
Citation: Kadyrbek, N.; Mansurova,

M.; Shomanov, A.; Makharova, G.

The Development of a Kazakh

Speech Recognition Model Using a

Convolutional Neural Network with

Fixed Character Level Filters. Big

Data Cogn. Comput. 2023, 7, 132.

https://doi.org/10.3390/bdcc7030132

Academic Editors: Zuchao Li,

Min Peng and Carson K. Leung

Received: 10 April 2023

Revised: 22 June 2023

Accepted: 5 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

The Development of a Kazakh Speech Recognition Model
Using a Convolutional Neural Network with Fixed Character
Level Filters
Nurgali Kadyrbek 1, Madina Mansurova 1,*, Adai Shomanov 2 and Gaukhar Makharova 3

1 Department of AI & Big Data, Faculty of Information Technologies, Al-Farabi Kazakh National University,
Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; kadyrbek.nurgali@kaznu.kz

2 School of Engineering and Digital Sciences, Nazarbayev University, Kabanbai Batyr Ave., 53,
Astana 010000, Kazakhstan; adai.shomanov@nu.edu.kz

3 Department of Foreign Language, Faculty of Philology, Al-Farabi Kazakh National University,
Almaty 050040, Kazakhstan; maharova.gauhar@kaznu.kz

* Correspondence: madina.mansurova@kaznu.edu.kz; Tel.: +8-(727)-221-1587

Abstract: This study is devoted to the transcription of human speech in the Kazakh language in
dynamically changing conditions. It discusses key aspects related to the phonetic structure of
the Kazakh language, technical considerations in collecting the transcribed audio corpus, and the
use of deep neural networks for speech modeling. A high-quality decoded audio corpus was
collected, containing 554 h of data, giving an idea of the frequencies of letters and syllables, as well as
demographic parameters such as the gender, age, and region of residence of native speakers. The
corpus contains a universal vocabulary and serves as a valuable resource for the development of
modules related to speech. Machine learning experiments were conducted using the DeepSpeech2
model, which includes a sequence-to-sequence architecture with an encoder, decoder, and attention
mechanism. To increase the reliability of the model, filters initialized with symbol-level embeddings
were introduced to reduce the dependence on accurate positioning on object maps. The training
process included simultaneous preparation of convolutional filters for spectrograms and symbolic
objects. The proposed approach, using a combination of supervised and unsupervised learning
methods, resulted in a 66.7% reduction in the weight of the model while maintaining relative accuracy.
The evaluation on the test sample showed a 7.6% lower character error rate (CER) compared to
existing models, demonstrating its most modern characteristics. The proposed architecture provides
deployment on platforms with limited resources. Overall, this study presents a high-quality audio
corpus, an improved speech recognition model, and promising results applicable to speech-related
applications and languages beyond Kazakh.

Keywords: automatic speech recognition; deep learning; low-resource; Kazakh; speech corpus;
character embedding

1. Introduction

Automatic speech recognition (ASR) systems convert incoming audio speech into
text [1] and allow further analysis of the speech content of the source. The quality of
automatic transcription tools is progressively improving with the introduction of hybrid
modeling based on a deep neural network (DNN) [2].

Research and the development of universal acoustic systems are becoming increas-
ingly complex due to the lack of publicly available datasets that are relatively normally
distributed by age, gender, and regional affiliation.

Kazakh is a Turkic language spoken mainly in Kazakhstan, and it is spoken by about
13 million people worldwide. To date, some major studies have been conducted in the field
of recognition of Kazakh speech, but the language itself cannot afford enough digitized

Big Data Cogn. Comput. 2023, 7, 132. https://doi.org/10.3390/bdcc7030132 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7030132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://doi.org/10.3390/bdcc7030132
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7030132?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 132 2 of 16

resources. And one more fundamental problem lies at the level of vocabulary, that is,
dialectics, as usually happens with languages that have a limited number of speakers, and
the situation is aggravated by the fact that many speakers synthesize their speech using
Kazakh and Russian lexicons in a mix [3].

Another fundamental problem of language is related to the study of sound systems
in the language. And there are different opinions about the classification of sounds into
vowels and consonants [4,5].

The main objectives of this study:

• To develop a speech recognition model for the Kazakh language based on deep
learning;

• To investigate the relationship between Embedding vectors of Kazakh characters and
spectrograms at the encoder level;

• To develop a relatively lightweight model that allows us to deploy it on a device with
limited computing resources.

Developing a lightweight speech recognition model that can be deployed on a device
with limited computing resources such as a Raspberry Pi is a challenging task but is
certainly feasible. This is due to the following facts:

1. Increased accessibility: Speech recognition technology has the potential to revolu-
tionize the way we interact with devices and computers. However, many people do
not have access to high-end computing devices or high-speed Internet connections.
Developing a lightweight speech recognition model that can run on a low-cost device
like a Raspberry Pi means that this technology can be made more accessible to people
with limited resources [6];

2. Increased privacy: Many speech recognition systems rely on cloud-based processing,
which means that users’ data are transmitted over the Internet and stored on remote
servers. This can raise privacy concerns, particularly when dealing with sensitive
information. By deploying a speech recognition model locally on a device like a
Raspberry Pi, users can maintain greater control over their data and ensure that they
are not being transmitted over the Internet [7];

3. Increased reliability: Cloud-based speech recognition systems require a reliable Inter-
net connection to function. In areas with poor internet connectivity or during periods
of network congestion, these systems may not work effectively. By deploying a speech
recognition model locally on a device like a Raspberry Pi, users can ensure that the
system will continue to function even if Internet connectivity is lost [8];

4. Increased speed: Cloud-based speech recognition systems require data to be trans-
mitted over the Internet, which can introduce latency and slow down the system. By
deploying a speech recognition model locally on a device like a Raspberry Pi, users
can benefit from faster response times and a more seamless user experience [9].

There are several techniques that we can use to optimize our model and make it
suitable for deployment on a low-power device like a Raspberry Pi:

1. Choose an appropriate speech recognition algorithm: There are several algorithms
available for speech recognition, each with its strengths and weaknesses. For a
device with limited computing resources, we will want to choose an algorithm that is
efficient in terms of memory and processing power, such as hidden Markov models
(HMMs) [10] or convolutional neural networks (CNNs). We could also consider using
a hybrid approach that combines multiple algorithms to improve accuracy while
keeping the computational requirements low;

2. Select and preprocess the dataset: The quality and size of the dataset used for training
our speech recognition model can significantly impact its performance. Choose
a dataset that is relevant to our use case and has sufficient diversity in terms of
speaker gender, accents, and environmental noise. Preprocessing the dataset to
remove noise and normalize audio levels can also help improve accuracy and reduce
the computational requirements;

Big Data Cogn. Comput. 2023, 7, 132 3 of 16

3. Optimize the model architecture: Once we have selected an algorithm and dataset,
we can optimize the architecture of the model to make it as efficient as possible. This
could involve reducing the number of layers or neurons in the network, using smaller
filter sizes in CNNs, or using more compact representations of the audio signal such
as MFCCs (Mel frequency cepstral coefficients) [11];

4. Train and test the model: Train the model using the preprocessed dataset and evaluate
its performance using a separate testing dataset. It may take several iterations of
tweaking the model architecture and parameters to achieve the desired level of
accuracy while keeping the computational requirements low;

5. Deploy the model on a Raspberry Pi (device): Once we have trained and tested our
model, we can deploy it on a device. We will need to ensure that the device has
the necessary dependencies and libraries installed and that it has sufficient memory
and processing power to run the model. We can then integrate the model with our
application and test its performance in real-world scenarios [12].

By using these techniques, we can optimize our complex PyTorch model and make
it suitable for deployment on devices. However, it is essential to test and evaluate the
performance of our model on the devices before deploying it in a production environment.

In fact, the representation of spoken phonemes by the shape of the vocal tract is
displayed as the envelope of the power spectrum of the short-term Fourier transform. The
Mel filter bank is used to accurately represent this envelope because it is characterized by
a set of filters that cover the frequency range that a person is able to perceive. However,
manually created Mel filter bank functions are limited by their fixed set of filters, and
finding suitable hyperparameters can be challenging to preserve important information for
related purposes [13]. And this, in turn, led us to the hypothesis that if we create (select) a
layer with a fixed filter consisting of (character) embedding vectors and separately correlate
them with incoming spectrograms, it can help extract more useful information.

This study presents a significant contribution to the field of speech recognition for
the Kazakh language. By addressing the challenges specific to Kazakh speech recognition
and proposing an improved architecture, we provide state-of-the-art performance with
reduced model complexity. The implications of this research reach beyond Kazakh, offering
insights and methodologies that can enhance speech recognition for other languages and
facilitate communication, transcription, and language preservation in diverse linguistic
communities.

In this article, we make the following significant scientific contributions:

• CNN Hybrid Architecture Development: We propose a new CNN hybrid architecture
that combines spectrogram-based analysis with character-level information for more
complete speech recognition. This architecture allows the model to capture both the
acoustic and linguistic features of the speech signal, which leads to an increase in the
accuracy of transcription.

• Integration of language filters: We introduced an additional fixed filter into the architec-
ture based on embedding character vectors in the Kazakh language. This language-
specific layer increases the model’s ability to recognize the unique phonetic character-
istics of the Kazakh language, contributing to increased transcription accuracy and
improved recognition capabilities.

• Combination of supervised and unsupervised learning: To effectively train the model, we
use a combination of supervised and unsupervised learning methods. By using a
labeled set of speech data to train a speech recognition model and applying unsu-
pervised learning to an unlabeled set of data to train filters at the character level, we
maximize the available data and increase the overall accuracy of the model.

• Reducing the weight and complexity of the model: Our proposed architecture provides
comparable or superior accuracy with a significant reduction in the weight of the
trained model by 66.7%. This reduction in the complexity of the model makes it
suitable for deployment on platforms with limited computing resources, expanding
its practical application.

Big Data Cogn. Comput. 2023, 7, 132 4 of 16

• Modern Performance: Thanks to a thorough evaluation using a test sample, our model
demonstrates modern performance in Kazakh speech recognition. The symbolic error
rate (CER) achieved by our model is 7.6% lower than that of existing models, which
confirms the effectiveness of our architectural solution.

2. Related Works

Despite the fact that the Kazakh language is classified as a low-resource language,
many studies have been conducted on the development of Kazakh speech recognition
systems that can be used for various applications, such as voice-controlled devices, tran-
scription of speech into text, and automatic translation.

Weijing Meng et al. [14] discuss the challenges of building good speech recognition
systems for low-resource languages like Kazakh and how unsupervised pre-training can be
used to improve performance. The authors present a model called wav2vec-F, which uses
unsupervised pre-training to learn potential speech representations from large amounts
of unlabeled audio data and integrates a factorized TDNN layer to better preserve the
relationship between the voice and the time step before and after quantization. The
authors also use speech synthesis to enhance the performance of speech recognition. The
experiments showed that wav2vec-F can effectively utilize unlabeled data from non-target
languages, and multi-language pre-training is better than single-language pre-training. The
proposed model achieved comparable results to previous end-to-end models with only
a small amount of labeled Kazakh speech data synthesized by multi-language combined
with TTS [14].

Regarding the work of researchers in their experiments, the best performing models
were found to be the E2E-Transformer, followed by the E2E-RNN and then the DNN-
HMM. Language-specific challenges were also discussed, including data sparsity due to
the agglutinative nature of the language, code-switching between Kazakh and Russian,
and data efficiency. The most challenging characters and words for the ASR system were
also identified. The results demonstrate the utility of the Kazakh Speech Corpus (KSC)
database for the speech recognition task [15].

The authors, led by Mamyrbayev Orken [16], achieved the following results: an
experiment on building end-to-end (E2E) speech recognition systems for the Kazakh
language using a combination of methods, such as CTC and encoder-decoder based on
the attention mechanism. The results showed that the constructed model works well with
the use of language models for Kazakh and surpassed models based on DNN-HMM and
CTC models. However, there are some limitations, such as the need for a large amount of
training data, the system’s delay, and the fact that the model is not adapted for real-time
speech recognition. The paper also suggests using the transformer network with multiple
heads to improve the system’s accuracy with limited data. Further research is planned on
combining other models of E2E systems, as hybrid E2E models show better results than
using them separately.

In the field of Kazakh speech recognition, Mamyrbayev et al. [17] investigated the
implementation of an end-to-end model based on RNN-T. They focused on streaming
speech recognition, in which the audio stream is directly converted to text in real time.
The study compared their RNN-T-based model with other approaches, in particular with
the CTS model commonly used for the recognition of Kazakh speech. The results showed
that the RNN model worked well without additional components, such as the language
model, and achieved the best result in their dataset. It is noteworthy that the system
achieved a 10.6% character error rate (CER), surpassing other end-to-end Kazakh speech
recognition systems.

Musakhodzhaeva et al. (2022) [18] expanded the Kazakh text-to-speech synthesis
corpus (KazakhTTS), known as KazakhTTS2, to solve the problems of creating high-quality
TTS systems for the Kazakh language. The volume of the corpus has increased from 93 h to
271 h, and additional speakers and diverse coverage of topics have appeared. The authors
highlight the linguistic problems of the Kazakh language and the agglutinative language

Big Data Cogn. Comput. 2023, 7, 132 5 of 16

of the Turkic family and provide detailed information about the corpus creation process,
training, and evaluation procedures. The corpus proved to be sufficient to build reliable
TTS models, obtaining a subjective average score above 3.6 for all five native speakers.
The availability of the corpus and related resources on GitHub contributes to speech and
language research of Kazakh and other low-resource Turkic languages [18].

However, there is still a need for further research and development in this area,
especially to improve the accuracy and performance of Kazakh speech recognition systems.
In addition, there is a need for more data and resources to support research in this area,
such as large datasets of transcribed Kazakh speech and the development of standardized
evaluation criteria. And another aspect that needs to be expanded in the current study is in
terms of how these models will behave depending on the regional dialect of the speaker.

In the course of research, we had a hypothesis that exploring a separate layer with
fixed weights to extract information from incoming spectrograms would accumulate more
information. It may be beneficial to use a fixed embedding layer that maps the input data
to the same representation used by the GRU.

There are several advantages to using a fixed embedding layer:

1. Faster training: The fixed embedding layer can be used to preprocess the input data
before feeding it into the GRU. This can speed up training by reducing the number of
parameters that need to be learned during training;

2. Better generalization: Pre-trained embeddings can help the model generalize better to
new data, as they capture meaningful patterns in the input data;

3. Reduced overfitting: Pre-trained embeddings can help reduce overfitting by providing
a regularization effect.

However, there are also some potential drawbacks to using a fixed embedding layer:

1. Limited flexibility: If the pre-trained embedding layer does not capture all of the
relevant patterns in the input data, the model may not be able to learn them during
training;

2. Task-specificity: The pre-trained embedding layer may be optimized for a specific
task and may not generalize well to other tasks.

Overall, using a fixed embedding layer with a pre-trained GRU can be a useful
technique in some situations. However, it is important to consider the trade-offs and
experiment with different approaches to determine what works best for a specific task.

Available Datasets

There are several existing datasets for Kazakh speech recognition that researchers can
use to train and evaluate their models. Here are a few examples:

1. Kazakh Speech Corpus (KSC): This is a large corpus of Kazakh speech data that
was developed by researchers at Nazarbayev University. It contains around 330 h of
speech data from 1000 speakers, covering a wide range of topics and dialects [15].

2. Dataset of the Institute of Information and Computing Technologies.

The researchers used a sound-insulated cabin to record the audio data of 200 speakers
reading a prepared text of 100 sentences each. The recorded data were saved in separate
.wav files with specific identifiers [19].

Researchers can use these datasets to train and evaluate their Kazakh speech recogni-
tion models. However, it is worth noting that these datasets may not be large enough to
train deep learning models from scratch, so researchers may need to use transfer learning or
unsupervised pre-training techniques to achieve good performance on these low-resource
datasets.

3. Data Collection and Cleaning
3.1. Text Collection

Text data in Kazakh were extracted from various sources, including electronic literary
books, news articles on websites, and scientific dissertations. This approach provided a

Big Data Cogn. Comput. 2023, 7, 132 6 of 16

wide range of topics and vocabulary variability, covering vocabulary used in various subject
areas. For example, news texts reflected vocabulary related to various aspects of society,
while interviews with people from different walks of life demonstrated dialect variations
and the occasional inclusion of words in Russian in a sentence in Kazakh. In order to
exclude any inappropriate content related to sensitive political issues, user privacy, or
violence, careful manual filtering was carried out. Although, some sentences may contain
a couple Russian words due to the presence of borrowings in the Kazakh language. The
use of mixed vocabulary from both languages is common among native speakers of the
Kazakh language [20]. It is important to note that the volume of text used for teaching word
embedding models significantly exceeded the volume of text used for audio recording
purposes.

In our corpus, we presented all texts using the Cyrillic alphabet consisting of 42 letters,
except that we replaced the letter “ё” with “e” since the practical corpus was not found
by weight and is extremely rare for the Kazakh language. The distribution of these letters
is shown in Figure 1 and the similarity of the results with the distribution in the KSC of
Yerbolat et al. can be seen [15]; the similarity is visible to the naked eye, and this allows us
to talk about the relative preservation of the frequency of letters at the language level.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 17

3. Data Collection and Cleaning
3.1. Text Collection

Text data in Kazakh were extracted from various sources, including electronic literary
books, news articles on websites, and scientific dissertations. This approach provided a
wide range of topics and vocabulary variability, covering vocabulary used in various sub-
ject areas. For example, news texts reflected vocabulary related to various aspects of soci-
ety, while interviews with people from different walks of life demonstrated dialect varia-
tions and the occasional inclusion of words in Russian in a sentence in Kazakh. In order
to exclude any inappropriate content related to sensitive political issues, user privacy, or
violence, careful manual filtering was carried out. Although, some sentences may contain
a couple Russian words due to the presence of borrowings in the Kazakh language. The
use of mixed vocabulary from both languages is common among native speakers of the
Kazakh language [20]. It is important to note that the volume of text used for teaching
word embedding models significantly exceeded the volume of text used for audio record-
ing purposes.

In our corpus, we presented all texts using the Cyrillic alphabet consisting of 42 let-
ters, except that we replaced the letter “ё” with “e” since the practical corpus was not
found by weight and is extremely rare for the Kazakh language. The distribution of these
letters is shown in Figure 1 and the similarity of the results with the distribution in the
KSC of Yerbolat et al. can be seen [15]; the similarity is visible to the naked eye, and this
allows us to talk about the relative preservation of the frequency of letters at the language
level.

Figure 1. The distribution of letters in our corpus. Figure 1. The distribution of letters in our corpus.

Here’s the map list showcasing the corresponding letters of the Kazakh Cyrillic alpha-
bet and their Latin equivalents:

Aa-Aa, Әә-Áá, Бб-Bb, Bв-Vv, Гг-Gg, Ғғ-Ğğ, Дд-Dd, Ее-Ee, Ёё-Yo yo, Жж-Jj, Зз-Zz,
Ии-Ïï, Йй-Yy, Кк-Kk, Ққ-Qq, Лл-Ll, Мм-Mm, Нн-Nn, Ңң- , Оo-Oo, Өө-Öö, Πп-Pp,

Big Data Cogn. Comput. 2023, 7, 132 7 of 16

Рр-Rr, Cс-Ss, Тт-Tt, Уу-Úú, Ұұ-Uu, Үү-Üü, φф-Ff, Хх-Hh, Һһ-Hh, Цц-Ts ts, Чч-Ch ch,
Шш-Sh sh, Щщ-Shch shch, Ъъ-’, Ыы-Yy, Ii-Ii, Ьь-’, Ээ-Ee, Юю-Yu yu, Яя-Ya ya.

In fact, the process of transition of the Kazakh alphabet from Cyrillic to Latin was still
going on, but it was not yet completed.

It is also worth noting that each utterance is not always a continuous sentence (a
complete context). Because when preparing the text, too long sentences were cut off, and
if the sentences were too short, they were combined. And when evaluating the length of
a sentence, we proceeded from the number of characters in it. The acceptable utterance
length ranges from 60 to 200 letters (Figure 2). The graph shows the percentage of a
sentence(utterance) with a certain number of letters in the dataset. On the graph, it may
seem that the percentage of sentences with a length of 200 characters suddenly increased;
this is due to the fact that all sentences of longer length were simply cut off and fell into
this “category”.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 17

Hereʹs the map list showcasing the corresponding letters of the Kazakh Cyrillic al-
phabet and their Latin equivalents:

Аа-Aa, Əə-Áá, Бб-Bb, Вв-Vv, Гг-Gg, Ғғ-Ğğ, Дд-Dd, Ее-Ee, Ёё-Yo yo, Жж-Jj, Зз-Zz,
Ии-Ïï, Йй-Yy, Кк-Kk, Ққ-Qq, Лл-Ll, Мм-Mm, Нн-Nn, Ңң-Ŋŋ, Оо-Oo, Өө-Öö, Пп-Pp,
Рр-Rr, Сс-Ss, Тт-Tt, Уу-Úú, Ұұ-Uu, Үү-Üü, Фф-Ff, Хх-Hh, Һһ-Hh, Цц-Ts ts, Чч-Ch ch,
Шш-Sh sh, Щщ-Shch shch, Ъъ-ʹ, Ыы-Yy, Іі-Ii, �ь-ʹ, Ээ-Ee, Юю-Yu yu, Яя-Ya ya.

In fact, the process of transition of the Kazakh alphabet from Cyrillic to Latin was still
going on, but it was not yet completed.

It is also worth noting that each utterance is not always a continuous sentence (a com-
plete context). Because when preparing the text, too long sentences were cut off, and if the
sentences were too short, they were combined. And when evaluating the length of a sen-
tence, we proceeded from the number of characters in it. The acceptable utterance length
ranges from 60 to 200 letters (Figure 2). The graph shows the percentage of a sentence(ut-
terance) with a certain number of letters in the dataset. On the graph, it may seem that the
percentage of sentences with a length of 200 characters suddenly increased; this is due to
the fact that all sentences of longer length were simply cut off and fell into this “category”.

Figure 2. Distribution of utterance lengths in our corpus.

3.2. Audio Collection
Several native Kazakh speakers were involved to check the quality of the recordings.

They were provided with an audio fragment and a corresponding sentence, which the
speaker read. The task was to check whether the reader had read the sentences according
to the instructions and to correct any deviations or other acoustic events based on a set of
transcription instructions. As an additional measure of quality, we engaged a linguist,
with whom we talked, observing the quality control process and selectively checking the
tasks they performed. To coordinate the transcriptions, the linguist also conducted “error
analysis” sessions with native speakers who helped with the validation. Table 1 below
shows the main characteristics of the corpus and the division into training and test sam-
ples.

Table 1. The KSC database specifications.

Category Train Test Total
Duration (hours) 470.9 83.1 554

Utterances Words (tokens) 3,109,970 571,237 3,681,207

Figure 2. Distribution of utterance lengths in our corpus.

3.2. Audio Collection

Several native Kazakh speakers were involved to check the quality of the recordings.
They were provided with an audio fragment and a corresponding sentence, which the
speaker read. The task was to check whether the reader had read the sentences according
to the instructions and to correct any deviations or other acoustic events based on a set
of transcription instructions. As an additional measure of quality, we engaged a linguist,
with whom we talked, observing the quality control process and selectively checking the
tasks they performed. To coordinate the transcriptions, the linguist also conducted “error
analysis” sessions with native speakers who helped with the validation. Table 1 below
shows the main characteristics of the corpus and the division into training and test samples.

Big Data Cogn. Comput. 2023, 7, 132 8 of 16

Table 1. The KSC database specifications.

Category Train Test Total

Duration (hours) 470.9 83.1 554

Utterances Words (tokens) 3,109,970 571,237 3,681,207

Unique Words (tokens) 219,462 95,046 220,618

Speakers - - 873

Males (%) 61.17 59.42 61.18

Females (%) 38.82 40.58 38.82

It should be noted that when dividing the dataset, this was based not on the speaker
but on each audio file. Thus, audio files recorded by one speaker can be included both in
the training and in the test dataset.

Based on the distribution of speakers by the regions of Kazakhstan (Figure 3), most of
them come from the southern region of the republic because this region is the most densely
populated.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 17

Unique Words (tokens) 219,462 95,046 220,618
Speakers - - 873
Males (%) 61.17 59.42 61.18

Females (%) 38.82 40.58 38.82

It should be noted that when dividing the dataset, this was based not on the speaker
but on each audio file. Thus, audio files recorded by one speaker can be included both in
the training and in the test dataset.

Based on the distribution of speakers by the regions of Kazakhstan (Figure 3), most
of them come from the southern region of the republic because this region is the most
densely populated.

Figure 3. Distribution of speakers by the regions of Kazakhstan.

Also, the age distribution shows that most of the speakers were young people since
most of the volunteers were students (Figure 4).

Figure 4. Distribution of speakers by age.

A transcribed database consisting of audio signals in the Kazakh language was accu-
mulated. In further steps, this database was used to train a model of speech recognition in
the Kazakh language.:
• Total number of speakers: 873;
• Each speaker was given: 250 sentences(utterances);
• Technical characteristics: .wav format, 16 kHz or 22 kHz, 16 bit, and Mono.

In total, about 218,000 utterances were obtained, which gave 554 h of transcribed
speech data. And all the audio files were recorded using mobile devices (Android and
iOS), in various dynamically changing environments (university, home, and office), which
increases the attractiveness of our dataset. The sampling rate for Android devices is 16

Figure 3. Distribution of speakers by the regions of Kazakhstan.

Also, the age distribution shows that most of the speakers were young people since
most of the volunteers were students (Figure 4).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 17

Unique Words (tokens) 219,462 95,046 220,618
Speakers - - 873
Males (%) 61.17 59.42 61.18

Females (%) 38.82 40.58 38.82

It should be noted that when dividing the dataset, this was based not on the speaker
but on each audio file. Thus, audio files recorded by one speaker can be included both in
the training and in the test dataset.

Based on the distribution of speakers by the regions of Kazakhstan (Figure 3), most
of them come from the southern region of the republic because this region is the most
densely populated.

Figure 3. Distribution of speakers by the regions of Kazakhstan.

Also, the age distribution shows that most of the speakers were young people since
most of the volunteers were students (Figure 4).

Figure 4. Distribution of speakers by age.

A transcribed database consisting of audio signals in the Kazakh language was accu-
mulated. In further steps, this database was used to train a model of speech recognition in
the Kazakh language.:
• Total number of speakers: 873;
• Each speaker was given: 250 sentences(utterances);
• Technical characteristics: .wav format, 16 kHz or 22 kHz, 16 bit, and Mono.

In total, about 218,000 utterances were obtained, which gave 554 h of transcribed
speech data. And all the audio files were recorded using mobile devices (Android and
iOS), in various dynamically changing environments (university, home, and office), which
increases the attractiveness of our dataset. The sampling rate for Android devices is 16

Figure 4. Distribution of speakers by age.

A transcribed database consisting of audio signals in the Kazakh language was accu-
mulated. In further steps, this database was used to train a model of speech recognition in
the Kazakh language.:

• Total number of speakers: 873;
• Each speaker was given: 250 sentences(utterances);

Big Data Cogn. Comput. 2023, 7, 132 9 of 16

• Technical characteristics: .wav format, 16 kHz or 22 kHz, 16 bit, and Mono.

In total, about 218,000 utterances were obtained, which gave 554 h of transcribed
speech data. And all the audio files were recorded using mobile devices (Android and
iOS), in various dynamically changing environments (university, home, and office), which
increases the attractiveness of our dataset. The sampling rate for Android devices is 16 kHz,
and for iOS devices, it can be 22 kHz or 44 kHz, and this is due to the complexity of existing
mobile audio recording applications for the operating system. In the case of Android,
no problems arose thanks to the mobile application Splend Apps [21]. During the data
collection process, due to technical problems, we had to use two different iOS apps; because
of this, there are two different sampling rates in the dataset.

The whole process of creating and verifying the database took about 9 months, and
the database size is about 57 GB. The collected data have been posted on OpenSLR and
can be found through the link [22]. OpenSLR is a website dedicated to hosting speech and
language resources, such as speech recognition tutorials.

The short-time Fourier transform function from the Librosa Python package was used
during the data loading process to preprocess audio signals by transforming them into a
spectrogram representation. This approach has proven to be effective in extracting relevant
features from raw audio signals, resulting in improved performance for various machine
learning tasks [23]. Typically, convolutional layers in an encoder can be used to extract
spectrogram-like objects from raw audio signals. Filters in convolutional layers are trained
to recognize patterns and features at various time and frequency scales that can be used to
represent the basic structure of the audio signal, so no additional signal processing tools
were used during this research.

3.3. Character Embedding in the Corpus

One of the ways to improve the performance of the speech recognition model is to in-
clude additional functions that capture information that goes beyond what is presented on
the spectrogram. One of these functions is character-level information that can be extracted
using CNN filters prepared specifically for this purpose. To incorporate character-level
information into a speech recognition model, one approach is to use a hybrid CNN architec-
ture that combines filters for both spectrogram characteristics and character characteristics.
This architecture would take a spectrogram as input, and then apply convolutional filters
to extract both spectrogram objects and symbolic objects. These elements can then be
combined and passed through one or more fully connected layers to produce the final
result.

In our approach, we generated a special vector for each character using the Wod2Vec
algorithm [24]. Using Word2Vec for character embedding can be an interesting approach,
but it has some potential drawbacks.

Word2Vec is a popular technique used to generate word embeddings, which are vector
representations of words that capture their meaning and relationships with other words
in a corpus. However, Word2Vec is typically used with words rather than characters, and
using it to generate character embeddings would require some modifications.

One option would be to treat each character as a “word” and train a Word2Vec model
on a corpus of characters. However, this approach has some limitations. First, the vocabu-
lary of characters can be very large, which can make training the model computationally
expensive. Second, character embeddings generated using this method may not capture
some of the nuances of character-level information, such as prefixes or suffixes.

We used the method of PCA to reduce the dimension of the vectors to two-dimensional
in order to compactly visualize them (Figure 5). It can be noted by the example of the letters
of the area highlighted by the circle that their vectors were generated appropriately since
these letters are combined with each other in accordance with the laws of synharmonism [5].

Big Data Cogn. Comput. 2023, 7, 132 10 of 16Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 17

Figure 5. Two-dimensional character embeddings visualization.

Another option would be to use pre-trained Word2Vec embeddings for words, and
then use these embeddings to generate character embeddings. This approach can be com-
putationally efficient and can leverage the rich semantic information captured by
Word2Vec embeddings. However, it may not capture some of the specific character-level
information that is relevant to the task at hand.

3.4. Constructing a Filter from Embedding Vectors for a Convolutional Layer
In the Kazakh language, we use 15 letters to represent vowel sounds and 25 for con-

sonant sounds [5]. But for the optimality of the experiments, the letter “ё” was excluded
from the list of vowels and the letter “у” was also duplicated in the list of consonants, since
it can be both a vowel and a consonant, depending on the context of the sounds and ex-
tended with separating letters “ъ” and “ь”, although they are found only inside loan-
words. So at the end, we obtained vowels as V = [а, ə, о, ө, ы, і, у, ұ, ү, э, и, ю, я, and е]
and consonants as C = [‘й’, ‘ц’, ‘к’, ‘н’, ‘г’, ‘ш’, ‘щ’, ‘з’, ‘х’, ‘ъ’, ‘ф’, ‘в’, ‘п’, ‘р’, ‘л’, ‘д’, ‘ж’,
‘ч’, ‘с’, ‘м’, ‘т’, ‘ь’, ‘б’, ‘ң’, ‘ғ’, ‘қ’, ‘һ’, and ‘у’].

To generate a filter, we first need to build a matrix of adjacency of vowels and conso-
nants in one syllable with the dimensions 28 × 14 (Figure 6).

Figure 6. The construction of the adjacency matrix.

Once we initialize the Matrix, we can create the filter by adding two embedding vec-
tors of the characters C[i] and V[j] in case a[i,j] is 1; otherwise, we initialize it with a zero
vector and generate the array with the dimensions 32 × 1 × 28 × 14.

Overall, using Word2Vec for character embeddings can be an interesting approach,
but it is important to carefully consider the potential benefits and drawbacks for a given
task and dataset. Other methods, such as training character embeddings directly using a
neural network, may be more appropriate in some cases. And here there is a place for
other transformers like BERT et al.

Figure 5. Two-dimensional character embeddings visualization.

Another option would be to use pre-trained Word2Vec embeddings for words, and
then use these embeddings to generate character embeddings. This approach can be
computationally efficient and can leverage the rich semantic information captured by
Word2Vec embeddings. However, it may not capture some of the specific character-level
information that is relevant to the task at hand.

3.4. Constructing a Filter from Embedding Vectors for a Convolutional Layer

In the Kazakh language, we use 15 letters to represent vowel sounds and 25 for
consonant sounds [5]. But for the optimality of the experiments, the letter “ё” was excluded
from the list of vowels and the letter “у” was also duplicated in the list of consonants,
since it can be both a vowel and a consonant, depending on the context of the sounds
and extended with separating letters “ъ” and “ь”, although they are found only inside
loanwords. So at the end, we obtained vowels as V = [a, ә, o, ө, ы, i, у, ұ, ү, э, и, ю, я, and е]
and consonants as C = [‘й’, ‘ц’, ‘к’, ‘н’, ‘г’, ‘ш’, ‘щ’, ‘з’, ‘х’, ‘ъ’, ‘ф’, ‘в’, ‘п’, ‘р’, ‘л’, ‘д’, ‘ж’, ‘ч’,
‘с’, ‘м’, ‘т’, ‘ь’, ‘б’, ‘ң’, ‘ғ’, ‘қ’, ‘һ’, and ‘у’].

To generate a filter, we first need to build a matrix of adjacency of vowels and conso-
nants in one syllable with the dimensions 28 × 14 (Figure 6).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 17

Figure 5. Two-dimensional character embeddings visualization.

Another option would be to use pre-trained Word2Vec embeddings for words, and
then use these embeddings to generate character embeddings. This approach can be com-
putationally efficient and can leverage the rich semantic information captured by
Word2Vec embeddings. However, it may not capture some of the specific character-level
information that is relevant to the task at hand.

3.4. Constructing a Filter from Embedding Vectors for a Convolutional Layer
In the Kazakh language, we use 15 letters to represent vowel sounds and 25 for con-

sonant sounds [5]. But for the optimality of the experiments, the letter “ё” was excluded
from the list of vowels and the letter “у” was also duplicated in the list of consonants, since
it can be both a vowel and a consonant, depending on the context of the sounds and ex-
tended with separating letters “ъ” and “ь”, although they are found only inside loan-
words. So at the end, we obtained vowels as V = [а, ə, о, ө, ы, і, у, ұ, ү, э, и, ю, я, and е]
and consonants as C = [‘й’, ‘ц’, ‘к’, ‘н’, ‘г’, ‘ш’, ‘щ’, ‘з’, ‘х’, ‘ъ’, ‘ф’, ‘в’, ‘п’, ‘р’, ‘л’, ‘д’, ‘ж’,
‘ч’, ‘с’, ‘м’, ‘т’, ‘ь’, ‘б’, ‘ң’, ‘ғ’, ‘қ’, ‘һ’, and ‘у’].

To generate a filter, we first need to build a matrix of adjacency of vowels and conso-
nants in one syllable with the dimensions 28 × 14 (Figure 6).

Figure 6. The construction of the adjacency matrix.

Once we initialize the Matrix, we can create the filter by adding two embedding vec-
tors of the characters C[i] and V[j] in case a[i,j] is 1; otherwise, we initialize it with a zero
vector and generate the array with the dimensions 32 × 1 × 28 × 14.

Overall, using Word2Vec for character embeddings can be an interesting approach,
but it is important to carefully consider the potential benefits and drawbacks for a given
task and dataset. Other methods, such as training character embeddings directly using a
neural network, may be more appropriate in some cases. And here there is a place for
other transformers like BERT et al.

Figure 6. The construction of the adjacency matrix.

Once we initialize the Matrix, we can create the filter by adding two embedding
vectors of the characters C[i] and V[j] in case a[i,j] is 1; otherwise, we initialize it with a zero
vector and generate the array with the dimensions 32 × 1 × 28 × 14.

Overall, using Word2Vec for character embeddings can be an interesting approach,
but it is important to carefully consider the potential benefits and drawbacks for a given
task and dataset. Other methods, such as training character embeddings directly using a
neural network, may be more appropriate in some cases. And here there is a place for other
transformers like BERT et al.

Big Data Cogn. Comput. 2023, 7, 132 11 of 16

3.5. Model

We used the standard DS2 model [25] with architectural and methodological modifica-
tions. DeepSpeech2 uses a deep neural network architecture consisting of an acoustic model
and a language model. The acoustic model is responsible for converting input audio signals
into a sequence of phonetic representations or symbol-level representations. It usually
consists of several levels of bidirectional RNNs to fix time dependencies in the input charac-
teristics of the spectrogram. The input data for the DeepSpeech2 model are a spectrogram
representing an audio signal. The audio signal is divided into small time windows, and
a spectrogram is calculated for each window using methods such as short-term Fourier
transform (STFT). The spectrogram provides a representation of the audio signal in the
frequency domain, which is then used as input data for the acoustic model. Convolutional
layers: The encoder of this model has convolutional layers which are effective at extracting
features from the raw audio signals. These layers train to identify patterns in the speech
signal that are important for speech recognition, such as phonemes, syllables, and words.
Convolutional neural networks tend to increase the density of information per neuron from
the lower layers to the higher ones. The change concerns the convolutional subsampling
layer, for this, we use two different convolutional networks with the same dimensions; only
with the difference of the activation function and a fixed filter in one of them. And these
fixed filters were initiated using character embedding vectors as described in the section
above.

Therefore, it is useful to reduce the core size when reaching deeper layers. Thus, we
gradually reduced the size of the cores, and in the first layer, the size is 28 × 14, which is
due to the number of consonants and vowels in the Kazakh language (Figure 7).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 11 of 17

3.5. Model
We used the standard DS2 model [25] with architectural and methodological modifi-

cations. DeepSpeech2 uses a deep neural network architecture consisting of an acoustic
model and a language model. The acoustic model is responsible for converting input au-
dio signals into a sequence of phonetic representations or symbol-level representations. It
usually consists of several levels of bidirectional RNNs to fix time dependencies in the
input characteristics of the spectrogram. The input data for the DeepSpeech2 model are a
spectrogram representing an audio signal. The audio signal is divided into small time
windows, and a spectrogram is calculated for each window using methods such as short-
term Fourier transform (STFT). The spectrogram provides a representation of the audio
signal in the frequency domain, which is then used as input data for the acoustic model.
Convolutional layers: The encoder of this model has convolutional layers which are effec-
tive at extracting features from the raw audio signals. These layers train to identify pat-
terns in the speech signal that are important for speech recognition, such as phonemes,
syllables, and words. Convolutional neural networks tend to increase the density of infor-
mation per neuron from the lower layers to the higher ones. The change concerns the con-
volutional subsampling layer, for this, we use two different convolutional networks with
the same dimensions; only with the difference of the activation function and a fixed filter
in one of them. And these fixed filters were initiated using character embedding vectors
as described in the section above.

Therefore, it is useful to reduce the core size when reaching deeper layers. Thus, we
gradually reduced the size of the cores, and in the first layer, the size is 28 × 14, which is
due to the number of consonants and vowels in the Kazakh language (Figure 7).

Figure 7. Encoder.

The LSTM in the encoder of this model is a type of neural network that is good at
processing sequential data. In speech recognition, RNNs can learn to capture the temporal
dependencies between phonemes and words, which is important for accurately transcrib-
ing speech. The decoder of this model has an attention mechanism that helps it focus on
the most relevant parts of the input sequence. This is important because, in speech recog-
nition, different parts of the audio signal may be more informative for different parts of

Figure 7. Encoder.

The LSTM in the encoder of this model is a type of neural network that is good at
processing sequential data. In speech recognition, RNNs can learn to capture the temporal
dependencies between phonemes and words, which is important for accurately transcribing
speech. The decoder of this model has an attention mechanism that helps it focus on the
most relevant parts of the input sequence. This is important because, in speech recognition,
different parts of the audio signal may be more informative for different parts of the

Big Data Cogn. Comput. 2023, 7, 132 12 of 16

transcription. Dropout is a regularization technique that is used to prevent overfitting. It
randomly drops out some of the neurons during training, which forces the model to learn
more robust features. This can help prevent the model from memorizing the training data
and can improve its ability to generalize to new data.

The combination of convolutional layers, RNNs, attention, and dropout make the
Seq2Seq model a powerful and effective approach for speech recognition.

As we know, if Conv2D filters are untrainable, it means that the weights of these
filters are fixed and will not be updated during training. In this case, the input distribution
to the Conv2D layer will remain constant throughout training, and there may not be a
significant benefit to using BatchNorm. However, we have other layers in our model that
are trainable, such as RNN layers and other convolutional layers with trainable filters; using
BatchNorm after the untrainable Conv2D layer could still be beneficial. This is because the
input distribution to these layers will change during training, and BatchNorm can help to
normalize the input and improve performance.

Also in the decoder, after GRU layers in the embedding layer, we initiated weights
with actual embedding vectors of the Kazakh characters (Figure 8).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 17

the transcription. Dropout is a regularization technique that is used to prevent overfitting.
It randomly drops out some of the neurons during training, which forces the model to
learn more robust features. This can help prevent the model from memorizing the training
data and can improve its ability to generalize to new data.

The combination of convolutional layers, RNNs, attention, and dropout make the
Seq2Seq model a powerful and effective approach for speech recognition.

As we know, if Conv2D filters are untrainable, it means that the weights of these
filters are fixed and will not be updated during training. In this case, the input distribution
to the Conv2D layer will remain constant throughout training, and there may not be a
significant benefit to using BatchNorm. However, we have other layers in our model that
are trainable, such as RNN layers and other convolutional layers with trainable filters;
using BatchNorm after the untrainable Conv2D layer could still be beneficial. This is be-
cause the input distribution to these layers will change during training, and BatchNorm
can help to normalize the input and improve performance.

Also in the decoder, after GRU layers in the embedding layer, we initiated weights
with actual embedding vectors of the Kazakh characters (Figure 8).

Figure 8. Decoder.

It is worth noting that the advantage of using fixed filters in subsampling layers is
that they can effectively reduce the spatial dimensionality of the input, which helps to
reduce the computational complexity of the model and can prevent overfitting. Addition-
ally, using fixed filters means that the model has fewer parameters to learn, which can
help to improve the model’s generalization performance.

However, there are some disadvantages to using fixed filters in subsampling layers.
For example, fixed filters may not be able to capture all of the relevant features in the
input, particularly if the input contains complex patterns or textures. Additionally, fixed
filters may not be able to adapt to different input distributions, which can limit the model’s
ability to generalize to new data.

We also tried using character embedding vectors at the embedding layer in the de-
coder, and when initializing and remaining unchanged, the CER was 6% worse than when
randomly initializing weights, but when we made these weights unfixed, the CER accel-
erated its downward movement.

Figure 8. Decoder.

It is worth noting that the advantage of using fixed filters in subsampling layers is that
they can effectively reduce the spatial dimensionality of the input, which helps to reduce
the computational complexity of the model and can prevent overfitting. Additionally, using
fixed filters means that the model has fewer parameters to learn, which can help to improve
the model’s generalization performance.

However, there are some disadvantages to using fixed filters in subsampling layers.
For example, fixed filters may not be able to capture all of the relevant features in the input,
particularly if the input contains complex patterns or textures. Additionally, fixed filters
may not be able to adapt to different input distributions, which can limit the model’s ability
to generalize to new data.

We also tried using character embedding vectors at the embedding layer in the decoder,
and when initializing and remaining unchanged, the CER was 6% worse than when ran-
domly initializing weights, but when we made these weights unfixed, the CER accelerated
its downward movement.

Big Data Cogn. Comput. 2023, 7, 132 13 of 16

3.6. Comparison Results on the Datasets

All experiments were conducted in 20 epochs. We first used a standard DeepSpeech2
model in our dataset. The model has an encoder and decoder with a three-layer RNN
164 hidden size. The training process can be observed in Figure 9.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 17

3.6. Comparison Results on the Datasets
All experiments were conducted in 20 epochs. We first used a standard DeepSpeech2

model in our dataset. The model has an encoder and decoder with a three-layer RNN 164
hidden size. The training process can be observed in Figure 9.

Figure 9. Original DeepSpeech2 model.

To concretize the comparisons, we selected a model with a simplified architecture:
an encoder and decoder with a two-layer RNN 96 hidden size. The training process can
be observed in Figure 10.

Figure 10. Simplified model.

And as a result, the model we chose showed a good result, comparable with other
experiments, despite the fact that the model has a more simplified architecture and fewer
trainable parameters. The training process can be observed in Figure 11.

Figure 9. Original DeepSpeech2 model.

To concretize the comparisons, we selected a model with a simplified architecture: an
encoder and decoder with a two-layer RNN 96 hidden size. The training process can be
observed in Figure 10.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 17

3.6. Comparison Results on the Datasets
All experiments were conducted in 20 epochs. We first used a standard DeepSpeech2

model in our dataset. The model has an encoder and decoder with a three-layer RNN 164
hidden size. The training process can be observed in Figure 9.

Figure 9. Original DeepSpeech2 model.

To concretize the comparisons, we selected a model with a simplified architecture:
an encoder and decoder with a two-layer RNN 96 hidden size. The training process can
be observed in Figure 10.

Figure 10. Simplified model.

And as a result, the model we chose showed a good result, comparable with other
experiments, despite the fact that the model has a more simplified architecture and fewer
trainable parameters. The training process can be observed in Figure 11.

Figure 10. Simplified model.

And as a result, the model we chose showed a good result, comparable with other
experiments, despite the fact that the model has a more simplified architecture and fewer
trainable parameters. The training process can be observed in Figure 11.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 14 of 17

Figure 11. Simplified model with fixed filters.

Table 2 presents the results of the experiments conducted using different architectures. In
this comparison, we assessed the models based on their Character Error Rate (CER), Loss, Number
of Parameters, and Trained Model Physical Size.

Table 2. The results of the experiments.

Model Number of Param-
eters LOSS CER Trained Model

Physical Size (kB)
 Train Test Train Test

DeepSpeech2 5,979,558 0.0619 0.062 3.8314 6.144 52,346
Simplified model without

fixed filters
2,645,870 0.066 0.07 6.35 6.63 21,428

Simplified model with fixed
filters

905,550 0.065 0.072 5.48 6.61 17,428

The simplified model with fixed filters, which includes both a spectrogram and symbol-
level information using a hybrid CNN architecture, has an advantage for several reasons.

Firstly, the use of both a spectrogram and information at the symbol level allows for
a more comprehensive analysis of audio data, which leads to an increase in the accuracy
of speech recognition. Using convolutional filters to extract both spectrogram objects and
symbolic objects, the model is able to capture both the acoustic and linguistic features of
the speech signal, which leads to more accurate transcription.

Secondly, an additional filter, which was installed in accordance with the embedding
vectors of the symbols of the Kazakh language, helps the model to better recognize the
specific phonetic characteristics of the language. This filter acts as a kind of language layer
that increases the ability of the model to recognize the unique features of the Kazakh lan-
guage.

Finally, using a combination of supervised and unsupervised learning methods al-
lows us to train the model more effectively. By using a labeled speech set to train a speech
recognition model and an unlabeled dataset to train character-level filters, the model can
learn from more data, which increases its overall accuracy.

These factors contribute to the superiority of the proposed methodology over the al-
ternative architecture without these changes or it has the same accuracy with fewer pa-
rameters compared to larger neural networks. The approach resulted in a reduction in the
model’s weight by 66.7% while maintaining its relative accuracy. The performance of the
model was evaluated using a test sample, which revealed a CER that was 7.6% lower than
that of existing models. These results demonstrate state-of-the-art performance and vali-
date the effectiveness of the proposed architectural solution, which enables deployment
of the model on platforms with limited computing resources.

Figure 11. Simplified model with fixed filters.

Big Data Cogn. Comput. 2023, 7, 132 14 of 16

Table 2 presents the results of the experiments conducted using different architectures.
In this comparison, we assessed the models based on their Character Error Rate (CER),
Loss, Number of Parameters, and Trained Model Physical Size.

Table 2. The results of the experiments.

Model Number of
Parameters LOSS CER Trained Model

Physical Size (kB)

Train Test Train Test

DeepSpeech2 5,979,558 0.0619 0.062 3.8314 6.144 52,346

Simplified model
without fixed filters 2,645,870 0.066 0.07 6.35 6.63 21,428

Simplified model
with fixed filters 905,550 0.065 0.072 5.48 6.61 17,428

The simplified model with fixed filters, which includes both a spectrogram and symbol-
level information using a hybrid CNN architecture, has an advantage for several reasons.

Firstly, the use of both a spectrogram and information at the symbol level allows for
a more comprehensive analysis of audio data, which leads to an increase in the accuracy
of speech recognition. Using convolutional filters to extract both spectrogram objects and
symbolic objects, the model is able to capture both the acoustic and linguistic features of
the speech signal, which leads to more accurate transcription.

Secondly, an additional filter, which was installed in accordance with the embedding
vectors of the symbols of the Kazakh language, helps the model to better recognize the
specific phonetic characteristics of the language. This filter acts as a kind of language
layer that increases the ability of the model to recognize the unique features of the Kazakh
language.

Finally, using a combination of supervised and unsupervised learning methods allows
us to train the model more effectively. By using a labeled speech set to train a speech
recognition model and an unlabeled dataset to train character-level filters, the model can
learn from more data, which increases its overall accuracy.

These factors contribute to the superiority of the proposed methodology over the
alternative architecture without these changes or it has the same accuracy with fewer
parameters compared to larger neural networks. The approach resulted in a reduction in
the model’s weight by 66.7% while maintaining its relative accuracy. The performance of
the model was evaluated using a test sample, which revealed a CER that was 7.6% lower
than that of existing models. These results demonstrate state-of-the-art performance and
validate the effectiveness of the proposed architectural solution, which enables deployment
of the model on platforms with limited computing resources.

4. Conclusions

In the course of the study, we collected a transcribed audio corpus in the Kazakh
language, with an overall duration of about 554 h. And the corpus is distinguished by its
quality and validation and is suitable for the development of various modules related to
speech tasks. The current audio corpus was used to develop a speech recognition model in
the Kazakh language in order to enable deployment on devices with limited computing
resources.

A model, DeepSpeech2, was chosen as the base module, and we applied architectural
changes. According to our approach, incoming spectrograms pass through an additional
filter (a CNN with a fixed filter). To incorporate character-level information into the
speech recognition model, we used a hybrid CNN architecture that combines filters for
both spectrogram characteristics and character-level information. This architecture takes a
spectrogram as input and then applies convolutional filters to extract both spectrogram
objects and symbolic objects. The additional filter was set in accordance with the embedding

Big Data Cogn. Comput. 2023, 7, 132 15 of 16

vectors of symbols of the Kazakh language. This language-specific layer improved the
recognition capabilities of the model, especially considering the subtleties of Kazakh
phonetics. We used a combination of supervised and unsupervised learning methods, such
as using a labeled speech set to train a speech recognition model and using unsupervised
learning on an unmarked set of texts to train filters at the character level. And this approach
reduced the weight of the trained model by 66.7 percent while maintaining the relative
accuracy of the model (in the test sample, the CER is lower by 7.6 percent). We have
shown that our approach provides state-of-the-art performance on the dataset significantly
superior to existing models. The results demonstrate the effectiveness of the architectural
solution proposed by us and provide the possibility of deploying the model on platforms
with limited computing resources. And this approach can be applied to other languages as
well.

Our approach, which combines spectrogram- and symbol-level information, as well
as symbol-level filters, has demonstrated the most up-to-date performance in our dataset.
Moving forward, future research may focus on the following steps:

1. Real-time systems and embedded systems: Expanding the deployment capabilities of
our model, it is extremely important to optimize the architecture for real-time data
processing and implement it on platforms with limited resources. Such optimization
would allow for smooth integration with applications such as voice assistants, mobile
devices, and Internet of Things (IoT) devices.

2. Low-resource scenarios: Expanding the applicability of the model developed by us to
low-resource scenarios is a valuable direction for further research. To make effective
use of limited annotated data and to prepare accurate speech recognition models,
methods such as unsupervised or partially supervised learning, active learning, and
multi-frame learning should be explored.

Author Contributions: Conceptualization, G.M.; methodology, N.K.; software, N.K.; validation,
G.M.; formal analysis, N.K.; investigation, M.M. and A.S.; resources, N.K.; data curation, N.K.;
writing—original draft preparation, N.K.; writing—review and editing, G.M.; visualization, G.M.;
supervision, M.M.; project administration, A.S.; funding acquisition, M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the Committee of Science of the Republic of Kazakhstan
AR09261344 “Development of methods for automatic extraction of geospatial objects from het-
erogeneous sources for information support of geographic information systems” (2021–2023).

Data Availability Statement: The data supporting the reported results in this study have been made
publicly available on OpenSLR, a platform dedicated to hosting speech and language resources. The
Kazakh Speech Dataset (KSD) can be accessed online at: http://www.openslr.org/140/ (accessed on
9 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80,

9411–9457. [CrossRef]
2. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.

Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process.
Mag. 2012, 29, 82–97. [CrossRef]

3. Ryssaldy, K. Problems of the Kazakh Language as the State Language in Modern Kazakhstan. In Kazakh in Post-Soviet Kazakhstan;
Harrassowitz Verlag: Wiesbaden, Germany, 2015; pp. 27–34.

4. Badanbekkyzy, Z.; Yeshimbetova, Z. Inventory of Phonemes in Kazakh Language. Int. J. Res. Humanit. Arts Lit. (IMPACT:IJRHAL)
2014, 2, 95–102.

5. McCollum, A.G.; Chen, S. Kazakh. J. Int. Phon. Assoc. 2020, 51, 276–298. [CrossRef]
6. Abdullah, H.; Warren, K.; Bindschaedler, V.; Papernot, N.; Traynor, P. SoK: The Faults in Our ASRs: An Overview of Attacks

against Automatic Speech Recognition and Speaker Identification Systems. In 2021 IEEE Symposium on Security and Privacy (SP);
IEEE: Piscataway, NJ, USA, 2021.

http://www.openslr.org/140/
https://doi.org/10.1007/s11042-020-10073-7
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1017/S0025100319000185

Big Data Cogn. Comput. 2023, 7, 132 16 of 16

7. Wang, J.; Pan, C.; Jin, H.; Singh, V.; Jain, Y.; Hong, J.I.; Majidi, C.; Kumar, S. RFID Tattoo. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2019, 3, 155. [CrossRef]

8. Gondi, S.; Pratap, V. Performance Evaluation of Offline Speech Recognition on Edge Devices. Electronics 2021, 10, 2697. [CrossRef]
9. Oh, Y.R.; Park, K.; Park, J.G. Fast Offline Transformer-based End-to-end Automatic Speech Recognition for Real-world Applica-

tions. ETRI J. 2021, 44, 476–490. [CrossRef]
10. Gales, M.; Young, S. The Application of Hidden Markov Models in Speech Recognition. Found. Trends®Signal Process. 2007,

1, 195–304. [CrossRef]
11. Mahmood, A.; Utku, K. Speech recognition based on convolutional neural networks and MFCC algorithm. Adv. Artif. Intell. Res.

2021, 1, 6–12.
12. Gondi, S.; Pratap, V. Performance and Efficiency Evaluation of ASR Inference on the Edge. Sustainability 2021, 13, 12392. [CrossRef]
13. Wongpatikaseree, K.; Singkul, S.; Hnoohom, N.; Yuenyong, S. Real-Time End-to-End Speech Emotion Recognition with Cross-

Domain Adaptation. Big Data Cogn. Comput. 2022, 6, 79. [CrossRef]
14. Meng, W.; Yolwas, N. A Study of Speech Recognition for Kazakh Based on Unsupervised Pre-Training. Sensors 2023, 23, 870.

[CrossRef] [PubMed]
15. Khassanov, Y.; Mussakhojayeva, S.; Mirzakhmetov, A.; Adiyev, A.; Nurpeiissov, M.; Varol, H.A. A Crowdsourced Open-Source

Kazakh Speech Corpus and Initial Speech Recognition Baseline. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021.

16. Mamyrbayev, O.Z.; Oralbekova, D.O.; Alimhan, K.; Nuranbayeva, B.M. Hybrid End-to-End Model for Kazakh Speech Recognition.
Int. J. Speech Technol. 2022, 10, 6. [CrossRef]

17. Mamyrbayev, O.; Oralbekova, D.; Kydyrbekova, A.; Turdalykyzy, T.; Bekarystankyzy, A. End-to-end model based on RNN-T
for Kazakh speech recognition. In Proceedings of the 2021 3rd International Conference on Computer Communication and the
Internet (ICCCI), Nagoya, Japan, 25–27 June 2021.

18. Mussakhojayeva, S.; Khassanov, Y.; Varol, H.A. KazakhTTS2: Extending the Open-Source Kazakh TTS Corpus With More Data,
Speakers, and Topics. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 6–10
June 2022; European Language Resources Association: Marseille, France, 2022; pp. 5404–5411.

19. Mamyrbayev, O.; Turdalyuly, M.; Mekebayev, N.; Alimhan, K.; Kydyrbekova, A.; Turdalykyzy, T. Automatic recognition of
kazakh speech using deep neural networks. In Proceedings of the 11th Asian Conference on Intelligent Information and Database
Systems (ACIIDS), Yogyakarta, Indonesia, 8–11 April 2019; pp. 465–474. [CrossRef]

20. Khomitsevich, O.; Mendelev, V.; Tomashenko, N.; Rybin, S.; Medennikov, I.; Kudubayeva, S. A Bilingual Kazakh-Russian System
for Automatic Speech Recognition and Synthesis. In Speech and Computer; Springer International Publishing: Cham, Switzerland,
2015; pp. 25–33. [CrossRef]

21. Splend Apps. Voice Recorder Pro. Apps on Google Play. Available online: https://play.google.com/store/apps/details?id=com.
splendapps.voicerec&pli=1 (accessed on 30 March 2023).

22. Kazakh Speech Dataset (KSD). Available online: http://www.openslr.org/140/ (accessed on 9 May 2023).
23. Lee, S.; Yu, H.; Yang, H.; Song, I.; Choi, J.; Yang, J.; Lim, G.; Kim, K.-S.; Choi, B.; Kwon, J. A Study on Deep Learning Application

of Vibration Data and Visualization of Defects for Predictive Maintenance of Gravity Acceleration Equipment. Appl. Sci. 2021, 11,
1564. [CrossRef]

24. Naseem, U.; Razzak, I.; Khan, S.K.; Prasad, M. A Comprehensive Survey on Word Representation Models: From Classical to
State-Of-The-Art Word Representation Language Models. arXiv 2020, arXiv:2010.15036. Available online: https://arxiv.org/abs/
2010.15036 (accessed on 12 February 2023). [CrossRef]

25. Amodei, D.; Anubhai, R.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Chen, J.; Chrzanowski, M.; Coates, A.; Diamos,
G.; et al. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. arXiv 2015, arXiv:1512.02595. Available online:
https://arxiv.org/abs/1512.02595 (accessed on 25 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3369812
https://doi.org/10.3390/electronics10212697
https://doi.org/10.4218/etrij.2021-0106
https://doi.org/10.1561/2000000004
https://doi.org/10.3390/su132212392
https://doi.org/10.3390/bdcc6030079
https://doi.org/10.3390/s23020870
https://www.ncbi.nlm.nih.gov/pubmed/36679666
https://doi.org/10.1007/s10772-022-09983-8
https://doi.org/10.1007/978-3-030-14802-7_40
https://doi.org/10.1007/978-3-319-23132-7_3
https://play.google.com/store/apps/details?id=com.splendapps.voicerec&pli=1
https://play.google.com/store/apps/details?id=com.splendapps.voicerec&pli=1
http://www.openslr.org/140/
https://doi.org/10.3390/app11041564
https://arxiv.org/abs/2010.15036
https://arxiv.org/abs/2010.15036
https://doi.org/10.1145/3434237
https://arxiv.org/abs/1512.02595

	Introduction
	Related Works
	Data Collection and Cleaning
	Text Collection
	Audio Collection
	Character Embedding in the Corpus
	Constructing a Filter from Embedding Vectors for a Convolutional Layer
	Model
	Comparison Results on the Datasets

	Conclusions
	References

