
Citation: Novitasari, D.C.R.;

Fatmawati, F.; Hendradi, R.;

Rohayani, H.; Nariswari, R.; Arnita,

A.; Hadi, M.I.; Saputra, R.A.;

Primadewi, A. Image Fundus

Classification System for Diabetic

Retinopathy Stage Detection Using

Hybrid CNN-DELM. Big Data Cogn.

Comput. 2022, 6, 146. https://

doi.org/10.3390/bdcc6040146

Academic Editors: Luis Javier

García Villalba, Andrea Prati and

Vincent A. Cicirello

Received: 3 November 2022

Accepted: 28 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Image Fundus Classification System for Diabetic Retinopathy
Stage Detection Using Hybrid CNN-DELM
Dian Candra Rini Novitasari 1,2,* , Fatmawati Fatmawati 2,* , Rimuljo Hendradi 2, Hetty Rohayani 3,
Rinda Nariswari 4, Arnita Arnita 5, Moch Irfan Hadi 6, Rizal Amegia Saputra 7 and Ardhin Primadewi 8

1 Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya,
Surabaya 36743, Indonesia

2 Mathematics Department, Faculty of Science and Technology, Universitas Airlangga,
Surabaya 36743, Indonesia

3 Sains and Technology Faculty, Muhammadiyah Jambi University, Jambi 23265, Indonesia
4 Statistics Department, School of Computer Science, Bina Nusantara University, Jakarta 10110, Indonesia
5 Department of Mathematics, Universitas Negeri Medan, Medan 20028, Indonesia
6 Biology Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya,

Surabaya 36743, Indonesia
7 Information System Department, Faculty of Engineering and Informatics, Universitas Bina Sarana

Informatika, Sukabumi 43111, Indonesia
8 Department of Informatics Engineering, Muhammadiyah University of Magelang, Magelang 56111, Indonesia
* Correspondence: diancrini@uinsby.ac.id (D.C.R.N.); fatmawati@fst.unair.ac.id (F.F.)

Abstract: Diabetic retinopathy is the leading cause of blindness suffered by working-age adults. The
increase in the population diagnosed with DR can be prevented by screening and early treatment of
eye damage. This screening process can be conducted by utilizing deep learning techniques. In this
study, the detection of DR severity was carried out using the hybrid CNN-DELM method (CDELM).
The CNN architectures used were ResNet-18, ResNet-50, ResNet-101, GoogleNet, and DenseNet. The
learning outcome features were further classified using the DELM algorithm. The comparison of
CNN architecture aimed to find the best CNN architecture for fundus image features extraction. This
research also compared the effect of using the kernel function on the performance of DELM in fundus
image classification. All experiments using CDELM showed maximum results, with an accuracy of
100% in the DRIVE data and the two-class MESSIDOR data. Meanwhile, the best results obtained in
the MESSIDOR 4 class data reached 98.20%. The advantage of the DELM method compared to the
conventional CNN method is that the training time duration is much shorter. CNN takes an average
of 30 min for training, while the CDELM method takes only an average of 2.5 min. Based on the
value of accuracy and duration of training time, the CDELM method had better performance than
the conventional CNN method.

Keywords: diabetic retinopathy; CNN architecture; feature learning; DELM classification

1. Introduction

Diabetic retinopathy (DR) is an eye disease caused by high blood sugar levels that
attack the retinal capillaries of the eye [1]. DR is the leading cause of blindness suf-
fered by working-age adults [2,3]. In 2015 blindness due to DR was estimated to reach
2.6 million people and the projected results on the number of people with DR in 2020
reached 3.2 million [1]. The prevalence of DR is estimated to increase in the next decade
along with the increase in diabetes, especially in Asian countries, such as Indonesia, In-
dia, and China [4]. The increasing prevalence of DR can be prevented by early detection
and treatment of eye damage caused by DR [5]. A rapid screening process is required
so that people with DR receive immediate and appropriate treatment [6]. This screening
process can be carried out by utilizing technological advances, that is, the Computer Aided
Diagnosis (CAD) system. CAD system development can diagnose DR efficiently. High
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computational mechanisms enable better diagnostic capabilities by classifying fundus
image data to identify damage to the retina [7]. CAD begins with pre-processing image
data to optimize data in the learning model [8].

CAD in diagnosing DR has been widely used in previous studies. DR detection by
applying the Gray Level Co-Occurrence Matrix (GLCM) and Support Vector Machine
(SVM) methods were conducted to obtain accurate results. Accurate results in DR and
normal diagnoses reached 82.5%, while in PDR and NPDR diagnoses, the accuracy reached
100% [9]. One of the difficulties in DR detection is studying the features in the fundus
image [7]. The process of studying features can be carried out by implementing the
convolutional neural network (CNN) algorithm [10]. A study by Navoneel Chakrabarty
showed that the CNN algorithm produced high accuracy in the DR classification process,
which was 100% [11].

CNN is a deep learning algorithm that has several different architectures. The archi-
tectures in the CNN algorithm include GoogleNet, ResNet, and DenseNet [12]. Previous
researchers have widely used the architectures in the CNN algorithm. A research by R
Anand used the GoogleNet architecture on the CNN algorithm to detect faces. The overall
accuracy result reached 91.43%, which was quite high for facial recognition and more
than conventional Machine Learning (ML) techniques. The number of data trained on
the model also affects the accuracy of a classification system. The more data trained with
optimal computing power, the more accurate the prediction results, up to 99% [13]. Arpana
Mahajan has studied ResNet architecture to observe the features of categorical images.
The features that have been studied are further classified using SVM. ResNet architec-
ture was tested based on the number of layers. The test results showed that ResNet with
18 layers obtained a higher accuracy of 93.57% [14]. Research conducted by Hua Li used
DenseNet architecture to classify benign and malignant mammogram images. The accuracy
obtained from the DenseNet architecture reached 94.55% [15]. Based on previous studies,
the CNN algorithm performed well in the classification process and had many layers. A
large number of layers in the CNN algorithm required a computer with a large capacity
and a long duration of the training process [16]. Several other researchers have tried to
develop CNN to overcome these problems by changing the existing classification system
on CNN to form a developed method that uses the convolutional features in the CNN
architecture but uses a different classification method.

The development of CNN methods, such as the Convolutional Extreme Learning
Machine (CELM), which uses the convolutional features in the CNN architecture and
the Extreme Learning Machine classification method. Research on CELM was conducted
to identify handwritten MNIST dataset [17–19]. The results of this study indicated that
the accuracy obtained by CELM was better than ELM and CNN, that is, 98.43%, with a
training time faster than CNN and ELM. Although CELM is better than CNN, basically,
ELM is still a single hidden layer method and is still not good at pattern recognition
in big data; so, the development of the ELM method by applying a multilayer and deep
learning system is called Deep Extreme Learning Machine (DELM) [20]. The DELM method
has several advantages, especially in training time, making it one of the deep learning
methods with the fastest training process. DELM also has good results in terms of image
classification (MNIST database, CIFAR-10 dataset, and Google Streetview House Number
dataset) with an average accuracy of 95.16% [21]. The DELM algorithm can produce a
high accuracy in just 9.02 s [22]. DELM is a combination of several algorithms that are
the result of the development of the Extreme Learning Machine (ELM) algorithm. DELM
has a more complex structure than ELM, but DELM can train models faster than the ELM
algorithm [23].

Based on the description of the problems, the convolutional features in the CNN
architecture can well recognize the pattern of an image. Therefore, in the classification
process by DELM, it is necessary to use the convolutional features in the CNN architecture
for feature extraction. This study aims to build a Hybrid CNN-DELM or Convolutional
Deep Extreme Learning Machine (CDELM) method that can collectively recognize image



Big Data Cogn. Comput. 2022, 6, 146 3 of 19

patterns to produce performance for better accuracy and faster training time. The CDELM
method is applied in this study using the CNN architectures, that is GoogleNet, ResNet,
and DenseNet.

2. Materials and Methods

This study implements the CNN and DELM methods to detect eye damage due
to DR based on fundus images. This study used fundus image data obtained from the
DRIVE and MESSIDOR databases. Each database consisted of 44 and 1200 fundus images of
4 classes (normal, mild, moderate, and severe). Based on microvascular lesion type, number,
and location, the severity level of DR is classified into three stages: Mild, Moderate, and
Severe [24]. The mild stage has a microaneurysm with or without retinal hemorrhage.
In the moderate stage, there is a microaneurysm with retinal hemorrhages and white,
cotton-like spots. The severe stage occurs with profuse bleeding in four quadrants of the
retina and white spots in two or more quadrants [25]. The difference in fundus images at
each stage can be seen in Figure 1.
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Figure 1. Stages of DR.

Each database was augmented with random rotation at 1 degree to 359 degrees; it
amounted to 13,032, with 3258 fundus images in each class. The rotation method is suitable
if applied to images with features, such as circles. The fundus image has circular features,
so applying the rotation method for the augmentation process is more efficient. The next
stage is image enhancement using the CLAHE method to clarify features in the fundus
image. The features in the fundus image are extracted by applying the CNN method’s
feature learning concept. The graphical abstract in this study can be seen in Figure 2.
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Figure 2. Graphical abstract of DR classification using CDELM method.

Based on Figure 2, data preprocessing is to change the image data size to 224 × 224
and to increase the variance of the image data by augmentation process. The process of
transforming image data into numerical data as image features is carried out by utilizing
the CNN algorithm in which the features of the image data will be extracted. The CNN
algorithm has several architectural structures that can be used for feature learning, such as
GoogleNet, ResNet, and DenseNet. The performance of the three architectures is compared
to find out which architecture is the best in studying features in the fundus image. The
features generated from the feature learning process are then classified using the DELM
algorithm. The classification process consists of training and testing processes. In the
training process, it produces a model that will be validated in the testing process and
evaluated using a confusion matrix.
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2.1. Diabetic Retinopathy

Diabetic retinopathy (DR) is a complication that often occurs in diabetes mellitus
(DM) patients. DR causes damage to the retina of the eye involving pathological blood
vessels. Increased blood sugar can increase the risk of damage to blood vessels in the retina
and interfere with the patient’s visual system [12,26]. DR can cause visual impairment
to blindness in patients [27]. DR can be identified using the patient’s fundus image. It
is characterized by bleeding, hard exudate, and cotton spots [28]. The non-proliferative
type of DR is characterized by microaneurysms, hard exudates, hemorrhages, and venous
abnormalities [29].

2.2. Convolutional Neural Network

Convolutional neural network (CNN) is an effective machine learning technique for
deep learning [30]. CNN is widely applied in medical image analysis research because
CNN maintains spatial relationships when filtering input images [31]. In recognizing image
features, CNN applies a feed-forward neural network with each unit in the adjacent layer
fully connected. CNN has a particular layer where only specific units are connected to
fully connected layers that will classify the image features [32]. In an overview of the CNN
algorithm architecture, as shown in Figure 3, it can be seen that CNN consists of feature
learning and classification [33,34].
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In this research, the feature learning process aims to extract the feature of images.
CNN uses the convolution layer as a primary layer for image feature extraction. Feature
extraction by convolution operation with a filter across every local area in the image to learn
a spatial pattern of the image. The output of the convolutional process is called feature
maps which will be processed in the next layer [33]. After the convolution process, features
maps are simplified using pooling layers [35]. The feature maps pass the ReLU layer as an
activation function to reduce the time in the convergence of stochastic gradient descent [36].
The feature learning process in the CNN algorithm can be carried out with several different
architectures. The architectures in the CNN algorithm include GoogleNet, ResNet, and
DenseNet [12].

2.2.1. GoogleNet

GoogleNet is a transfer learning that implements inception, which can improve com-
puting performance. In the ILSVRC competition, GoogleNet earned 5.5% with a top five
rating in classification performance [37]. GoogleNet, developed by Google, trains a network
with millions of images to identify thousands of daily life images. GoogleNet has 144 layers,
and the input image data on GoogleNet is 224 × 224 × 3 [38]. The difference between
GoogleNet and conventional CNN is in the inception module. GoogleNet implements the
inception module that utilizes small convolutions to reduce the number of parameters [39].
An illustration of GoogleNet’s architecture is shown in Figure 4.
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2.2.2. ResNet

ResNet is a CNN residual developed by the Microsoft team. ResNet won first
place in the largest ImageNet visual recognition competition ILSVRC [40]. The ResNet
model architecture is based on residual training. ResNet uses an image input measuring
224 × 224 with three layers, namely Red (R), Green (G), and Blue (B) layers [37]. The ResNet
model does not learn all the features but only some of the features that are identified as
residuals. Residuals are reduced features known from the input layer [41]. Illustration of
ResNet architecture shows in Figure 5.
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2.2.3. DenseNet

DenseNet is a CNN architecture that has dense connections. DenseNet is a develop-
ment of ResNet, which has a network structure which is more innovative, simple, and
effective [42]. Connections between layers in DenseNet architecture reduce the parameters
needed to study feature maps by eliminating those that are unnecessary. The advantages
of the DenseNet architecture are that it can handle missing gradients, strengthen feature
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propagation, reuse features used, and substantially reduce parameters [41]. An illustration
of DenseNet architecture is shown in Figure 6.
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2.3. Deep Extreme Learning Machine (DELM)

Extreme Learning Machine (ELM) is one of the algorithms introduced by Guang-Bin
Huang [43] as a continuation of the Single Layer Forward Network (SLFN). The hidden
network in the ELM algorithm is generated randomly, and the weights are calculated based
on the least squares solution. The ELM algorithm, with the addition of a layer on the
network, was developed into the Deep Extreme Learning Machine (DELM) algorithm [44].
The training method on the DELM algorithm is better in prediction than conventional
neural networks. The DELM model architecture has three layers: the input layer, hidden
layer, and output layer [45].

DELM combines several modified ELM methods, namely Multilayer Extreme Learning
Machine (MELM) and Kernel Extreme Learning Machine (KELM), where the output of
the MELM algorithm will be the input to the KELM algorithm. The MELM algorithm
comprises an Extreme Learning Machine Auto Encoder (ELM-AE) stack. The training
of parameters in each layer in the DELM algorithm is carried out by implementing the
MELM algorithm. The kernel function in the KELM algorithm is used to determine whether
the output of MELM is linear or non-linear. The output of the MELM algorithm is Hn,
which is then used to build a kernel function with Hn+1Hn+1

T [23]. The DELM algorithm
architecture can be seen in Figure 7.

Based on the DELM architecture illustrated in Figure 5, the input layer processes the
input data using the basic ELM algorithm and produces an output value in the first hidden
layer. Calculations on the 2nd hidden layer to the (n − 1) hidden layer are carried out
using the ELM-AE algorithm arrangement that forms MELM. The output of the MELM
algorithm is streamed to the nth hidden layer, where there is a kernel function to produce
the final result of the DELM algorithm. The output of the first hidden layer is calculated
using Equation (1).

H = g
(

WTX + b
)

(1)

where W is the weight linking the input layer and the hidden layer, b is the bias of the
hidden layer, and g(x) is the activation function. While the calculation of the nth hidden
layer is calculated using Equation (2).

Hn = g(Hn−1(βn−1)
T) (2)
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where β is the output weight value. The β value is determined based on the number of
nodes and input nodes, as formulated in Equations (3)–(5).

β∗ =

(
HTH +

Inh

c

)−1
HTX, ni > nh (3)

β∗ = HT
(

HHT +
Ini

c

)−1
X, ni < nh (4)

β∗ = HT
(

HHT
)−1

X, ni = nh (5)

where c is the scale parameter, Inh is the identity matrix with dimension nh, IN is the identity
matrix with dimension N, nh and ni are the nodes and input nodes in the hidden layer. The
calculation is carried out until the hidden layer is calculated (n − 1). The n-th hidden layer
is calculated based on the value in the (n − 1) hidden layer as the new input value defined
in Equation (6).

Xnew = XβT (6)

Calculating the nth hidden layer to get the output value (Y) from the DELM algorithm
is carried out using Equation (7).

Y = [ (K(H, HT))T
]−1

·
(

I
c
+ HHTβ

)
s (7)
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3. Results

In this research, classifications were made with two multi-class experiments: 2-class
(Normal and DR) and 4-class (Normal, Mild, Moderate, and Severe). The initial stage of
the research is cropping the image, CLAHE, resizing according to the CNN architecture
input size, and performing the augmentation process. The results of the CLAHE process
are shown in Figure 8.
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Figure 8. Original Fundus Image, Result of Cropping Image, Result of CLAHE.

Based on the results of the CLAHE process in Figure 6, it shows that there is an increase
in image quality. DR disease is highly dependent on the state of the blood vessels in the
retina. The CLAHE method can clearly show the condition of the blood vessels and identify
the presence of microaneurysm to bleeding in the retina. The following preprocessing stage
is resizing and augmentation. The augmentation method used was a random rotation from
1 degree to 359 degrees. Augmentation results can be seen in Figure 9.
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Figure 9. Image Augmentation with Rotation 1◦.

The next stage after augmentation is feature extraction from the fundus image. This
stage is carried out by comparing several CNN architectures: GoogleNet, ResNet, and
DenseNet. The feature extraction results on each CNN architecture can be seen in Table 1.
The results of CNN feature extraction are obtained from feature learning through several
convolution processes, pooling, and applying activation functions. These steps are repeated
until a vector of the extraction results from each image data is obtained.

Based on Table 1, the results of feature extraction from each architecture show different
values and features. The data is divided into training and testing data using five-fold
cross-validation. In the two-class dataset, training data contains 2880 images in each class
and 720 images in each class for testing data. While in the four-class dataset, training
data has 2607 images in each class and 651 images in each class for the testing dataset.
Next is the classification process using the DELM method, which is evaluated based on
accuracy, sensitivity, specificity, and duration of training time. It is used to determine
the most optimal model of the DR classification system. Then, CDELM performance on
the 2-class and 4-class DRIVE and MESSIDOR data is compared. The results of experi-
ment conducted on the 2-class DRIVE and MESSIDOR data on several CNN architectures
are shown in Tables 2 and 3. The bold values in Tables 2–5 mean the best result of the
kernel experiment.
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Table 1. Results on Feature Extraction CNN Architecture from A Fundus Image.

No Feature GoogleNet ResNet18 ResNet50 ResNet101 DenseNet

1 0.0500 1.2727 3.1410 2.0698 −0.0001

2 0.2205 1.7893 0.0496 0 0.0004

3 0 0.3892 0 0.0629 0.0018

4 0.5618 0.2355 0.1208 0 −0.0963

5 0.0173 0.1450 0.0105 0.1196 0.0022

6 0.0241 0.6516 0 0.4925 0.0002

7 0 0.3554 0.0048 1.5753 −0.0004

8 0 1.0218 0.2059 0.1258 0.0007

9 0.0268 1.3834 0 0.3570 0.0002

10 0.1011 0.7051 0.1300 0.5861 0.0090

...
...

...
...

...
...

feature-n 0.4129 0.0715 0.3104 0.4698 0.8898

Total feature 1024 512 2048 2048 1920

Table 2. Results of Experiment on Two-Class DRIVE Dataset.

CNN
Architecture Kernel Accuracy (%) Sensitivity

(%)
Specificity

(%) Duration (s)

ResNet18

Linear 90.83 90.83 90.97 288.50

RBF 92.78 92.78 92.92 288.10

Poly 100.00 100.00 100.00 291.22

ResNet50

Linear 95.90 95.90 96.21 299.17

RBF 98.40 98.40 98.45 295.58

Poly 100.00 100.00 100.00 295.37

ResNet101

Linear 98.06 98.06 98.12 296.63

RBF 99.44 99.44 99.45 300.62

Poly 100.00 100.00 100.00 298.02

GoogleNet

Linear 91.11 91.11 91.92 300.24

RBF 97.36 97.36 97.45 299.29

Poly 100.00 100.00 100.00 307.13

DenseNet

Linear 96.25 96.25 96.35 302.45

RBF 97.36 97.36 97.49 328.36

Poly 100.00 100.00 100.00 306.15
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Table 3. Results of Experiment on Two-Class MESSIDOR Dataset.

CNN
Architecture Kernel Accuracy (%) Sensitivity

(%)
Specificity

(%) Duration (s)

ResNet18

Linear 90.56 90.56 90.72 290.25

RBF 92.78 92.78 92.92 284.36

Poly 100.00 100.00 100.00 287.24

ResNet50

Linear 96.60 96.60 96.78 293.76

RBF 98.33 98.33 98.38 291.99

Poly 100.00 100.00 100.00 294.61

ResNet101

Linear 97.64 97.64 97.72 298.70

RBF 99.44 99.44 99.45 293.67

Poly 100.00 100.00 100.00 293.08

GoogleNet

Linear 92.22 92.22 92.86 294.98

RBF 96.94 96.94 97.06 288.39

Poly 100.00 100.00 100.00 290.46

DenseNet

Linear 95.49 95.49 95.62 298.19

RBF 97.29 97.29 97.43 290.27

Poly 100.00 100.00 100.00 289.96

Table 4. Results of Experiment on Four-Class DRIVE Dataset.

CNN
Architecture Kernel Accuracy (%) Sensitivity

(%)
Specificity

(%) Duration (s)

ResNet18

Linear 79.72 79.72 79.85 136.04

RBF 84.33 84.33 84.33 135.43

Poly 100.00 100.00 100.00 140.27

ResNet50

Linear 88.52 88.52 88.83 136.95

RBF 95.51 95.51 95.63 138.10

Poly 100.00 100.00 100.00 146.84

ResNet101

Linear 93.55 93.55 93.63 137.25

RBF 98.00 98.00 98.00 138.84

Poly 100.00 100.00 100.00 142.72

GoogleNet

Linear 82.11 82.11 82.29 136.07

RBF 95.12 95.12 95.18 138.04

Poly 100.00 100.00 100.00 141.78

DenseNet

Linear 90.52 90.52 90.60 138.41

RBF 95.47 95.47 95.46 138.37

Poly 100.00 100.00 100.00 140.99
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Table 5. Results of Experiment on 4 Class MESSIDOR Dataset.

CNN
Architecture Kernel Accuracy (%) Sensitivity

(%)
Specificity

(%) Duration (s)

ResNet18

Linear 68.28 68.28 69.11 137.21

RBF 68.20 68.20 67.72 138.00

Poly 93.70 93.70 93.70 143.55

ResNet50

Linear 61.94 61.94 61.05 139.06

RBF 67.13 67.13 66.58 144.96

Poly 97.77 97.77 97.77 144.78

ResNet101

Linear 62.44 62.44 62.44 159.63

RBF 67.32 67.32 67.10 161.81

Poly 98.20 98.20 98.19 166.94

GoogleNet

Linear 60.14 60.14 59.36 161.97

RBF 64.44 64.44 64.19 140.73

Poly 95.97 95.97 96.03 144.16

DenseNet

Linear 63.56 63.56 63.17 137.56

RBF 64.82 64.82 64.39 162.28

Poly 97.89 97.89 97.90 142.77

The features obtained from several CNN architectures, such as ResNet-18, ResNet-50,
ResNet-101, GoogleNet, and DenseNet, can represent each class in the 2-class DRIVE data
by the accuracy value, which reaches more than 90%. The high accuracy value is also
influenced by the performance of DELM as a classification method that can classify many
features well. Another advantage of the DELM classification method is that it can be
seen from the duration of the training time, which is less than 5 min. The performance of
the DELM method is highly dependent on the compatibility of the data with the kernel
functions used. In the 2-class DRIVE data, the data shows that the polynomial kernel
function performs better than the linear kernel or the RBF kernel. The graph to compare
the accuracy values of the two-class DRIVE dataset is shown in Figure 10.
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Based on Figure 10, using a polynomial kernel in the DELM classification can achieve
100% accuracy in each architecture. The DELM classification system using a linear kernel
only obtains accuracy in the range of 90% to 98%. Compared to the linear kernel, the RBF
kernel is able to better separate data from each class, with an accuracy value of 92% to 99%.
As the best CNN architecture in terms of the average accuracy of each architecture, ResNet-
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101 architecture can represent the characteristics of the normal fundus and DR images
with the best accuracy value of 99.17%, followed by ResN=et-50, DenseNet, GoogleNet,
and ResNet-18 architectures, with an average accuracy of 98.10%, 97.87%, 96.16%, and
94.54%, respectively.

Similar to the previous experiment, in the two-class MESSIDOR dataset, the CDELM
methods also perform well, with an accuracy above 90%. Therefore, it shows that the CNN
architecture can well represent the fundus image features in the two-class MESSIDOR
dataset. The combination of a suitable CNN method in extracting features with the DELM
method, which has good performance in classification, plays an essential role in producing
high accuracy in the classification system. The DELM classification process takes only
approximately 4 min. The duration of the training is relatively shorter than the 2-class
DRIVE 2 dataset experiment, which is 1 min faster than the previous. The graph on the
accuracy value comparison from the two-class MESSIDOR dataset is shown in Figure 11.
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Based on Figure 11, the highest accuracy obtained is 100% by using a polynomial
kernel on each CNN architecture. It shows that using a polynomial kernel on the 2-class
MESSIDOR data can separate the two classes very well. ResNet-101 architecture can represent
the characteristics of the normal fundus and DR images with the best accuracy value of
99.03%, followed by ResNet-50, DenseNet, GoogleNet, and ResNet-18 architectures with an
average accuracy of 98.31%, 97.59%, 96.39%, and 94.44%. The overall results of the experiment
show that the more features generated from the feature extraction process using several CNN
architectures, the higher the accuracy value obtained. The results of the experiment conducted
on 4-class DRIVE and MESSIDOR dataset are shown in Tables 4 and 5.

The classification of 4 class DRIVE data shows poor results on the ResNet-18, ResNet-
50, and GoogleNet architectures with linear kernel functions. Compared to the depth of
layer complexity, the three architectures are no more profound than the ResNet-101 and
DenseNet architectures. It shows that the features produced by the three architectures do
not represent the features of the fundus image and cannot be divided linearly. In contrast,
the RBF kernel function and polynomial in each architecture produce an accuracy above
90%, which indicates the compatibility of the RBF kernel and polynomial functions to
the fundus image features. The duration of the training time in the experiment using the
4- class DRIVE dataset is relatively short, ranging from 2 to 2.5 min. The graph on the
accuracy value comparison from 4-class DRIVE dataset is shown in Figure 12.
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Based on Figure 12, the entire experiments using the polynomial kernel obtain perfect
results, which reach 100% accuracy. The DELM classification system using a linear kernel
only produces an accuracy of 79% to 93%. Meanwhile, the experiment using the RBF
kernel produces higher results than that using the linear kernel, with an accuracy of 84%
to 95%. The best CNN architecture in extracting fundus image features in terms of the
average accuracy value is the ResNet-101 architecture, with an average accuracy of 97.18%.
The next best average accuracy result is 95.33% on DenseNet architecture, followed by
ResNet-50, GoogleNet, and ResNet-18 architectures with an average accuracy of 95.33%,
94.68%, 82.42%, and 88.02% consecutively.

Based on Table 5, the performance of the CDELM method on the 4-class MESSIDOR
data is not as good as the CDELM performance on the 2-class MESSIDOR dataset and the
4-class DRIVE data. MESSIDOR data cannot be appropriately classified using the CDELM
method with an accuracy of less than 70% on the linear kernel and RBF. The accuracy
results in the experiment show that the fundus image features in the 4-class MESSIDOR
dataset do not have significant differences between classes, so the DELM method cannot
properly separate the data for each class. However, implementing the CDELM method
using a polynomial kernel can obtain a pretty good classification result, which is more than
90% in each experiment, and the best result is 98.20%. The classification system using a
polynomial kernel has a good accuracy value in every CNN architecture experiment with a
relatively short training duration. The graph on the accuracy value comparison from the
4-class MESSIDOR dataset is shown in Figure 13.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 13 of 20 
 

Poly 97.89 97.89 97.90 142.77 

Based on Table 5, the performance of the CDELM method on the 4-class MESSIDOR 
data is not as good as the CDELM performance on the 2-class MESSIDOR dataset and the 
4-class DRIVE data. MESSIDOR data cannot be appropriately classified using the CDELM 
method with an accuracy of less than 70% on the linear kernel and RBF. The accuracy 
results in the experiment show that the fundus image features in the 4-class MESSIDOR 
dataset do not have significant differences between classes, so the DELM method cannot 
properly separate the data for each class. However, implementing the CDELM method 
using a polynomial kernel can obtain a pretty good classification result, which is more 
than 90% in each experiment, and the best result is 98.20%. The classification system using 
a polynomial kernel has a good accuracy value in every CNN architecture experiment 
with a relatively short training duration. The graph on the accuracy value comparison 
from the 4-class MESSIDOR dataset is shown in Figure 13. 

Figure 11 shows that in each CNN architecture test, the polynomial kernel has a good 
performance in the 4-class MESSIDOR data classification. The accuracy of the classifica-
tion system using the polynomial kernel function significantly differs significantly from 
that using the linear kernel and the RBF kernel. The difference in accuracy values in the 
linear kernel reaches 25% to 35%, while in the RBF kernel, it reaches 25% to 33%. The 
results of the performance comparison of each CNN architecture show that ResNet-101 is 
superior to other CNN architectures with an accuracy of 98.20%, followed by DenseNet, 
ResNet-50, GoogleNet, and ResNet-18. CNN architectures (GoogleNet, ResNet18, Res-
Net50, ResNet101, and DenseNet) have different extraction computation concepts. It cer-
tainly affects the value of feature extraction, which is used as data input in the classifica-
tion process. Based on the overall results above, the selection of a good image extraction 
method greatly affects the evaluation results of the classification system. The results of the 
comparison of each CNN architecture can be seen in Figure 14. 

 
Figure 13. Results of Experiment on 4 class MESSIDOR Dataset. Figure 13. Results of Experiment on 4 class MESSIDOR Dataset.



Big Data Cogn. Comput. 2022, 6, 146 14 of 19

Figure 11 shows that in each CNN architecture test, the polynomial kernel has a
good performance in the 4-class MESSIDOR data classification. The accuracy of the clas-
sification system using the polynomial kernel function significantly differs significantly
from that using the linear kernel and the RBF kernel. The difference in accuracy val-
ues in the linear kernel reaches 25% to 35%, while in the RBF kernel, it reaches 25% to
33%. The results of the performance comparison of each CNN architecture show that
ResNet-101 is superior to other CNN architectures with an accuracy of 98.20%, followed
by DenseNet, ResNet-50, GoogleNet, and ResNet-18. CNN architectures (GoogleNet,
ResNet18, ResNet50, ResNet101, and DenseNet) have different extraction computation
concepts. It certainly affects the value of feature extraction, which is used as data input in
the classification process. Based on the overall results above, the selection of a good image
extraction method greatly affects the evaluation results of the classification system. The
results of the comparison of each CNN architecture can be seen in Figure 14.
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Several CNN architectures were tested to well determine the results of the DR clas-
sification. Based on Figure 14, it shows that the highest overall values are obtained by
the ResNet101 architecture. The average accuracy is 92.88%, the sensitivity is 92.88%, and
the specificity is 92.84%. However, in computing time, ResNet101 takes the longest time
compared to other architectures, with an average time of 223.92 s. The difference in accu-
racy values for each architecture is only approximately 4%, and the time difference is only
approximately 10 s. It shows that the CNN architecture has almost the same performance.
However, in the experiment conducted on 4 class data, it shows significant differences
on CNN architectures. ResNet101 is a CNN architecture that has the best performance in
classifying DR. The comparison of the average accuracy based on the kernel function in the
whole experiment is shown in Figure 15.
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This study experimented with various kernels on the DELM model, namely linear,
polynomial, and RBF. The results of Figure 15 show that the polynomial kernel type
achieved the best results in every type of class (2 class and 4 class). In the 4-class experi-
ment, the average evaluation value for each kernel decreased by 11.6% for linear, 1.6% for
polynomial, and 13.8% for RBF. The smallest reduction number was the kernel polynomial.
From all DELM experiments, polynomials can separate the features generated from each
architecture very well. It is because the features obtained from the CNN feature extraction
process have complex features. In contrast, the polynomial is more suitable for classifying
global features than the RBF method. The linear kernel produces a lower accuracy than the
RBF kernel, and the polynomial indicates that the fundus feature data cannot be separated
linearly. Meanwhile, the three kernels have a time difference of 1 to 5 s in computing time.
Therefore, the selection of the DELM kernel type has less effect on the computation time.

The number of data highly affects CDELM performance. This study conducted several
experiments by taking the number of datasets on the Messidor dataset. The first experiment
was conducted on the number of data according to the minimum class in the DRIVE dataset.
The results of the first experiment were obtained from the best results in Table 6, that is
classification using ResNet101 feature extraction with polynomial kernel on DELM. The
second experiment used the same architecture as the first one, but the there were 20,000 data.
The third experiment used a total of 50,000 data. Furthermore in the fourth experiment,
the number of data taken was 60,000. The experiment is limited to 60,000 data collection
because DELM has limitations on large number of data. When the data is very large or
more than 60,000 data, multiplying a large number of square matrices in DELM causes
errors during the training process.

Table 6. CDELM performance based on number of data.

Experiment
Number of

Training
Data

Number of
Testing

Data
Accuracy

(%)
Sensitivity

(%)
Specificity

(%) Duration (s)

Ex 1 16,000 4000 98.27 98.27 98.28 165.84

Ex 2 32,000 8000 98.75 98.75 98.75 233.91

Ex 3 40,000 10,000 99.49 99.49 99.49 2215.39

Ex 4 48,000 12,000 99.58 99.58 99.58 5555.17

The results of the four experiments in Figure 16 show that the more data, the better the
classification system. The value of accuracy increases in line with the higher computational
time required in the classification process. From the comprehensive test, ResNet-101 has a
good performance. Compared to conventional ResNet-101 with 64 batch size, ResNet101-
DELM has a better performance and a shorter training time duration. It is evidenced by
the experiment to compare the performance of ResNet101 and ResNet101-DELM, as shown
in Table 7.
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Table 7. Performance comparison of ResNet101 and ResNet101-DELM.

2 Class

ResNet-101

Dataset Accuracy (%) Sensitivity (%) Specificity (%) Duration (s)

DRIVE 99.93 99.93 99.93 599.00

MESIDOR 92.99 92.99 93.05 594

ResNet-101-DELM

DRIVE 100.00 100.00 100.00 303.15

MESIDOR 100.00 100.00 100.00 293.08

4 Class

ResNet-101

Dataset Accuracy (%) Sensitivity (%) Specificity (%) Duration (s)

DRIVE 100.00 100.00 100.00 1149.00

MESIDOR 91.40 91.40 91.49 1123.00

ResNet-101-DELM

DRIVE 100.00 100.00 100.00 142.72

MESIDOR 98.20 98.20 98.19 166.94

Based on the results of a performance comparison of ResNet101 and ResNet101-DELM
in Table 7, the graphs on comparing the accuracy and duration of training time for 2 class
and 4 class are shown in Figure 17.
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Based on all experiments, ResNet101-DELM produces a higher accuracy than conven-
tional ResNet-101 in which the accuracy values reach almost 100% in several experiments.
Combining CDELM with ResNet101 can increase accuracy by 0.01% on the DRIVE data
and up to 7% on the MESSIDOR data. In addition, the ResNet101-DELM method requires a
much shorter time than conventional ResNet-101, with a time difference of 300 to 1000 s. It
shows that ResNet101-DELM is more optimal than conventional ResNet-101. A comparison
of the results of the evaluation of the fundus image classification system in identifying
diabetic retinopathy from several previous studies is shown in Table 8.
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Table 8. Performance comparison of ResNet101 and ResNet101-DELM.

Method Dataset Accuracy (%) Sensitivity (%) Specificity (%) Duration (s)

5-Layered CNN [46] MESSIDOR 98.15 98.94 97.87 -

Modified Alexnet [12] MESSIDOR 92.35 - 97.45 -

ResNet-101 [47] DRIVE 95.10 79.30 97.40 -

CLAHE+
ResNet-101-DELM DRIVE 100.00 100.00 100.00 142.72

CLAHE+
ResNet-101-DELM MESIDOR 98.20 98.20 98.19 166.94

Based on Table 8, the ResNet101-DELM hybrid performed well in fundus image
classification for diabetic retinopathy identification. Research [46], by customizing five
layers of CNN and segmentation process resulted in an accuracy value of 98.15% on the
MESSIDOR dataset. Research [12] modifies the CNN Alexnet architecture with input
images using only green channels; on MESSIDOR data this study produces an accuracy of
92.35%. Research [47] using the ResNet101 method on the DRIVE dataset only obtained
an accuracy of 95.10%, while in this study using the same method and the addition of
CLAHE an accuracy of 100% was obtained. With the same accuracy, ResNet101-DELM has
a much shorter training time. The sensitivity value shows how the classification system
identifies normal fundus as DR. While specificity identifies the fundus image in a DR Class
(Mild, Moderate, Severe) as a normal class; in medical cases, a classification system with a
higher sensitivity value is more efficient than a specificity value because when a normal
fundus is identified as DR, it will increase the patient’s awareness about DR. Based on a
comparison with several previous studies, CNN-DELM is an image classification method
that has good performance and ashort training time. The good performance of CNN-DELM
in image classification has a weakness, which is in the classification of large amounts of
data, so data partitioning is needed to calculate the dimensions of the square matrix in the
DELM method.

4. Conclusions

In this research, classifications were made with two multi-class experiments: 2 class
(Normal and DR) and 4 class (Normal, Mild, Moderate, and Severe). The initial stage of
the research was cropping the image, CLAHE; resizing according to the CNN architecture
input size; and performing the augmentation process. This study experimented with
various kernels on the DELM model, namely linear, polynomial, and RBF. The results of
Figure 13 show that the polynomial kernel type achieved the best results in every type of
class (2 class and 4 class). In the 4-class experiment, the average evaluation value for each
kernel decreased by 11.6% for linear, 1.6% for polynomial, and 13.8% for RBF. The smallest
reduction number was the kernel polynomial. From all DELM experiments, polynomials
can separate the features generated from each architecture very well. It is because the
features obtained from the CNN feature extraction process have complex features. In
contrast, the polynomial is more suitable for classifying global features than the RBF
method. The linear kernel produces lower accuracy than the RBF kernel, and the polynomial
indicates that the fundus feature data cannot be separated linearly. Meanwhile, the three
kernels have a time difference of 1 to 5 s in computing time. Based on all experiments,
ResNet101-DELM has better accuracy than other CNN architecture. Compared with
conventional ResNet-101, ResNet101-DELM produces a higher accuracy in which the
accuracy values reach almost 100% and a faster training time. So, the hybrid method DELM
is more optimal than conventional CNN. The limitation of the CDELM method is a large
number of data. When the data is very large or the data is more than 60,000, multiplying a
large number of square matrices in DELM causes errors during the training process.
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