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Abstract: The term “big data” refers to the vast amount of structured and unstructured data generated
by businesses, organizations, and individuals on a daily basis. The rapid growth of big data has
led to the development of new technologies and techniques for storing, processing, and analyzing
these data in order to extract valuable information. This study examines some of these technologies,
compares their pros and cons, and provides solutions for handling specific types of reporting using
big data tools. In addition, this paper discusses some of the challenges associated with big data and
suggests approaches that could be used to manage and analyze these data. The findings demonstrate
the benefits of efficiently managing the datasets and choosing the appropriate tools, as well as the
efficiency of the proposed solution with hands-on examples.
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1. Introduction

It is increasingly common to hear data being referred to as the new oil, and this is an
appropriate analogy. As with oil in the 18th century, society has uncovered an immensely,
valuable asset that was previously untapped. In the same way as with oil, those who
understand the importance of this asset and who can learn to extract, process and utilize it
efficiently can reap significant rewards. Similar to oil, large amounts of data are not only
hard to extract, store, and process, but also so voluminous that they overwhelm current
technologies and challenge us to create new techniques for handling them. The ability
to generate detailed and powerful metrics, facts, and correlations that can improve our
lives and businesses has made big data one of the most important technologies of our
time. Sensors, cameras, events and loggers, all produce data and rely on big-data-capable
technologies for transforming their captured data into meaningful data. Even though big
data is no longer a new concept and has been around for a while, it remains a challenging
dynamic filed for further research. Although the Internet started quite slowly, with a
monthly traffic of 9 GB in 1993, it grew to 150 GB in 1995 [1] and an impressive 79.46 million
exabytes per month in 2022 [2].

A critical aspect of managing big data is the design and optimization of big data
pipelines, that is, the entirety of processes and systems used to acquire, transform and
transport data from various sources to a destination for storage or analysis. Big data
pipelines play a crucial role in the ability of organizations to leverage the value of their
data, while their efficiency and effectiveness can have a significant impact on the overall
performance and cost of big data analytics.

Even when talking about big data, it does not mean that systems should consume a lot
of time or resources to complete their given tasks. Managing and dealing with large and
growing datasets has been a challenge over the last few decades. In most cases, bottlenecks
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can be mitigated by improving hardware. Although the addition of resources seems to be
the natural solution, it requires greater investment. Furthermore, more hardware does not
guarantee a long-term solution for better performance, as the amount and structure of the
data may eventually overwhelm the system.

We are all too familiar with Moor’s Law, which states that the number of transistors
in a microchip should double every 2 years. This law has been beneficial to the big data
industry, as it has provided the processing power required to keep up with growing
datasets. However, we are now experiencing a fundamental shift in the paradigm: data
volumes are increasing at an unprecedented rate, while CPU speeds are plateauing. In 2016,
Intel announced that it was slowing the pace for rolling out new technologies for chip
production [3]. In recent years, instead of doubling their clock speed every 18–24 months,
the manufacturers started to build multi-core processors [4]. Even if Moor’s Law is no
longer valid in its original sense, companies are still able to achieve excellent performance
at a slower pace, while keeping pace with Moor’s Law, as stated by Intel [5,6]. Because
hardware is expensive and is currently experiencing a slowdown in progress, creating and
improving the design of our data pipelines is, consequently, crucial.

The focus of this research is the optimization of big data pipelines in the context of on-
demand reporting and the examination of various approaches, technologies and techniques
for improving the efficiency and effectiveness of these big data systems. This paper will
focus on the various challenges and considerations that should be taken into account when
designing and optimizing big data pipelines and discuss the trade-offs associated with
different approaches, by providing actual numerical results generated through several tests.

This paper is organized as follows. Section 2 establishes the context underlying
this study and Section 3 presents the current state of knowledge within the research
field. In Section 4, the main research questions for this study are formulated, and in
Section 5, the prerequisites, model description, and experimental setups and results are
presented. In Section 7, the major statistical findings, their interpretation, and future works
are discussed.

2. Background

Working with big data involves dealing with a range of challenges and difficulties, including:

• Data storage: Storing and maintaining large amounts of data can be expensive since
it involves hardware, software, maintenance, and data replications for mitigating
possible faults. Compression algorithms such as zstd have great compression rates
that can help to save storage space [7].

• Data processing: Big data requires specialized tools and techniques, such as distributed
processing techniques for handling the volumes in a timely manner.

• Data integration: Datasets are usually created by merging different events and records.
As they come from various sources, it is quite difficult to analyze them. Furthermore,
they generally contain many inconsistencies that need to be normalized along the
pipeline. This requires data cleaning, transformation and normalization techniques
that can guarantee the consistency of the dataset format.

• Query processing: Datasets are queried using a variety of approaches with different types
of filters and parameters, one of which is more computationally heavy than others.

• The “3V’s” (volume, velocity, variety) referred to, named by Laney in his article “3-D
Data Management: Controlling data volume, velocity, and variety” [8], are crucial
in big data workflows. The performance of each big data application is determined
by the volume of data the job needs to handle, the velocity (the speed) of traveling
from point A to point B, and from a server/node to another, as well as the variety,
precision, type, and the structure of the data [9]. Over time, two more Vs (value and
veracity) were added, which helped to strengthen the big data sector by providing
more effective ways of characterizing big data. The fourth V, veracity, refers to the
accuracy, quality, and trust level of the data: missing or incomplete pieces may not be
able to provide valuable insights. The final V refers to value, that is, the impact that big
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data can have on organizations. The newer “5V’s” model should be taken into account
by any academic or industrial organization, (for more details about the model, see [10]).
Even more “V’s” can be added to the model for better big data solutions. For instance,
in [11], the authors provide some valuable insights into the the “10Vs” of big data.

• Data security and privacy are other important aspects of big data [9], especially in
recent years as both consumers and companies are increasingly concerned about
the privacy and security of their data. In addition to the obvious need of securing
and obfuscating data, new regulations require companies to store sensitive user
information as close to their location as possible. For example, European companies
are required by law to store information on European servers and not US servers.
This presents a challenge for companies as they must change their storage methods,
which can be difficult and expensive due to the high networking costs associated with
transferring large amounts of data between physical locations, as opposed to within
the same location with different clusters.

• Infrastructure faults are another sensitive topic [9]. Hardware systems can be reliable
only for a certain amount of time and they will have to be upgraded if they no longer
perform at the desired level or they fail and need to be replaced. In addition to the
incapacity to deliver their tasks in that maintenance period, companies cannot afford
to permanently lose that data in case of failure. Because of this, companies usually
rely on two or three more replication clusters that can take over traffic in case the main
cluster fails. Although this strategy can help with load distribution, it increases both
maintenance and running costs, since all the data must be copied into two or three
more clusters.

For a better visibility, Table 1 contains a summary of the discussed challenges, contexts
and possible solutions.

Table 1. Overview of the challenges, contexts and solutions.

Challenges and Problems Context and Details Solution

Data storage storing and maintaining large amounts of data can be expensive sanitize the final datasets, focus on the veracity and value,
use compression algorithms

Data processing big data requires powerful, specialized tools and techniques use distributed systems for handling the datasets, store them in
ways that can improve the performances

Data integration datasets are usually composed from events coming from different sources data cleaning, transformation and normalization techniques

Query processing datasets can be queried in multiple ways, some of
them being more computational intensive than others

design the systems in a way that can handle various requests,
techniques such as caching or partition pruning might be used to ease queries

Data security and privacy users and companies are more and more interested in protecting their data,
governments are also imposing rigorous standards obfuscate data, drop sensitive columns, anonymize the datasets

Infrastructure faults hardware has a limited lifetime and the datasets should be able to
survive to different hazards replication servers in different physical locations

Scalability the solution should be able to scale, to be extensible and ready for
new challenges use generic solutions, do not rely on hardware tuning

This is just a minor part of the whole big data pipeline and the challenges associated
with them, but because the field is so big, this paper aims to focus on just a part of them;
more precisely, it will highlight the first five throughout this article.

Scalability is one of the keys in this domain: in Challenges and Opportunities with Big
Data [4], the authors reiterate the importance of the software solutions able to scale on
their own, without having to rely on hardware upgrades as they are costly and do not
guarantee a long term solution, since a deceleration in the CPU industry may also be
observed. Another issue that they are raising is the growing trend of moving towards
cloud computing, a fact that they accurately predicted. The way to go for the majority
of businesses is the cloud computing solution, since this is a great way to delegate and
abstract the hardware level. As always, this comes with a trade-off since the developers
can no longer configure the infrastructure freely and broadly just for their needs, as they
are now using allocated processing power, without having much to say about the inner
workings of the operating system or about the underlying hardware, which eventually
prevents them from having specialized hardware for some use cases. In the same research,
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they also discuss timeliness—the fact that the job should be done in a timely manner since
the results of it might be critical for the business. The time spent to complete the task is
directly proportional with the amount of data that the task will have to deal with. As also
stated in the above mentioned research, designing a system that can effectively deal with
big datasets is likely to have a good time performance, while also being part of the scope
of the current research. Because each request will usually have its own filtering criteria,
having to process all the data for obtaining only a small fraction of them seems pretty
wasteful, so some type of indexing should be done prior to this.

Another challenge that is discussed in the same research is the system architecture
challenge: the solution should be generic and applicable to a large variety of domains
and use cases since redesigning a brand new system for each particular use case is very
expensive. The big picture of the solution should remain the same in order to be flexible,
and save time and money, this also being a top priority for the solution that the current
paper is proposing.

In Big Data Challenges posted in Journal of Computer Engineering and Information
Technology [12], similar challenges and problems can be seen. The volume of the data
is dramatically increasing, becoming normal to have petabytes of data, but the current
infrastructures and systems are not able to handle the amounts of data that the users are
producing. There are also mentions of an obvious growth in ad hoc analysis and report
requests, this also being an aspect that this paper will focus on. In the before-mentioned
report is presented the challenge of data integration and aggregation, with it being mentioned
that the efficiency of the data analysis is highly coupled with the storage schema since the
same dataset can be stored in various modes, each design being better for one or another
domain or use case. On the following pages, the research will also demonstrate how
big of a difference proper workflow optimizations can provide, enabling a tremendous
performance boost.

Despite numerous issues and challenges, the big data industry is blooming and pro-
vides valuable solutions and answers to multiple real-life problems. One of the many
remarkable situations where big data had a real impact on the world was during the
COVID-19 pandemic, when multiple research papers brought valuable information. Re-
search such as [11] or review papers such as [13] are clear evidence of how useful and
flexible big data solutions are.

Since big data is a challenging, important, and a rewarding domain in modern society,
there are various research papers dedicated to this industry, some of them also touching on
the same or closely similar challenges. The main purpose of this research is to highlight and
exemplify a palpable solution that can be applied to a large variety of reports, especially
for on-demand analyses that are time-sensitive.

3. Use Cases and State of the Art

Big data are classically used for the analysis layer of the applications, but at the
same time, it is clear that there are circumstances where big data are needed even for the
presentation layer. The fact that in the following research paper it will be demonstrated that
big data can seamlessly be used for these cases is a great example of the value that big data
can bring and the potential for bigger adoption. There are two main types of reporting:

• Static reporting—totally automated, usually developed by an analyst. These types
of reports have a well-defined structure and content, usually containing general or
high-level information since they are distributed to a large audience. Because of their
nature, users interested in having in-depth analysis of specific aspects might have to
compose their own manually made reports, composed from different sources over a
large period of time in order to provide useful insight for their use cases. This can
cause fragmentation and requires hours of time sifting through data. One of the most
common types of static reports is the daily report.

• Ad hoc reporting (dynamic)—produced once and run by the user, has the goal of
providing insights about a specific case, is more visual and oriented to that specific
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user, being dedicated to a smaller audience. On-demand reporting is a mandatory
tool for many industries, satisfying the need for self-service business intelligence [14].
This type of reporting is great since offers high customizability and ease of use,
reduces IT workloads because of the self-service nature, and also saves time and
money since technical persons are no longer required to create custom queries for
generating reports.

As previously mentioned, this paper will focus on designing and optimizing ad
hoc reports/analyses in the context of big data. These types of reports are usually fully
configurable by the end users: they can submit them anytime, as frequently as needed,
either on-demand by simply triggering the report submission or at a predefined scheduled
time. Because these types of reports are user-centric, they will have a large variety of filters
and options when generating the reports, so the designed solution should be able to remain
flexible and perform in a timely and cheap manner regardless of the user input.

For these types of reports, there is a well-known solution, which is capable of providing
powerful tools in the context of BI use cases [15]: Apache Druid. When starting with
Druid, which seems to be the most obvious choice, as it offers the possibility of querying
datasets within seconds, there is a number of constraints that should be highlighted, besides
the considerable cost for big datasets. Druid is recommended where there is a need to
guarantee fast synchronous responses, meaning that usually the user interface connects
directly to Druid and yields the results of the query in a matter of seconds.Druid is all
about performance, so if there is no need for sub-second query latencies, it is unlikely that
Druid is a good fit because this performance comes at a cost: depending on the dataset
size and nature, running Druid servers can cost thousands of dollars per hour [16] when
talking about datasets with tens of terabytes. Druid is that fast because it uses indexing for
making group by operations really fast, so another thing to keep in mind is that Druid is
best at group by operations. Druid is recommended when counting very high cardinality
dimensions, such as new customers on a given date range, because many details are
omitted, but will not do the best job of listing all the expenses of a particular customer,
since the need to find the customer ID comes first [17], adding extra overhead. It is worth
mentioning that in the context of a report, most likely multiple Druid queries have to run
in order to gather all the metrics and dimensions needed for constructing the whole report.
This will add time to the final result, involving good parallelism capabilities on the given
Druid servers. It is important to keep in mind that the promise of low latency and low cost
is possible just for some of the queries, while in the case of detailed breakdowns, there may
be possible problems with the costs and time invested. For some really big datasets, Druid
can have quite significant troubles with ingesting the data and reaching the point where
it will not be able to ingest a daily dataset in 24 h, which will make the report erroneous
(since users will not expect the report to miss data) and even more expensive because more
Druid servers will have to further be added.

As previously discussed, Apache Druid is a great and trusted solution for some use
cases, but there is a need to rigorously define the needs and expectations of the product in
order to make the right decision. As stated before, there are multiple cases when Druid will
not perform at its best, because of the costs, nature of the dataset or the overall business
needs. In case of datasets that have an overwhelming Druid infrastructure, BI reporting or
queries that are too expensive to generate or simply not needed in “instant” sub-second
response times, this article is proposing an asynchronous solution for generating the report
that is relying on MapReduce operation in the background. On top of being able to have
more detailed, complex and in-depth analysis, the solution will achieve better overall costs,
by leveraging the more powerful MapReduce framework in an efficient way. The paper will
also focus on how to increase the performance of the MapReduce, which involves further
cost reductions, by tackling big data challenges such as unbalanced datasets, data skewness,
data partitioning and partitioning pruning, also comparing the proposed solution with
other papers.
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4. Problem Formulation and Research Questions

As earlier discussed, there are multiple scenarios when Apache Druid will not perform
at its best, both from the cost and performance standpoint or the business domains will
simply not benefit from Druid operation and performance. For those cases where there is a
need to handle terabytes of data on-demand and the business needs do not require it to be
real-time, meaning that custom reports are not needed in seconds, one alternative is to use
the MapReduce framework, namely a way to handle big datasets using parallel, distributed
along one or even multiple clusters. Companies can benefit from using this solution as it is
highly customizable and allows good performance at a very low cost, with a great response
time (usually minutes) when used correctly. This research study will focus on discussing
several ways to optimize MapReduce jobs, making them fast and cheap.

The current paper will focus in the following research and software quality questions
and considerations:

RQ1: When should MapReduce be considered instead of Druid?

A1: It really depends on the costs, volume and velocity of the data, but overall Druid
is better for small amounts of data, usually under tens of terabytes scale, were it
can compute the query results in seconds, without a significant cost. MapReduce
starts to shine where Druid starts to struggle. As will be shown later, executing
MapReduce operations on small datasets is not recommended since the overhead
of the distributed system is too high, coordinating the nodes, starting the workers
and so on, taking more time than the actual job.

RQ2: Storage vs. processing power, which one is better for achieving performance in MapReduce?

A2: If the focus is on faster executions, no matter the costs, the only way of reducing
the time is by reducing the processing. Processing reduction can be achieved by
storing the data in a format that will favor easier loading and filtering, even if that
means data duplication and increased storage costs. Taking both time and cost
into account, the frequency of the report should be also considered. Depending
on the dataset, starting from 10–20 daily reports can be cheaper to have data
duplication rather than spending more on brute forcing the dataset for producing
tens of reports.

RQ3: What are the benefits of pre-processing/partitioning the dataset? Is it always
worth it?

A3: Re-distributing the dataset based on favorable criteria can improve the overall
performances since the reporting job will no longer have to load the entire dataset.
On a raw dataset, creating a report for a specific user will imply loading all the
data of all the users and throw away the ones that are not matching the user
ID. If the dataset was pre-processed and stored in user-based folders, there’s no
need for loading the entire dataset, saving a lot of processing power and time.
Re-organizing the dataset is worth it only after a certain frequency of the report
requests, when the processing power wasted on brute force filtering is higher
than the processing power that will be used a single time for re-partitioning the
dataset in a favorable way.

RQ4: How good is the proposed solution as compared with other baselines?

A4: The performances are strongly tight to the characteristics of the dataset. In the
following examples, compared to a brute force approach, a performance increase
of four digits can be seen, both in terms of costs and time spent. This is possible
because compared to the baseline solution, creating reports in a dataset structured
for partition pruning takes significantly less processing power and time.

RQ5: From the business point of view, what is the impact for going with this solution?

A5: Going for a pre-processed dataset obviously means more moving parts on the
end product, but it is totally worth it in the above mentioned conditions since in
the end this will result in faster jobs and lower costs. On top of the way faster
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reporting execution time, this also saves a lot of processing power that can be
used in other places, where it is much more needed, creating more revenue in
the end. Even if the design will require more time to be built, the return of the
investment will be really fast, especially when talking about big datasets with
tens of terabytes of data.

RQ6: What are the benefits and limitations of the solution proposed in the current study
for handling on-demand user-centric reports?

A6: Applying the proposed solution will significantly reduce the costs and processing
power needed to generate dynamic reports. It can mostly be applied for user-
centric reports (or diverse similar cases) and the proposed solution will be worth
it only after it passes a certain daily frequency threshold of requested reports.
That is why the processing power used to partition the data should be less than
the total processing power used to produce the reports in a brute force approach.

5. Materials and Methods

The following section has the scope of discussing the use cases where the proposed
solution fits, but also to present the used methodologies and technologies.

5.1. Prerequisites

First of all, there’s a need to talk about the technologies and the infrastructure used for
the upcoming solution. Even if the solution to be presented is a generic one and anyone
should be able to implement it using different technologies, it is better to have the full
picture of the process and define everything that will be used throughout it. As previously
mentioned, big data refers to an amount of data that is just too big to be handled by a normal
technology stack or a single server. A common system will not be capable to process and
store tens of terabytes of data, so for managing this Hadoop will be used, which is by far the
most used solution for managing distributed processes and datasets, along multiple clusters
of computers. A detailed perspective about Hadoop and its capabilities can be found in
the review paper A comprehensive view of Hadoop research—A systematic literature review [18].
The beauty of Hadoop is that the framework does the heavy lifting of managing multiple
processes and clusters, abstracting the process, and helping the developers interact with
several clusters using usual programming models, without worrying about parallelism or
possible failures of some of the clusters.

From the same Hadoop, we will use its MapReduce framework, which will help develop
solutions that are able to process terabytes of data in parallel, along multiple clusters, also
taking into consideration the location of the data for reducing communication overhead
between multiple nodes. Hadoop allows us to write the MapReduce action by using different
technologies such as Java, Python, Apache Pig, Hive, or Spark, while it is also possible to
create Direct Acyclic Graphs (DAGs) of actions, each of them in whichever technology
is used. The following examples will be written using Java and Spark, but as previously
mentioned, these are not the only options. For storing, reading, and writing the results,
either Hadoop Distributed File System (HDFS) or other storage providers such as Amazon
S3 can be used.

The following examples will rely on Spark, a well-known technology of the big data
sector. It is an open-source technology that is capable of processing big amounts of data in a
fast and effortless manner [19]. Spark runs in-memory on clusters and is based on Resilient
Distributed Datasets (RDDs), and more details about its capabilities can be found in the
following review paper [11]. Other technology that is worth mentioning in the current
context is Apache Hive, an open source, distributed and fault-tolerant data warehouse that
can also provide analytic capabilities. A deep dive into Hive functionalities can be found in
the following article [20]. Overall, Spark better fits the needs of dynamic reporting since it
is naturally designed to be a unified analytics engine for large-scale data processing, being
more flexible to diverse use cases as it can support extensive run time operations such as
User Defined Functions (UDFs) in a faster manner. Hive by definition is a data warehouse,
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meaning that is a perfect fit for use cases where the reports are simply selecting columns
from the stored tables, without having to perform additional processing for achieving the
desired results. For achieving this type of “simple” selection, another engine will have to
pre-process and store them in a convenient format for easing the Hive’s analysis.

5.2. Model Description

As mentioned before, reports will have to be generated based on a large dataset, with
tens of terabytes of data having to be loaded for generating it. Every user wants only the
information that is related to them and their activity, also having the possibility to choose
whatever time frames and filters they want. Allowing the user this much flexibility, being
able to request multiple variations of the report, can result in many created MapReduce jobs,
which are obviously expensive and can also take a considerable amount of time, depending
on the total dataset size. The most natural solution would therefore be to simply load the
dataset, filter each row, and collect only those that are appropriate for the user sent filter,
and further on compute the metrics of the report based on them.

As seen in Figure 1, each job will have to do the heavy lifting of loading the whole
dataset, filtering and collecting only those records that match the input filter, while based
on the remaining dataset, the report will be created. This approach is quite expensive since
every job will have to filter a big dataset again and again, in order to obtain in the end a
small fraction of the initial dataset. Since every job is stateless, there is no way of caching
some of the steps and the probability of perfectly matching the filters is rather small anyway.
There is a clear problem here: a waste of processing power and time resulted from loading
and filtering the whole dataset every time a user requests a report.

Figure 1. Initial system design—reading from raw data.

There is a need to find a better way of handling the report creation since just blindly loading
everything repeatedly will be too expensive and time consuming. The majority of the datasets
are stored in daily folders because it is a reasonably natural way of saving new records. Having
them stored in specific daily folders will help drop the records that are not in the user’s selected
time frame beforehand, so the structure will be similar to the one in Figure 2.

So, for instance, if the user needs the report for three days, only those specific folders
will be loaded and filtered. Just by having them stored in a daily based structure, there
is the potential to save considerable time and money, since some of the folders could be
excluded from the start, based on the time frame selected by the user. Hence, the Spark
job will load only the folders in the specified time range and filter the records based on the
user ID. After obtaining the records that are specific to the previously mentioned user, the
job still needs to filter by other user requested criteria (based on the purpose of the app,
for example, after obtaining all the flights of an airplane, the job will need a filter for the
flights that are longer than 500 Km and will be landing in Europe). Even though the above
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described partitioning is a way to improve performance, it is still quite problematic. What
happens if the users select the entire time frame? In this case, the heavy lifting of loading
and filtering will still need to be done, in order to find the records that are specific to the
particular user.

Figure 2. Files stored in daily folders.

For finding a permanent solution to this wasteful loading and filtering of data, it is
mandatory to understand quite well the structure of the dataset and the use cases of the
report. Following a thorough analysis, some relevant columns that are representative for
the report can be found. Let us say that the report is at user level, which means that by
having the dataset pre-stored using user level folders, the job can access those folders
directly and save a lot of processing power, as the job no longer has to deal with the records
that belong to other users, while in the previous designs they still had to be loaded, filtered
and just thrown away since those will not be useful for the specific user report. This solution
is generic and can be applied to many more use cases, not just for a dataset that has a user
ID column. For example, it can pre-store based on thresholds, types of data, keys, and so
on; the developers just need to study the dataset and find some columns that are relevant
for all the reports and can be divided, making them easier to access. The graphic below is a
representation of the structure organized by user ID, and as previously mentioned, it may
be done with whatever column fits that particular use case of the report.

As seen in Figure 3, the reporting job can now precisely know what to load and filter
in the current structure, hence reducing a great amount of the processing power needed
to generate the report. Now that there is a way to improve the performance of the report
generation, the next task will be to find a way of creating this structure. The proposed
solution for achieving this new folder design is to create another coordinated (scheduled)
MapReduce job that can redistribute the records based on user ID on top of the initial daily
layer. This coordinated job can be achieved by using Oozie Workflows [21], which is also
provided by the Hadoop framework. By using Oozie, coordinated jobs that are listening for
the appearance of a specific folder (in this case the daily folder) can be designed, and once
the daily dataset is obtained, Oozie will automatically trigger the job for pre-proccessing
the data, distributing it in user-based folders.
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Figure 3. Final pre-processed configuration-user level repartition.

The above proposed solution can be compared with other solutions proposed by
diverse documents and studies. One of the papers that are also dealing with these types
of problems is A lightweight approach to extract inter-schema properties from structured, semi-
structured and unstructured sources in a big data scenario [22]. In the mentioned research, the
authors are proposing ways of achieving schema matching for unstructured datasets, but
also indicate other papers that are dealing with these problems for structured datasets.
The current paper is fully focused on a well-defined, structured dataset that has already
been normalized and is respecting the 5Vs model, especially the last 2 added Vs: veracity
and value. Schema matching is focusing on finding objects that are semantically related, in
other words finding relations, and correspondences between concepts of different datasets.
Arbitrarily finding relations between entries in the current situation will not help in improv-
ing the performances of the reporting job since different deduced relations will not be able
to provide an optimal way of grouping the dataset. For the current example, partitioning
for anything else other than the user ID will still require a full load and filter of the dataset
since any other partitioning cannot guarantee that a specific folder contains only records
specific to a particular user. Selecting the optimal column for the partitioning of the job will
have to be done by an analyst or developer after rigorously studying the dataset and the
requirements of the use case.

Since in the current example, the user ID is the main pivot, it is worth talking about
the potential ethical or legal implications of this approach. Since it is just a user ID, a
simple number, or a key, the obfuscation of the data is fully possible. Hiding the first name,
last name, locations and other personal-related columns will not have any impact on the
proposed solution. Even hashing or modifying the ID in a certain way so as to make sure
that it cannot be traced back will not impact the report. The only requirement is to keep the
key consistent, making sure that the function that modifies the key is idempotent.

After deciding that the approach is valid, there is a need for another job, a pre-
processing job that will store the file in a way that can improve the reporting performance,
by storing them in folders specific to a certain user, for example. Creating this kind of
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job can also be problematic since for some datasets the job can take too long if it is not
properly executed. Because of the need of distributing based on a specific column or a key,
the job will have to repartition the dataset based on that key before grouping and storing it.
The repartitioning action is a quite expensive one because it will perform a full shuffle of
data across all nodes, distributing the records that belong to a specific user to a given node,
where the specific node is responsible for writing the record on a disk afterwards. By nature,
the possibility of a user having more records than others is quite high. For example, a user
can buy more items than others, resulting in multiple records/events; a type of sensor can
register more events than others; a certain location can create more events than others, and
so forth. In this case, unbalanced workers will be the result: the tasks of repartitioning
records for some of the small users will be trivial and will take seconds, but some of the
tasks will be pending for hours and days because the majority of the records belong to a
small fraction of the big users.

An example of a real-life variable that has a skewed distribution as seen in Figure 4
is salary. Most people earn in the low/medium range of salaries, with a few exceptions
(CEOs, professional athletes, etc.) that are distributed along a wider range (long “tail”)
of higher values [23]. On the Y axis can be seen the frequency of the appearances and on
the X axis, there is the value associated with that particular frequency. That is a common
representation of how data skewness would look like. It is obvious that there is a big spike
for a small fraction of the keys, followed by a long tail. Because of this, the repartitions will
be pretty unbalanced, resulting in long running tasks.

Figure 4. Example of data skewness from the Passion Driven Statistics book [23].

As represented in Figure 5, it can be seen that instead of having evenly distributed
executors, the Spark job will end with a rather bad scenario, where the majority of the
executors will finish quite quickly since their user ID had fewer records, but there will also
be the situation where certain users will have many more records, with the executor being
unable to properly handle such amount of data. This happens because the workers that
will have to handle those users are overwhelmed by the amount of data that need to be
processed. For proper handling, these data workers will have to spill the data from RAM to
disk and to RAM again. For solving this problem, data skewness will have to be addressed.
A properly distributed dataset should look similar to Figure 6.
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Figure 5. Even distribution vs. distribution with skew, from Handling Data Skew in Apache Spark [24].

Figure 6. Evenly distributed dataset, from Generating Random Numbers with Uniform Distribution in
Python [25].

Figure 6 is a good example of how the end results of our distribution should look like.
Targeting a perfectly distributed dataset is not needed, the focus being to make sure that
the difference between the lowest and the highest repartition is small, so the executors
will finish more or less at the same time, without having a small fraction of them hanging
around for a long time.

For fixing the data skewness, the dataset needs to be scattered in order to ease the
work of some of the executors. For doing this, instead of simply repartitioning by user ID
in the example, a pseudo-key will be added into the equation. This pseudo-key is just a
random number, a seed, that will help us break the blocks of data that are too large. Adding
another column with a random number to the dataset and combining the repartition by
key and pseudo-key can help improve the situation, but there will still be a problem. There
is no way to just hard code a given interval for populating the new seed column: let us
assume that a solution can be to populate the whole dataset with random seeds between
0 and 100. The variation is too small for properly breaking the highest spikes, the seed
might be enough for the middle ones, but will also break the small ones, lengthening the
tail even more, which will negatively impact the performance. In order to fix this, there
is a mandatory need to dynamically allocate seed intervals for each user. For achieving
this, a prior analysis step will be needed to create a lookup table, where the number of
records each user has will be counted and stored in a hash map. Based on this lookup table,
seed intervals can be dynamically allocated for each user, hence creating well-balanced
repartitions. When populating the seed column, the pre-processing job will have to check
the lookup table for obtaining the appropriate interval in which the random number has
to be generated. By doing this, properly distribution of the dataset can be achieved: for
example, breaking the biggest ones by assigning random numbers between 0 and 10,000,
the middle ones by using random numbers between 0 and 100, and the small ones by
random numbers between 0 and 10, while also keeping the smallest one with a constant
seed because there is no need to scatter them. Figure 7 represents the lookup table used to
populate the seed column.
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Figure 7. Generating random seed in the interval dynamically determined and stored in the
lookup table.

Another research paper that is using randomness for trying to ease the computation
needed is Generalizing identity-based string comparison metrics: Framework and techniques [26].
In the mentioned paper, the authors are proposing random-restart steepest ascent hill climbing
algorithm or the simulated annealing for finding the best matching schema, that can simplify
the computation of the generalized edit distance between s1 and s2. It is worth emphasizing
again, as stated above, that the current proposed solution is not aiming for a perfect/optimal
distributed dataset since there will be no distinguishable performances in the overall
job performances because of this, quite the opposite since there is more effort in trying
to perfectly align it. It is also worth mentioning that compared to the cited paper, the
current solution will provide a “guided” randomness based on prior counting of the
records belonging to the chosen column and distribute the randomness intervals based on
that. The current solution is actually focusing on the intervals between where the random
numbers will be picked from for each entity, intervals fully deduced based on actual facts,
numbers and prior analysis, not randomness. As in the mentioned paper, the current one is
also using a hash map, see Figure 7, for avoiding repeated computations.

In Figure 8, it can be seen how the new solution fits, and instead of the brute force
option where the report is simply generated by searching for the user-specific records in
the whole dataset, the coordinated daily job will do the heavy lifting of re-distributing the
records on user-specific folders, reducing the effort needed for the reporting job, since it
can now directly go to the folders that are specific to the user, without having to search
them in the whole dataset.

Figure 8. Updated new solution flow.
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6. Quantitative Results

As previously mentioned, this solution will be a good fit for use cases that have to
handle big amounts of data. It is rather difficult to find a dataset that provides this amount
of data for free since generating and storing this amount of data is not trivial or cheap.
The dataset on which the tests were conducted is not even close to the perfect fit, as it
is fairly small even when merging several months of data (around 300 GB), but it is still
a good example and we were able to see tremendous improvements even for this case
where there is not a big quantity of data. For proving the proposed solution, the above
mentioned methodology will be applied to a dataset and test the performances. The dataset
that we will work on is provided by OpenAQ [27], a non-profit organization empowering
communities around the globe to improve air quality by harmonizing, sharing, and using
open-air quality data. They freely provide air quality data for more than 58.000 locations
in more than 60 countries. The designed application focuses on providing on-demand air
quality analysis for one or more localities, based on the user input.

OpenAQ has a public Amazon S3 bucket [28], from where the jobs will read the dataset.
The data are stored in json files, with all the json files from a day being stored in the same
folder. For running the queries, Spark jobs that are running on Amazon EMR Serverless will
be used, a cheaper solution for these tests that does not require creating their own cluster,
but just uses processing power from a given cluster when a process needs to be run. Using
a serverless solution means that there is not a lot of control over the type of hardware that
the job will run on, but it is also important to note that improving the performance of the
hardware, let us say of the processors, will not have a significant impact on the results since
the whole MapReduce concept is more about scaling through parallelism. The application
limits were 400 vCores, 3000 GB (memory) and 20,000 GB (disk).

The brute force approach will be tested first, where the reporting job will simply
read the dataset directly from the bucket provided by OpenAQ, filter the data based on
the submitted criteria, and produce the results. In all the reporting tests, four cities from
Germany were targeted: Berlin, Leipzig, Hamburg, and Dortmund. The Spark job will
search in the entire dataset just for the entries that are related to these four cities and
compute some stats about the air quality in those four cities. Below are the results for
running the brute force job in multiple time intervals. Even though the interval is mentioned,
this is the least important metric here since other systems can produce much higher amounts
of data in a really short period. The metric that really matters is the input size.

As can be seen in Table 2, the MapReduce option is not appropriate if dealing with small
amounts of data. For example, when creating the report for a single day, which involved
loading and filtering only 1.2 GB of data, the job is unexpectedly slow compared with the
next one, covering a month of data. Even though the job itself was trivial, starting the Spark
context and the overhead of setting up all the workers and the driver node took longer
than the actual requested action. So indeed, for small amounts of data, Druid is the better
method. Even if the amount of data that the research was tested on is still a lot smaller than
should be for this type of test, it can be seen that the difficulty of the job starts to rise when
the data builds up. For the 6 months report, the time for computing the data increased a
lot, the report generation taking more than 22 min (again, used the interval just for easier
identification, but the real catalyst is the size since there are cases where more than these
data are produced in less than a day).

Table 2. Values for Brute Force Approach.

Interval Run Time vCores
Memory

GB
Hours

Storage
GB

Hours

Input
Size
GB

Input
Records

Remaining
Records

after Filter

Total Time
across

All Tasks

1 day 2 m 3 s 0.24 0.98 1.23 1.46 3,361,183 741 3 m
1 month 6 m 24 s 1.64 6.58 8.23 47 110,385,904 30,963 1 h 6 m
3 months 12 m 45 s 6.13 24.52 30.65 179 416,300,428 115,636 6 h
6 months 22 m 27 s 11.33 45.32 53.65 366 852,056,650 237,740 9 h 30 m
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It is only a matter of time until the system will be overwhelmed by the size of the
data and will not be able to produce the reports in an inexpensive and timely manner.
For addressing this, the solution has to fall back on what was mentioned earlier: the need
to study the dataset and the specific requirements in order to find a way for optimizing it.
As already mentioned, the focus is only on the air quality in certain nearby cities/locations
that the scope of the application is specifically interested in. After a second look at the
numbers, it can be seen that even though large amounts of data are loaded, only a small
fraction of it is of real interest. To be more precise, the report is concerned with less than 1%
of the initial dataset. Taking into account that loading and filtering the data represent more
than 95% of the job time, it can be concluded that the reporting job is basically wasting a lot
of resources without a significant benefit here.

For fixing this, one will have to apply the solution mentioned earlier in this paper:
reorganizing the dataset in a new folder structure, by introducing a preprocessing step that
will re-distribute the dataset in country-specific folders. That way, the reporting job can go
straight to the country folders, based on specific cities that the user is looking for. The best
way to design it is to have a scheduled job that listens to the daily folder. Once the daily
folder appears, the pre-processing job will trigger and pre-process the data. For this test, an
on-demand pre-processing job that processed 6 months’ worth of data was used, but a test
where a single day was re-partitioned was also conducted.

As seen in Table 3, the pre-processing for 6 months was quite expensive, so it should be
highlighted that this type of optimization is worthwhile only if there is a certain number of
report requests per day. The threshold is really dependent on the “5V’s” that we discussed
at the beginning of the paper, so there is no clear way to come up with a certain number
here, but it is important to be aware of the following constraint: the pre-processing step
is worthwhile only if the report is frequently used and only if it is needed in a timely
manner. Another important aspect to consider is that the brute force report can become
costly rather fast.

Table 3. Pre-processing step—new approach.

Interval Run Time vCores Memory GB Hours Storage GB Hours

1 day 3 m 38 s 0.42 1.71 2.14
6 months 1 h 49 m 57.52 230.10 287.63

Now that pre-processing of the data is done, meaning that the pre-processing job
re-arranged them in a new folder structure, distributing the records to their corresponding
country folders, a new set of reporting tests can be executed.

In Table 4, a tremendous growth in the performance of the jobs can be noticed, and this
is quite normal since they no longer have to do the heavy lifting of loading and filtering
the entire dataset. Instead of doing that, the jobs will go straight to the folders of interest.
Now that both numbers from the brute force and from the optimized dataset have been
obtained, a head to head comparison between them can be conducted, as seen in Table 5.

Table 4. Updated values—new approach.

Interval Run Time vCores
Memory

GB
Hours

Storage
GB

Hour

Input
Size

Input
Records

Remaining
Records

after Filtering

Total Time
across

All Tasks

1 day 1 m 2 s 0.16 0.67 0.84 87 KB 6104 741 3 s
1 month 1 m 4 s 0.17 0.71 0.88 3.3 MB 242,752 30,963 32 s
3 months 1 m 8 s 0.18 0.75 0.93 13.5 MB 969,770 115,636 36 s
6 months 1 m 10 s 0.21 0.84 1.05 27 MB 1,939,540 237,740 55 s

From the stats above, a 1824% performance increase can be seen between the two
solutions. The improvement is still low compared with its real potential since more than
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a minute from the 2 min spent in the pre-processed version is dedicated to initializing
the Spark session, and not to actually generating the report, so it is important to reiterate
that this type of solution is generally best for much bigger datasets. The two constraints
encountered when choosing the dataset were related to the costs and also to the availability
of the data because free terabyte-scale datasets could not be found. Considering these
constraints and the fact that the test was executed on quite a detrimental dataset, we are
confident that the solution can perform even better on a larger scale.

Table 5. Head-to-head comparison.

Interval Run Time vCores
Memory

GB
Hours

Storage
GB

Hours

Input
Size

Input
Records

Remaining
Records

Total Time
across

All Tasks

6 months 22 m 27 s 11.33 45.32 53.65 366 GB 852,056,650 237,740 9 h 30 m
6 months 1 m 10 s 0.21 0.84 1.05 27 MB 1,939,540 237,740 55 s

7. Discussion and Conclusions

We are living at a time where the big data industry is gradually gaining more im-
portance, as it is more used than ever, with the majority of modern businesses simply
being dependent on their big data systems. The age of big data is here and both software
engineers and companies can benefit from it if they start working together for achieving
their goals. There are still many challenges and problems that need to be addressed in this
rapidly evolving field, the focus being on achieving gains in terms of efficiency, produc-
tivity, revenue, and profitability. Big data remains a difficult and challenging field in the
IT industry because of the continuous expansion of internet adoption, which is pushing
the limits of the systems to new highs year after year. Managing large amounts of data is
difficult and expensive, requiring a lot of expertise and work to keep them up and running
in a cheap and optimized manner.

In the current paper, we sought to provide a generic solution for handling on-demand
user-centric reports and we can see real performance boosts in the detailed examples that
the research provided. By applying this solution, tremendous improvements can be seen in
both costs and time, which also translates into a better user experience in the end. The paper
demonstrated that storing the data in a favorable manner improves job performance and
that it is cheaper to have the data stored in a well-structured way, even if that means an
initial heavy lifting of the data for redistributing it, rather than having to filter it every time
on the fly, achieving an impressive 1800% performance boost.

The paper presented the benefits of the solution, but it is fair to say that the solution
has some limitations and some downsides. First of all, this type of solution is appropriate
only when talking about a user-centric report, where there is a possibility to group items
based on a common key, such as age, user ID, country, etc. If there is a need for an overall
report, it is obvious that all the data will have to be loaded anyway, so there is no way
to apply some type of partition pruning there. Another constraint is the frequency of the
requests. The paper presented earlier that the pre-processing job is quite costly, so this
solution will fit only if the use case goes above a certain threshold of requests per day.
Another thing that needs to considered is the data duplication factor. By applying the
solution, data duplication will occur for the purpose of having the dataset stored in another
folder structure, so this adds to the previous constraint; the use case of the application
needs to be studied pretty well and see if the pre-processing step is worth the efforts,
compared with the frequency of the reports and also taking into consideration the cost
of the data duplication. Other possibility is using Hive instead of Spark since Hive also
provides partitioning capabilities and partition pruning. This choice will vary from use case
to use case since Hive is good for simply querying data and returning it, but having to apply
additional logic on the resulted dataset is harder to achieve and is also underperforming
Spark. While using Hive, it is recommended to have everything needed already stored in
different columns, in order to avoid any post processing of the dataset. Depending on the
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use case, this can be difficult to achieve or impossible since some of the needed values
depend on the resulted dataset. Another catalyst of this choice can be the initial format
of the data: if there is no control about the input data and for example the providers are
sending Avro files, having to migrate all the data from Avro files into Hive tables might not
be worth it because of the additional processing needed or because of the data duplication.

Keeping in mind the benefits and the constraints of the suggested solution, it can be
concluded that the findings of this research paper are a great starting point for further
improvements in the area of big data, providing valuable insights about how to handle
and mitigate some of the most common problems and challenges related to big data.
Other directions for future research studies might be discussing the current solution in the
context of other big data technologies and frameworks, exploring other ways of fixing data
skewness, other strategies for providing random seeds, or providing an automated way
of finding the best column to partition by, the last one being the most challenging, since
choosing the right partition key is strongly coupled with understanding the datasets and
the use cases of the application.
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