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Abstract: Clouds play a vital role in Earth’s water cycle and the energy balance of the climate system;
understanding them and their composition is crucial in comprehending the Earth–atmosphere
system. The dataset “Understanding Clouds from Satellite Images” contains cloud pattern images
downloaded from NASA Worldview, captured by the satellites divided into four classes, labeled Fish,
Flower, Gravel, and Sugar. Semantic segmentation, also known as semantic labeling, is a fundamental
yet complex problem in remote sensing image interpretation of assigning pixel-by-pixel semantic class
labels to a given picture. In this study, we propose a novel approach for the semantic segmentation
of cloud patterns. We began our study with a simple convolutional neural network-based model.
We worked our way up to a complex model consisting of a U-shaped encoder-decoder network,
residual blocks, and an attention mechanism for efficient and accurate semantic segmentation. Being
an architecture of the first of its kind, the model achieved an IoU score of 0.4239 and a Dice coefficient
of 0.5557, both of which are improvements over the previous research conducted in this field.

Keywords: semantic segmentation; encoder-decoder network; satellite images; clouds

1. Introduction

Climate change has been at the top of our minds and the forefront of crucial political
decision making for many years [1,2]. Identifying and grouping clouds enables scientists
to develop more accurate global climate models that could help predict the path of global
warming and how our planet might change over time [3]. Machine learning can assist
this personnel by reducing the time and effort needed to identify the cloud patterns. The
capacity to do so efficiently can lead to more accurate weather forecasting. Semantic seg-
mentation in very high resolution (VHR) aerial photography is becoming more important
for applications such as road extraction, urban planning, and land cover categorization. It
plays a major role in autonomous driving [4,5]. Semantic scene segmentation has witnessed
a tremendous breakthrough over the years [6,7]. Recently, it has become an influential
research domain with deep learning [8]. Despite numerous breakthroughs in recent years,
scene interpretation in complicated real-world circumstances remains a difficult challenge
compared to human performance. Before the development of CNN-based systems, seman-
tic picture segmentation methods relied on hand-crafted features and classical classifiers.
Few researchers have also tried to tackle the problem using the swarm intelligence algo-
rithm [9]. However, because CNNs have demonstrated their efficacy in image classification,
they are also employed as the backbone for feature extraction in semantic segmentation
tasks. Convolutional neural networks lower the input resolution by 32 times to produce a
high-level feature map representing the original image. This minimal feature map is handy
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for image classification when there is just one dominating item in the image. CNNs have
outperformed humans in this image classification task [10]. However, the CNN perfor-
mance in the segmentation job is not much lauded because the spatial information required
to analyze the complex features in the image is lost in small feature maps. Previous method-
ologies involved using FCNs and robust UNet architecture [11] for segmentation, which
has improved over time through experiments with its modules. We propose combining
the effectiveness of EfficientNet [12] as a pre-trained encoder to extract high-level features
along with the residual block decoder in a UNet inspired architecture powered by an
attention mechanism [13] for creating fine segmentation maps to overcome this challenge.
In this study, we present an approach for semantic segmentation of satellite images of
clouds to help in better climate prediction, which could help us in the following ways:

1. Accurate cloud predictions can help in predicting rainfall and climate early, which
will help the farmers to take actions accordingly.

2. Climate preparedness is a thing which can help people to prepare for a calamity
beforehand, and such predictions are even more accurate if the particular cloud types
are known.

Our additional contributions could be listed as follows:

1. We implemented efficient pre-processing and post-processing techniques using Albu-
mentations along with Test Time Augmentation (TTA) to help achieve state-of-the-art
results with limited resources.

2. We were able to achieve the highest accuracy so far by establishing a segmentation model
architecture that combines the advantages of AttentionUnet [14], EfficientUNet [15], and
Residual UNet [16] into a single architecture with a focus on the decoder path to obtain
improved results.

3. We suggest using techniques such as the attention mechanism and leveraging transfer
learning to achieve state-of-the-art results in less time efficiently.

The rest of the paper is structured as follows: the task-related work along with some
of the previous methodologies is discussed in Section 2. Further, Section 3 talks about
the dataset used and the data-processing techniques applied during training and testing,
while the modules used in our architecture are listed in Section 4. The proposed model
architecture is explained in Section 5. The results obtained are presented in Section 6, while
the paper is concluded with a discussion on future work in Section 7.

2. Related Work

The proposed model’s prime module is based on the encoder–decoder architecture.
This architecture was chosen because the pictures have specific cloud patterns and context
needed to be taken into consideration as there is a high probability of similar pattern of
clouds being grouped together. Standard encoder-decoder architectures such as UNet
are well-trained, proven to be efficient for such tasks, and are essential for extracting the
underlying context-rich information from the images.

2.1. Standard Encoder–Decoder Network Architecture (UNet)

Semantic segmentation can be easily performed using the simplest encoder–decoder
network– UNet, a modification of fully connected networks (FCNs) [17]. Such a network
consists of a contracting path and an expanding path. These networks use shortcuts
or skip connections between the encoder and the decoder. The contracting course is
called the encoder, a typical CNN. It is used for extracting the features and progressively
down-sampling the original images to obtain their feature maps. This “encoding” can be
performed by training the network from scratch or using pre-trained state-of-the-art CNNs,
such as ResNet, InceptionResNetV2, MobileNet, or EfficientNet [18,19]. The decoder, an
expanding path, concatenates the features coming through the skip connections from
the encoder part and sampling the feature map to bring the image back to the original
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dimensions and output the segmented image. These skip connections provide context to
the decoder, so the spatial information from the encoder remains intact.

2.2. Previous Methodologies

Although there were approaches in the past that dealt with image segmentation
and classification [20], shallow network architectures were used for the task. It was after
the introduction of CNNs that the results were significantly reflected. Evolving from
fully connected networks to encoder-decoder architectures, such as UNet, was a major
architectural breakthrough in this field, and since then, it continues to be a domain open
to further enhancements. The segmentation task proved out to be very helpful in the
medical field; the UNet architecture was first implemented as an application in this field.
However, these plain networks take up much time for training compared to the CNNs.
Hence, vanilla UNets trained on major datasets, such as Imagenet, gained popularity as
pre-trained models that are being used as encoders. The pre-trained models save time
and resources and leverage transfer learning, improving the performance of other models
instead of training them from scratch.

Table 1 highlights some of the major approaches that have been taken by the re-
searchers and were majorly referred by us to arrive at our novel implementation of the idea.

Table 1. Previous Methodologies.

Title Remark

Fully Convolutional Networks for Se-
mantic Segmentation [17]

The first approach to introduce the family of CNNs in the field of semantic segmentation. However,
the loss of spatial features was an issue besides considerable training time.

U-Net: Convolutional Networks for
Biomedical Image Segmentation [11]

Novel encoder–decoder architecture in image segmentation, usually performs better with pre-
trained encoders. Feature extraction is the major work performed by this architecture.

Residual U-Net for Retinal Vessel Seg-
mentation [16]

UNet with residual blocks improved results significantly and increased the convergence without
tampering with the spatial information.

Attention U-Net: Learning Where to
Look for the Pancreas [14]

Attention mechanisms have always helped in learning the patterns that vary in shape and size.
The mechanism eliminates the need for localizing the objects and allows the model learn by itself
as to which parts to focus on.

Eff-UNet: A Novel Architecture for Se-
mantic Segmentation in Unstructured
Environment [15]

This architecture explores the advantage of EfficientNet, using the method of compound scaling
combined with UNet, works as a better feature extractor.

3. Dataset and Data Processing
3.1. Dataset

The dataset “Understanding Clouds from Satellite Images” contains images down-
loaded from NASA Worldview. The dataset contains 22,184 images belonging to 4 classes
with 5546 images each. The images are classified into these four classes with label names:
Fish, Flower, Gravel, and Sugar. One example of each pattern is shown in Figure 1. Three
locations were chosen, covering 21° longitude and 14° latitude. The true-color photographs
were captured by TERRA and AQUA, two polar-orbiting satellites that pass over the exact
location once a day. Because the imager (MODIS) onboard these satellites has a modest foot-
print, an image from two orbits was stitched together. The area that two subsequent orbits
did not cover is indicated in black. The labels were designed as part of a crowd-sourcing
project [21] at Hamburg’s Max-Planck-Institute for Meteorology and Paris’s Laboratoire
de Météorologie Dynamique. After eliminating any black-band regions from the areas,
ground truth was found by adding the areas designated for that picture. Even the human
labeling process contained variations in masks because it is a daunting task to recognize
cloud patterns given the area that they spread over. The union of all labeled covers was
considered for building the dataset. In the case of numerous non-contiguous sections of
the same formation in a picture, the segmented masks for each cloud formation label were
encoded into a single row. The ground truth masks were provided in an encoded RLE
format as a separate file. An image containing ground truth masks is shown in Figure 2.
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Sugar pattern: dusting of wonderful clouds, little evidence of self-organization. Flower
pattern: large-scale stratiform clouds feature bouquets appearing well-separated from each
other. Fish pattern: large-scale skeletal networks of clouds separated from other cloud
forms. Gravel pattern: meso-beta lines or arcs defining randomly interacting cells with
intermediate granularity.

Figure 1. Cloud pattern dataset containing patterns of Sugar (a), Flower (b), Fish (c) and Gravel (d).

3.2. Pre-Processing

The segmentation of objects containing repeated patterns is a complex task, and in
such cases, the more the data, the better is the outcome. In the dataset, we have 5516 images
belonging to each class, which is a fairly low amount of images; hence, as a part of
preprocessing, we applied augmentation to the dataset. Memory is always a constraint
for augmentation using various techniques as these are high-resolution images. This is
why we opted for Albumentations [22], a real-time augmentation library that generates
high-quality transformed images. For this task, the pipeline we used consisted of horizontal
and vertical shifts, each with a probability of applying the transform of 0.5, followed by
a geometric transform using ShiftScaleRotate. Training and validation data were split
into batches of size 8, and the input images of size 1400 × 2100 pixels were reshaped to
320 × 480 pixels to make them easier to deal with. The ground truth segmentation masks
were provided along with the data in run-length-encoding (RLE) format, which is an
efficient encoding style for storing the location of covers in compressed form. An extra step
in preprocessing involved the conversion of these RLEs to equivalent masks to prepare
masked images for training as shown in Figure 2.

Post-Processing

Post-processing is a crucial step in wrapping the model. It is equally important to get
rid of errors generated during prediction in the previous stage of model building. This step
ensures that all the small masks below a minimum size are removed, and a certain threshold
is set to decide the segmentation at a pixel level. We even observed that using test time
augmentation (TTA) improves the score significantly. TTA is a technique that augments the
images at test time and predicts the segmentation map on all those augmented images. The
predictions are then aggregated and averaged to obtain the best result [7,23].
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Figure 2. Image of masked multi-label cloud patterns.

4. Modules Used

The proposed architecture consists of a U-shaped encoder-decoder network. The
blocks we used are as follows:

1. EfficientNet encoder;
2. Residual block decoder;
3. Attention mechanism.

4.1. EfficientNet

Convolutional neural networks perform better when scaled in either width, depth,
or resolution. CNNs such as ResNet34 can be scaled to ResNet101 by adding more layers
to the network. However, this needs extra resources to afford this kind of scaling. If not
optimally maintained, the ratio of scaling in terms of network width, depth, and resolution
might not give the best results or could even become computationally expensive. The
method to scale up is also not concrete yet. To tackle this issue, a new family of models
was invented called EfficientNets. These are 8.4 times smaller and 6.1 times faster than
the existing ConvNets [15]. Other state-of-the-art CNNs scale the network using arbitrary
constants through trial and error or grid search, whereas EfficientNets use the method of
compound scaling [24] that works much more effectively since the scaling coefficients are
mathematically fixed. For example, suppose we want to use 2N times more computational
resources. In that case, we can increase the network depth by αN , width by βN , and image
size by γN , where α, β, γ are constant coefficients determined by a small grid search on the
original miniature model. Based on these coefficients, these networks have eight variants
ranging from B0 to B7. Out of these, we found the use of EfficientNetB0 to be the best due
to its simplistic nature. We used EfficientNetB0 as the encoder using transfer learning that
was pre-trained on the ImageNet dataset. Other variants tend to take up more training
time, delivering the same or poorer results. These networks perform very well with transfer
learning, making it easier for us to incorporate them into the encoder.
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4.2. Residual Blocks

Intense convolutional neural networks require much time for training and heavy
resources for computing. This was solved efficiently by using residual blocks that use skip
connections, thereby skipping the layers [25]. A residual block contains two connections,
one that undergoes multiple convolutions, batch normalization and other linear functions,
and another that skips over all these functions. After each block, the outputs of both
connections are added. This allows the network to learn quickly and more effectively.
Figure 3 shows the residual block used in our model with input x undergoing series of
operations denoted by F(x).

Figure 3. Residual block.

4.3. Attention Mechanism

In aerial satellite imagery, you can expect irrelevant information, including pictures
of the satellite parts or pictures containing just a plain blue sky. A solution is to apply
multiple object localization models followed by segmentation to focus on essential elements.
However, this could be a heavy task and can be eliminated by using attention gates
implemented in association with residual blocks [26]. The computation is briefly explained
further. The attention block has two inputs, the gating signal (g) and input x from the skip
connection, see Figure 4. The gating signal (g) has better feature representation, as it is from
a deeper part of the network, whereas the input x is rich in spatial information since it is
from the earlier layers of the network. The gating signal has half the number of features
as that of x. Hence, we need to bring them back to the same shape. To do so, we add
convolutional blocks to each. Let us call the convolutional block added to the gating signal



Big Data Cogn. Comput. 2022, 6, 150 7 of 12

(φg). This is a 1 × 1 Conv2D layer with a stride of (1, 1) kernel size of 1 × 1. This will make
the number of features in g equal to that in x. Similarly, we add a 1 × 1 convolution block θx
with a stride of (2, 2) so that all the dimensions in both blocks are equal. Now the outputs
from φg and θx are concatenated. This allows the model to extract only the relevant features
because the aligned weights become higher than the unaligned weights. After joining, they
undergo the ReLU activation function followed by another convolutional block (ψ) having
the number of filters equal to 1. This is the weight obtained by the mechanism so far. Since
this value can range from zero to infinity, we need to bring them back between zero and
one. To achieve this, we applied a sigmoid activation function. The obtained result was
then up-sampled back to the original size of input x to multiply it with x in an element-wise
fashion. This final vector is the scaled version based on feature relevance.

Figure 4. Attention mechanism.

5. Proposed Architecture
5.1. Encoder-Decoder Network

For the downsampling path (left half), as shown in Figure 5, different pre-trained
encoders such as ResNet34, InceptionResNetV2, MobileNet, and EfficientNets were tried us-
ing Transfer learning. Out of these, EfficientNetB0 performed pretty well and was selected
as the best. EfficientNetB0-B3 took around 6 h to train for 30 epochs whereas the higher
variants of EfficientNets (B4 to B7) took more than 8 h to train, yet did not improve the ac-
curacy. This downsampling block consisted of EfficientNet output followed by LeakyReLU,
having an alpha of 0.1, and then a 2 × 2 max pooling operation. We observed that the
shallow layers require a lower dropout rate, as it contains more contextual information,
and as we go deeper, the dropout rate should be increased to prevent overfitting. Hence, a
dropout rate of 0.1 was fixed for the first block and was increased to 0.25 for the deeper
blocks in the network. Different dropout rates were experimented with, and these values
were finally chosen as optimal rates. The Dice coefficient was noted for different dropout
rates for the first block as shown in Table 2. The dropout rates mentioned in Table 2 are only
for the first block and for deeper layers, it was set to 0.25 after similar experimentation. On
the other hand, in the up-sampling path (right half), the use of residual blocks along with
the attention mechanism is suggested. The output from the previous block of the decoder is
up-sampled and kept aside for concatenation with the output from the attention block later.
This previous block output is provided as a gating signal and the skip connection from
the encoder as inputs to the attention block. In the final upsampling block, the original
dimensions are recovered, and a segmented map for four classes with a sigmoid activation
function is produced.

Table 2. First block dropout and corresponding Dice coefficient score (these scores were before the
post-processing techniques).

Dropout 0.05 0.1 0.15 0.2

Dice coefficient 0.509 0.518 0.503 0.496
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Figure 5. Proposed model architecture.

5.2. Training and Testing

1. Custom data generators were created for training and validation with a batch size of
8 and the image input size of 320 × 480. This batch size and input size was chosen in
particular due to the CPU memory constraints.

2. During training, two different loss functions were implemented: binary cross-entropy
(BCE) and Dice loss [27,28].

3. A combination(sum) of these was used, which gives clear boundaries and works
much better than a single loss function individually.

4. The model was trained for 30 epochs. As a pre-trained encoder was used, the model
tended to overfit beyond 30 epochs, thereby showing no significant improvement in
the scores.

5.2.1. Dice Loss

Dice loss gives us an idea of how close the predicted map is to the ground truth. It is
calculated as

DL(y, p) = 1 − [2 × p × y] + 1
y + p + 1

(1)

where y is the actual value p is the predicted value.
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5.2.2. Binary Cross-Entropy

BCE(y, p) = −(y log(p) + (1 − y) log(1 − p)) (2)

where y is the actual value, and p is the predicted value.

5.2.3. Optimizer

NAdam optimizer with a learning rate of 0.002, an improvement of Adam, was applied
for faster convergence and memory efficiency [29].

6. Results
6.1. Evaluation Metrics

IoU, F1 score, Dice coefficient, and Dice loss (for validation) are various metrics used
for the model evaluation. The Dice coefficient differs from the F1 score value for multiclass
segmentation of images. Hence, both metrics must be evaluated [30].

6.1.1. Intersection-Over-Union (IoU) [31]

IoU (also known as Jaccard index) is a commonly used metric to measure the overlap
between two masks, especially for segmentation. IoU = Areao f overlap/Areao f union The
IoU score is close to 1 if the predicted masks match the ground truths and approach 0 with
a decrease in the overlap.

6.1.2. F1 Score

By calculating the harmonic mean of a classifier’s accuracy and recall, the F1-score
integrates both into a single statistic. The F1Score of a classification model is calculated
as follows:

F1Score =
2 × P × R

P + R
(3)

P = The precision of the classification model R = The recall of the classification model.

6.1.3. Dice Coefficient

This is like precision, as it evaluates the score and penalizes for wrong pixel classifica-
tion. It is given by

DC = 2 × Area o f overlap
Total number o f pixels in (A + B)

(4)

where A and B are the predicted mask and ground truth, respectively. The output compari-
son of the masks is shown in Figure 6 below.

6.2. Output Comparison

The most widely used SOTA model for segmentation tasks is the UNet with Resnet34
as a pre-trained encoder (ResUNet). The proposed model outperformed in the four metrics,
as shown in Table 3, and proved an improvement of more than 2% in each.

Table 3. Results.

Model Used Validation Loss IoU Dice Coefficient F1 Score

ResUNet 0.7639 0.4078 0.5437 0.5553

EfficientNet encoder 0.7580 0.4227 0.5537 0.5733

Efficient net encoder + residual blocks 0.7535 0.4147 0.5504 0.5629

Our Model 0.7424 0.4239 0.5557 0.5735

Improvement w.r.t. ResUNet −2.81% +3.95% +2.2% +3.28%
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(a) Ground truth masks of the image

(b) Model predictions

(c) Ground truth masks of the image

(d) Model predictions

(e) Ground truth masks of the image

(f) Model predictions

Figure 6. Results of 3 images with their ground truths and predicted masks respectively.

7. Conclusions

Deep learning techniques have their own set of pros and cons [32,33]. By using
various deep learning techniques in ensemble architecture, we produced a method to
recognize complex cloud patterns. The proposed model also outperforms the present
state-of-the-art techniques used for cloud pattern recognition, thus enhancing accuracy.
After applying various preprocessing and post-processing techniques, the UNet-based
encoder–decoder architecture reached a F1 score of 0.5735. This area has immense potential
for further research, and our approach tends to serve as a benchmark for future research.
Our future work will focus on improving the SOTA techniques’ ensemble by incorporating
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the advantages of each. Further, we believe that the addition of [34] atrous spatial pyramid
pooling (ASPP) modules could help upgrade the existing architecture.
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