figure 8 shows the recall calculation for methods such as CNN-SSDI, BI_LSTM, ODNN,
RPCO_BCNN, and HSBSOpt_DCA. The figure proves that the proffered HSBSOpt_DCA method pro-
duces better recall than the other methods for 100 epochs. The recall scores achieved by the methods
vary for CNN-SSDI (75%), BI_LSTM (78%), ODNN (81%), RPCO_BCNN (85%), and HSBSOpt_DCA
(88%). The recall achieved by the proffered HSBSOpt_DCA method is high and is achieved by using
the improved dilated convolution process.

The F1-score evaluations for 50 and 100 epochs are demonstrated in Figures 9 and 10. Figure 9
shows the calculation of the F1-scores for the proposed and existing methods. The figure proves
that the proffered HSBSOpt_DCA method produces a better F1-score than the other methods for
50 epochs. The F1-scores achieved by the methods vary for CNN-SSDI (73%), BI_LSTM (75%), ODNN
(81%), RPCO_BCNN (94%), and HSBSOpt_DCA (98%). The F1-score achieved by the proffered
HSBSOpt_DCA method is high and is achieved by using the improved dilated convolution process.
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Figure 10 shows the calculation of the F1-scores for the proposed and existing methods. The
figure proves that the proffered HSBSOpt_DCA method produces a better F1-score compared with
other methods for 100 epochs. The F1-scores achieved by the methods vary for CNN-SSDI (79%),
BI_LSTM (82%), ODNN (85%), RPCO_BCNN (95%), and HSBSOpt_DCA (99%). The F1-score
achieved by the proffered HSBSOpt_DCA method is high and is achieved by using the improved
dilated convolution process. Therefore, it is evident from the experiments that the proposed approach
outperforms other existing methods, and it can be concluded that the feature extraction using the
optimization algorithms definitely increases the performance of the classification model; therefore,
the model can be used to detect and classify security threats in FANET.

5. Conclusions
In this study, we proposed an effective model combining hybrid shark and bear smell optimiza-

tion (HSBSOA) to secure the FANET from security threats. It provides a solution to investigate the
FANET botnet detection threat and to solve the combinational optimization problem. Then, a dilated
convolution autoencoder classifier is employed to detect and classify the security threats in the net-
work. The parameters considered for the performance analysis of the proffered HSBOpt_DCA are the
accuracy, precision, recall, and F1-score. Moreover, the performance of the proposed approach was
compared with CNN-SSDI, bi_LSTM, ODNN, and RPCO-BCNN. The performance of the proposed
HSBOpt_DCA network was evaluated with different epochs. The proposed model with 50 epochs
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achieved 98% accuracy, 99% precision, 91% recall, and a 98% F1-score. For 100 epochs, it achieved 99%
accuracy, 99.9% precision, 88% recall, and a 99% F1-score. The comparison showed that the proposed
HSBOpt_DCA achieved 33% better accuracy, 30% better precision, 13% better recall, and a 20% better
F1-score than the existing methods. The proposed method provides a global security solution to the
security issues in the UAV-FANET framework. The proposed hybrid-optimization-based feature
selection process reduced the computational time. It achieved higher accuracy, precision, recall, and
F1-scores than the existing approaches. However, the classification tasks still require improvement,
which can be considered in the future.
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