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Abstract: A cryptocurrency is a non-centralized form of money that facilitates financial transactions
using cryptographic processes. It can be thought of as a virtual currency or a payment mechanism for
sending and receiving money online. Cryptocurrencies have gained wide market acceptance and
rapid development during the past few years. Due to the volatile nature of the crypto-market, cryp-
tocurrency trading involves a high level of risk. In this paper, a new normalized decomposition-based,
multi-objective particle swarm optimization (N-MOPSO/D) algorithm is presented for cryptocur-
rency algorithmic trading. The aim of this algorithm is to help traders find the best Litecoin trading
strategies that improve their outcomes. The proposed algorithm is used to manage the trade-offs
among three objectives: the return on investment, the Sortino ratio, and the number of trades. A
hybrid weight assignment mechanism has also been proposed. It was compared against the trading
rules with their standard parameters, MOPSO/D, using normalized weighted Tchebycheff scalar-
ization, and MOEA/D. The proposed algorithm could outperform the counterpart algorithms for
benchmark and real-world problems. Results showed that the proposed algorithm is very promising
and stable under different market conditions. It could maintain the best returns and risk during both
training and testing with a moderate number of trades.

Keywords: algorithmic trading; cryptocurrency; decomposition principle; evolutionary algorithms
(EAs); MOEA/D; multi-objective optimization; COVID-19

1. Introduction

The crypto market environment has emerged as the most significant application of
blockchain innovation in financial trading. Cryptocurrencies are advanced or virtual
monetary forms supported by cryptographic frameworks. They enable secure online
payment without the utilization of a third party or middleman. The term “crypto” refers
to the different encryption calculations and cryptographic strategies that protect these
payment operations. The crypto market is highly volatile due to the high fluctuations of
asset values within a single day [1]. This volatility has a significant impact on the traders’
returns. That is why there is always a need for new, powerful algorithms that help traders
improve their outcomes.

The cryptocurrency algorithmic trading models are classified into machine-learning-
based models, portfolio optimization models, and trading strategy optimization models.
Different researchers studied the deployment of a variety of machine-learning-based models
in order to examine the predictability of cryptocurrencies using different time frames [2–4].
Gyamerah [5] proposed a hybrid model that uses both Support Vector Machine (SVM)
and Technical Analysis (TA) tools to forecast the Bitcoin intraday price. In [6], Carbó
investigated using machine learning techniques to identify the BTC pricing determinants.
Deep learning models are also found in the literature in order to predict the fluctuations of
cryptocurrency pricing; [7–10]. Portfolio optimization means the selection of the optimal
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portfolio or the optimal collection of assets from all those under consideration [11]. Portfolio
optimization has been abundantly presented in the literature [11–15]. Trading strategy
optimization means the optimization of the parameters of the trading rules used to examine
historical trends in order to infer future behavior. With the help of one or more trading
rules, the traders can determine the best entry and exit points, i.e., long and short positions.
Karahan et al. [16] studied the incorporation of reinforcement learning as well as a collective
decision optimization algorithm for Bitcoin (BTC) trading. The aim of their study is to maxi-
mize profits. Leung et al. [17] proposed an intelligent system for generating cryptocurrency
trading signals that are developed using the sentiments exhibited in market tweets.

Despite its importance and widespread use, trading rule optimization is not frequently
found in the literature. One of the main objectives of this research is to test the ability of
optimized algorithmic trading strategies to hold on during different market conditions.

Cryptocurrency trading is a Multi-Objective Optimization (MOO) problem where
there is more than one objective that needs to be optimized. Amongst these objectives are
the return, the trading risks, the number of trades, the ratio between positive negative
trades, the Maximum Draw-Down (MDD), which quantifies the maximum drop in an
investment or asset’s value within a certain period, etc. [18].

The MOO problem can be described as shown in [19,20]:

Maximize F(x) = ( f1 (x) , f2(x), . . . , fN (x))Tsubject to x ∈ $ (1)

where N is the number of objectives, $ is the variable space or decision space, and F:
$→ <N is the objective space. The achievable objective set can be characterized as

{ F(x)| x ∈ $ }. Due to the conflicts among the objectives, the solution for such problems is
not a single point, but rather a set of non-dominated points, i.e., the Pareto Set (PS) [21,22].

A solution is considered a non-dominated one when the advancement of one objective
leads to the weakening of at least one of the other objectives. For any solution A to be a
Pareto Optimal (PO), it should not be dominated by another solution. It can be said that
solution A dominates another solution B in the case that A is not worse than B for any of
the objectives under study, and A is better than B for at least one objective [21]. The Pareto
Front (PF) is the set that is constructed by mapping the non-dominated points into the
objective space, whereas the PS contains the PO points in the decision space.

The MOO algorithms can be categorized as algorithms based on Pareto-dominance
and algorithms based on decomposition [20].

Multi-Objectives Evolutionary Algorithms using Decomposition (MOEA/D) is a
promising algorithm used to resolve both multi- and many-objective optimization problems
(i.e., MOO problems withN ≥ 3). Zhang and Li [21] first introduced MOEA/D to overcome
the problems with dominance-based MOEAs, where they sometimes fail to handle many ob-
jective problems without a performance reduction. MOEA/D has demonstrated its simplic-
ity and superiority in solving complex problems. It separates the complex MOO problem
into a set of scalar Sub-Problems (SPs) with the help of a Scalarization Function (SF), also
called an aggregation function. A set of well-generated weight vectors, as well as a finely
selected SF, are the main factors that influence the performance of such an algorithm [21,22].

Due to the good performance shown by MOEA/D, different researchers have investi-
gated some improvements to the original algorithm. The research studies for MOEA/D can
be classified into four different categories: weight-generation strategies, the adaptation of
one or more SFs, the implementation of different variants of the original algorithm to solve
the challenges of more complex problems, and the application of MOEA/D algorithms to
real-world problems.

Some new Pareto adaptively weighted generation aspects have been presented, such as
paλ-MOEA/D [23], AWD-MOEA/D [24], MOEA/D-AWG [25], and MOEA/D-URAW [26].

New decomposition mechanisms were also found in the literature, either by using
new SFs, as shown in [27–29], or by using a collection of different SFs [30,31].

The decomposition method has been expanded to a larger number of EAs, such as
MOEA/DD-CMA [32] and MOEA/D-ACO [33]. The employment of a variety of novel
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operators to manage the diversity-convergence tradeoff has also been found in the literature,
such as Differential-Evolution (DE) [34], a Two-Phase with Niching mechanism MOEA/
D-TPN [35], and Hierarchical Decomposition (HD) [36].

MOEA/D was also applied to different application areas, such as network routing [37],
portfolio optimization [38,39], image segmentation [40], and aerospace applications [41].

This study aims to evaluate the ability of the decomposition-based algorithms to
enhance the performance of the cryptocurrency trading rules to help traders and investors
improve their outcomes and compare them with the original or standard trading rules over
a hardly predictable market condition, i.e., the COVID-19 pandemic.

In this paper, a decomposition-based Particle-Swarm-Optimization (MOPSO/D) al-
gorithm, using a new linearly normalized Augmented-Weighed-Tchebycheff (AWTCH)
scalarization method, has been proposed and applied to cryptocurrency trading strategy op-
timization. The AWTCH [42] is an updated version of the WTCH proposed by Zhang [21].
Normalization here is employed because the objective functions have extensively differ-
ent ranges. The algorithm is used to optimize the controlling parameters of a set of four
trading strategies named (Linear Weighted-Moving-Average, Bollinger-Bands, Stochastic
Relative-Strength-Index, and Smoothed Rate-of-Change). In addition, a new hybrid weight
generation strategy combining both systematic and random weight generation has also
been proposed. The hybrid weight strategy is proposed to resolve the shortcomings of the
systematic weight distribution proposed in [21] (as it fails to handle problems with complex
PFs [20]) in a simple yet efficient methodology. The algorithm is trained and tested for
the daily closing prices of Litecoin over two different periods. Litecoin was selected for
two reasons. The first is that it can validate more transactions per unit time as compared
to other cryptocurrencies. The second reason is that Litecoin has a low unit price, which
makes it the best choice for novice traders.

The basic contributions of this research are:

• This research is the first to address using decomposition-based optimization strategies
for cryptocurrency algorithmic trading.

• The proposed algorithm aims to find the best parameter set for each of the trading
strategies in order to enhance the accuracy of the generated trading signals and avoid
false signals.

• A new MOPSO/D has been proposed for the application at hand with two basic
contributions, i.e., a newly proposed normalized aggregation mechanism and a new
hybrid weight distribution mechanism.

• Furthermore, the algorithm is verified on some benchmark problems and compared
against some state-of-the-art algorithms, such as the original MOEA/D and Strength
Pareto Evolutionary Algorithm (SPEA2).

The following sections of this paper are organized as follows: Cryptocurrency algo-
rithmic trading principles are shown in Section 2. The original MOEA/D algorithm is
clarified in Section 3. The details of the proposed algorithm are presented in Section 4. The
proposed hybrid weight generation strategy is presented in Section 5. In Section 6, the
empirical results are shown, whereas the conclusions are viewed in Section 7.

2. Cryptocurrency Algorithmic Trading

Cryptocurrency investment involves a higher level of risk than other markets [43].
This risk arises from its volatile nature, where there is a wide range of fluctuations within
limited time intervals [43]. The algorithmic trading of cryptocurrencies plays a crucial role
in the world of digital currencies, providing numerous benefits and contributing to the
market’s overall development and efficiency.

The algorithmic trading strategy used in this paper is accomplished with the help of
four recommended technical indicators (TIs): Linear Weighted-Moving-Average (L-WMA),
Bollinger-Bands (BB), Stochastic Relative-Strength-Index (St-RSI), and Smoothed Rate-of-
Change (S-RoC). These indicators are mathematically based calculations that are used to
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generate trading signals (i.e., buy and sell signals) with the help of a set of controlling
parameters [44].

These indicators are important for traders for many reasons:

• They are frequently used by traders through trading platforms due to their simplicity
and understandability [44,45].

• They can help traders identify not only the upcoming trends but they can also reflect
the strength of these trends [44,46].

• They can be used either individually or with other trading strategies as confirmation
tools for trading decisions. For example, most of the portfolio optimization models
make their trading decisions based on one or more selected TIs [11,47,48].

• They are applicable for different types of markets, i.e., trending and sideways markets,
such that the indicators are classified into overlay indicators and window oscillators
suitable for trading and trending markets in sequence. The overlay indicators are
lagging indicators (they are called lagging because the signals are generated based on
price changes, such as Moving-Average (MA) indicators). The window oscillators are
leading indicators (leading because the signals are generated prior to price changes,
such as the RSI indicator) [44,46].

Each indicator has a set of standard parameters that were originally developed and
recommended by its creator [49]. With different market conditions, there is no guarantee
that these standard parameters could provide good profits or an acceptable level of risk [40].
Our aim here is to find the optimal indicators’ controlling parameters that simultaneously
optimize the set of selected objective functions.

The L-WMA [41] is a Moving-Average (MA) indicator. MA indicators are used to
find an updated price average, which helps to smooth and strip out the market’s sharp
fluctuations. The L-WMA uses a previously decided weight value, which gradually de-
creases from the latest data point to the oldest one [50,51]. The greater the weighting factor,
the more recent the pricing or data. The calculation for a L-WMA for an n-days timespan
is as follows:

LWMA =
(Price1 × n) + (Price2 × n− 1) + . . . + (Pricen−1 × 2)+(Pricen)

[n×(n+1)]
2

(2)

Trading based on MAs is performed according to the crosses against the original price
chart or against a longer-term MA. Crossing above the longer MA implies a long position
(buy), while crossing below it implies a short position (sell) [51,52]. The standard n-values
for double L-WMA are 20 and 50 days for short and long MAs, respectively.

Figure 1 shows the effect of the chosen parameters for the L-WMA indicator on the
final trading decisions. The two line charts represent the two L-WMAs, i.e., 20 and 50 days,
while the bar chart is the daily price chart, where the color of the bar represents the rise
or fall of the current price as compared to the previous one, i.e., red in case of a fall and
green in case of a raise. As shown, there are many areas of false signals (shown in ovals).
In these areas, the prices of buying are higher than those of selling, i.e., loss trade. This is
due to the inability of the indicator’s parameters to reflect market changes. The smaller the
number of days for the MA, the more sensitive the indicator is to market changes, but with
more chances for false or wrong signals, i.e., high risk [44,53]. On the other hand, a larger
number of days reduces the number of false signals at the expense of the sensitivity of the
indicator, which in turn could generate many delayed signals and miss a large amount
of profit [44]. This fact is common for all TIs. That is why the selection of the indicators’
parameters is a crucial decision in financial trading.
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Figure 1. The crossovers between 20- and 50-days L-WMA indicator for LTC/USD trading. (The red
line is for the short MA and the blue line is for the long MA, whereas the ovals show the areas of
false signals) (using Tradingview.com, accessed on 8 November 2023).

The BB [44] is a trading mechanism that employs two volatility bands: lower and upper
bands, such that these bands are calculated as positive and negative Standard Deviations
(STD) from a middle band. The middle band is typically calculated as the price Simple
MA (SMA) (here, the Exponentially-MA (EXMA) is used instead in order to improve the
accuracy). Trading using the BB is performed through the crossovers between the prices
with the two volatility bands, i.e., the upper and lower bands [52,54].

The volatility of the bands is directly proportional to the STD, such that the bands
expand with increasing volatility and contract otherwise [54]. The parameters that affect
the BB indicator’s performance are the middle-band timespan n, the STD lookback times-
pan s, and the STD multiplier mul. The standard parameter values for the BB indicator
are (20, 20, 2) for n, s, and mul consequently. The three bands are calculated as shown
below, where the EXMA(n) is calculated the same as WMA with a higher weight on the
latest data point, i.e., the current day, and equal weights on the rest of the days [44,53].

BBmiddle = EXMA(n) (3)

BBupper = MiddleBand + STD(s)×mul (4)

BBlower = MiddleBand − STD(s)×mul (5)

St-RSI [44] is a combined indicator that applies the Stochastic-Oscillator indicator to
the RSI value, where RSI is another indicator that compares the change in the current price
values to the prices of the recent past. The output is a value in the range between 0 and 100
that is used to determine the over-sold and over-bought layers. Upward and downward
crossovers with these layers provide the buy and sell signals, consequently [52]. The value
of St-RSI [44] is calculated as follows:

StRSI =
RSIcurrent − RSImin(t)

RSImax(t) − RSImin(t)
(6)

Tradingview.com
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RSIcurrent = 100− 100

1 +
Avggain(n)
Avgloss(n)

(7)

Such that n is the RSI timespan, t is the St-RSI timespan, and Avggain(n) and Avgloss(n)
are the average gains and losses during the past n-days. RSIcurrent is the current RSI value
whereas RSImax(t) and RSImin(t) are the maximum and the minimum values of the RSI
during the past t days. The standard St-RSI parameter values are (14, 14, 30, 70), such that
the first two values are the values of both n and t, whereas the last two values are the values
of the over-sold and over-bought levels in sequence.

The S-RoC [44] is also a combined indicator that applies the RoC to the EXMA value
instead of the price data value. The output is a value in the range ±100. The power of this
indicator is that it measures the trends’ strength by comparing the current EXMA value to
the value of the EXMA calculated for the previous n days. The S-RoC is calculated as shown:

SRoC =
EXMAcurrent − EXMAn−days ago

EXMAn−days ago
× 100 (8)

The trading signals are generated through crossovers above and below a center line
(typically a zero line) [52]. In this research, crossovers with over-bought and over-sold
levels are used instead to generate trading signals. In this case, two additional parameters
need to be optimized i.e., overbought and oversold levels. The standard parameter values
for S-RoC are 14 days for the RoC calculation and 20 days for the EXMA.

These indicators have been selected in order to cover the two types of indicators, such
that the first two (WMA and BBs) are classified as overlay indicators, whereas the last two
(St-RSI and S-RoC) are classified as window oscillators [44].

During the optimization process, three objective functions have been considered: the
Return on Investment (ROI), Sortino-Ratio (SOR), and the number of trades (TR). The ROI
is the ratio between the net gain of the investment and the investment costs [55].

ROI =
Netgain

Investment costs
× 100 (9)

SOR is a statistical measurement used to evaluate the riskiness of an investment. It is
one of the powerful tools used to evaluate the performance of the trading strategy, where
high SOR values could reveal the stability of the selected strategy. It is calculated as the
investment’s return relative to its downside volatility [56].

SOR =
r− r f

σd
(10)

where r is the aggregated return value obtained by applying the trading strategy, r f is the
risk-free rate, and σd is the downward standard deviation of returns.

The third objective function used is a calculation of the number of trades. The aim
here is to minimize the number of trades, which in turn minimizes the trading costs.

The selected strategies are applied to the daily closing prices of Litecoin (LTC), which
is one of the top three cryptocurrency trading volumes [18]. Two different time intervals
were used. The first interval, starting from 3 January 2017 to 3 January 2019, was selected
for training, while the second interval, starting from 3 January 2019 to 3 January 2021, was
selected for testing, with 1460 data points divided equally between training and testing.
These intervals were selected to test the robustness of the proposed methodology during the
COVID-19 pandemic, as the crypto-market was highly influenced during that period [57].

3. Preliminaries of MOEA/D

In MOEA/D, the MOO problem is separated into a set of simultaneous single-objective
Sub-Problems (SPs) with the help of an aggregation mechanism (i.e., a Scalarization Func-
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tion (SF)). Several different SFs have been found in the literature. For example, Zhang [21]
has evaluated three different SFs: Penalty-Boundary-Intersection (PBI), Weighted-Sum
(WS), and Weighted-Tchebycheff (WTCH). Some other functions were also found in [28,30].

The Weighted Tchebycheff (WTCH), or weighted minimum-maximum, is one of the
most suggested SFs as it is suitable for both convex and nonconvex problems [58]. As
represented by Zhang [21], the PF of the MOO problem, shown in Equation (1), can be
approximated by simplifying the problem into a set of SPs, such that the objective function
of the jth SP can be shown as follows:

MinimizegWTCH(x|wj, r∗) = max
1≤i≤N

{
wj

i | fi(x)− r∗i |
}

(11)

where r∗ =
(
r∗1 , r∗2 , . . . . . . r∗N

)T is the reference point, i.e., r∗i = max{ fi(x)|x ∈ $} for
i = 1→ N objectives. As previously mentioned, $ is the decision space. For each SP,

there exists a different weight vector w = {w1, w2, . . . .wN }, S.T wj
i ≥ 0, and

N
∑

i=1
wi = 1.

In [21], Zhang proposed a systematic weight distribution architecture, such that each
weight vector w ∈

{
0, 1

H , 2
H , . . . , H

H

}
, where H is a regulating integer parameter greater

than 0. The number of SPs or weight vectors m = CN−1
H+N−1 (such that C denotes the

mathematical combinations).
A neighborhood mechanism is employed such that each SP is optimized in accordance

with its neighbors.
The neighborhood of the jth SP contains the set of SPs that have weight vectors T

distance away from j, where T is the neighborhood size. The basic steps of the original
MOEA/D can be found in [21].

Due to the ability of the WTCH to solve various kinds of problems, different vari-
ants have been proposed to improve its performance [28,59]. The Augmented-Weighted-
Tchebycheff (AWTCH) is one of the variants of the WTCH with a controlling parameter (ρ)
that is provided in order to improve the quality of the generated non-dominated so-
lutions and to avoid the weak optimal ones, such that ρ is a very small value in the
range 0.001 to 0.1 [42]. The AWTCH is calculated as follows:

Minimize gAWTCH(x | wj, r∗) = max
1≤i≤N

{wj
i | fi(x)− r∗i |}+ ρ

N

∑
i=1
| fi(x)− r∗i | (12)

Some MOO problems have objectives that have extremely different ranges, which in
turn affect the overall performance. So, different normalization processes have been found
in the literature [60,61]. Linear normalization is a straightforward method that is simple
and efficient. The result of this normalization process is that all the objectives will have the
same range of values from 0 to 1. The linearly normalized form of the WTCH scalarization
method (N-WTCH) is shown as follows:

Minimize gN−WTCH(x | wj, r∗) = max
1≤i≤N

{wj
i

∣∣∣∣∣ fi(x)− rnad
i

r∗ − rnad
i

∣∣∣∣∣} (13)

Such that r∗ is the same as before, and rnad
i is the minimum value of the objective

space rnad
i = min{ fi(x)|x ∈ $}. As both r∗ and rnad

i are not previously known, they are
adaptively changed during each iteration [62].

4. The Proposed Algorithm

In this paper, a new decomposition-based Particle Swarm Optimization algorithm is
proposed. The Normalized MOPSO/D (NMOPSO/D) is based on a linear normalization
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process to the AWTCH scalarization approach. The normalized form of the AWTCH
(N-AWTCH) is calculated as:

Minimize gN−AWTCH(x | wj, r∗) = max
1≤i≤N

{wj
i

∣∣∣∣∣ fi(x)− rnad
i

r∗ − rnad
i

∣∣∣∣∣}+ ρ
N
∑
i=1

∣∣∣∣∣ fi(x)− rnad
i

r∗ − rnad
i

∣∣∣∣∣ (14)

The proposed algorithm (Algorithm 1) is used to optimize the parameters of a set
of four algorithmic trading paradigms over three objective functions. The optimization
process is performed using the MOPSO/D algorithm, where the algorithm first initializes
the particles’ positions, velocities, and personal and global best positions. Each particle
represents a separate SP, such that Pi(t) is the position of particle i at time t, while vi(t) is
the velocity of particle i at time t. For the application at hand, the particles’ positions are
the indicators’ parameters. Each particle is assigned a weight vector that is used for fitness
aggregation purposes. The Euclidean distance between each pair of particles, or SPs, is
calculated in order to determine the particles that lie in the same neighborhood.

The evolution of the algorithm is obtained through a certain number of iterations.
In order to find an optimum in the search space, the PSO formulation takes into account
how the particles interact and move as a swarm. Over time, the particles cluster into an
optimal location in the search space by using both exploration and exploitation. While the
particles try to enhance or gain from the known promising locations through exploitation,
the particles explore new areas of feasible space. Exploration and exploitation can be
achieved and controlled during the velocity update through the inertia weight ω as well
as the personal and global best constant accelerators (c1 and c2). The inertia component is
used for exploration principles as it is used to control the influence of the previous particle’s
velocity, i.e., search direction.

The personal and global best accelerators are used for exploitation purposes, such
that c1 is the accelerator value that limits the step towards the particle’s personal best
position Pi

Pbest, whereas c2 is used to limit the step toward the global best position Pi
Gbest.

The Pi
Pbest is the best position that the particle achieved through the past iterations (the one

that provided the best-aggregated fitness).
The Pi

Gbest is the best obtainable position among the neighborhood of particle i through
the past iterations. To improve the exploration facility of the proposed algorithm and avoid
premature convergence, a uniform mutation operator is applied to the particles’ positions
and then the related data structures, i.e., Pi

Pbest, Pi
Gbest, and reference point are updated. In

uniform mutation, the value to be mutated is exchanged with a new uniformly randomly
generated value within the predetermined range of each variable [63]. As the mutation
improves the diversity of the particles through the search process, it sometimes negatively
affects their convergence. To improve the exploitation of the algorithm and ensure con-
vergence, a repair strategy is proposed that re-evaluates the particle’s performance after
mutation and ensures that it is not decayed; if so, the effect of the mutation is reversed,
and the particle is returned to its previous position. An unbounded External Archive
(EA) is used to hold the final non-dominated solutions found through the search process.
Although using an unbounded archive increases computational complexity, it is very useful
in keeping all the non-dominated solutions and not losing good solutions, which in turn
improves diversity.

As shown in Figure 2, the algorithmic trader starts with randomly generated indicators’
parameters (particles’ positions) as well as a set of weight vectors. Applying the generated
parameters to the crypto market produces a set of buy-sell signals. Such that the signals
are generated based on the nature and the rules of every indicator (as shown in Section 2).
These signals in turn are used to evaluate the objective functions at hand i.e., ROI, SOR,
and trades.
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Algorithm 1: NMOPSO/D algorithm for cryptocurrency trading

Inputs:

• Cryptocurrency historical data.
• m: The swarm size (number of SPs).
• N : The number of objectives at hand (3 objectives i.e., the ROI, SOR, and #trades).
• T: The neighborhood size.
• A stopping condition (the stopping condition here is the number of iterations).

Output: External Archive (EA).
Steps:
Repeat for each indicator:

1. Initialization:

• Randomly generate a swarm of particles x1 → xm at random such that m is the swarm size where, xi is the current solution to
the ith sub problem SP.

• For each particle, initiate the current position Pi, the personal-best-position Pi
Pbest, and the global-best-position Pi

Gbest. Such
that Pi

Pbest and Pi
Gbest are initially set with the value of Pi.

• For each particle, initialize the velocity vi = 0.
• Initialize the reference point r.
• Initialize the set of weight vectors W as shown by Algorithm 2.
• Calculate the Euclidean distances for each pair of weight vectors.
• Define B(i) = {i1, · · · , iT}, such that B(i) is the set of neighbors for each SP where wi1 , · · · , wiT are the T closest weight vector

to wi.

2. Update:
For i = 1→ m, do

2.1 Calculate the aggregation function:

gN−AWTCH(x | wj, r∗) = max
1≤i≤N

{wj
i

∣∣∣ fi(x)−rnad
i

r∗−rnad
i

∣∣∣}+ ρ
N
∑

i=1

∣∣∣ fi(x)−rnad
i

r∗−rnad
i

∣∣∣
2.2 According to the gN−AWTCH, update Pi

Pbest and Pi
Gbest.

2.3 Update the reference point r.
2.4 Update the velocity as:

vi(t + 1) = ω vi(t) + c1r1

(
Pi

Pbest − Pi(t)
)
+ c2r2

(
Pi

Gbest − Pi(t)
)

Such that: ω is the inertia weight, c1 and c2 are two predetermined constant accelerators, r1, and r2 are two random variables
in the range [0, 1].

2.5 Update the current position as:
Pi(t + 1) = Pi(t) + vi(t + 1)

2.6 Apply mutation operator.
2.7 Repair.
2.8 Update the EA.
2.9 Update weight vectors W (Algorithm 2).
2.10 Update neighborhood B(i).

3. If the stopping criteria is met, then stop. Else go back to step 2.
4. Return EA.
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A fitness aggregation mechanism is then applied to aggregate the objectives. Based on
the aggregated value for each particle, the personal and global best positions are updated,
as well as the particles’ positions and velocities as shown in Algorithm 1. The same process
is repeated with the updated positions. The algorithm stops when it reaches the maximum
number of iterations. Finally, it returns the non-dominated solutions found during the
search process that are then applied to the testing set.

The Hybrid Weight Generation Mechanism

As previously mentioned, the weight assignment mechanism is one of the main factors
that affect the MOEA/D search process. Identical or poorly distributed weight vectors
lead to poor solutions that are unable to cover the entire PF [21,64]. The weight vector
generation approaches can be classified into systematic and random weight generation.

In systematic weight generation, the weights are constructed in repeated patterns to
ensure evenly distributed vectors over the PF. The systematic distribution works very well
in problems with regular or continuous PF; however, its performance reduces for problems
with complex or scattered PFs [65]. The other problem with systematic distribution is
that it sometimes provides similar or very close vectors, which in turn leads to redundant
solutions [12].

On the other hand, the random weight creation can provide a more thorough ex-
ploration of the search space since it generates vectors that are not necessarily equally
distributed across the PF. This in turn provides some unique and diverse solutions since
it creates vectors that are dissimilar to one another. The problem with random weight
generation is that there is no guarantee that the generated vectors could represent the entire
PF [12]. In real-world problems, the search complexity increases as the PF is scattered and
hardly covered in most cases. In such a scenario, a Pareto solution set to a challenging
subproblem cannot be located through a simple search. To handle this problem, a new
hybrid weight assignment mechanism has been proposed.

The proposed strategy merges both the systematic and random weight assignment
approaches in order to utilize the advantages of both of them in a single algorithm. The
proposed methodology allows to hit different random areas in the search space while
maintaining the systematic distribution mechanism.

As shown by Algorithm 2, the total number of subproblems is divided into two
partitions. In the first partition, the weights are systematically generated once at equal
distances across the PF, while in the second partition, they are randomly generated during
each iteration.
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Algorithm 2: Hybrid weight generation algorithm

Inputs:

• H: A regulating integer parameter greater than zero.
• N : The number of objectives.
• iter: The number of iterations.
• m: The total number of subproblems.

Output: The set of weight vectors W.
Steps:

1. Calculate the number of weight vectors m1 = CN−1
H+N−1 (such that, C denotes the mathematical combinations and m1 < m).

2. Let S, be a set of values in the range [0, 1] with an increment of 1
H , such that S =

{
0, 1

H , 2
H , . . . , H

H

}
.

3. For j = 1→ m1, do

For i = 1→ N, do

• Generate a new non repeated weight vector wj
i , such that wi ∈ S and

N
∑

i=1
wi = 1.

• Append wj
i to WS, such that WS is the set of the systematically generated weight vectors.

4. For i = 1→ iter, do For j = m1 + 1→ m, do For i = 1→ N, do

• Generate a weight vector wj
i , with wi randomly selected from [0, 1] and

N
∑

i=1
wi = 1.

• Append wj
i to WR, such that WR is the set of the uniformly randomly generated weight vectors.

W←WS ∪WR.
5. Return W.

This process affects the neighborhood of each particle in the search space. Instead
of having the same neighboring solutions during the search process, the neighbors are
dynamically changed during each iteration, which in turn adds some more experience to
the particles. The random assignment used here helps explore different areas that could
hardly be reached using the systematic distribution alone, which aims at enhancing both
convergence and diversity. In our experiments, the number of weight vectors that are
systematically generated is set to ≈80% of the total number of SPs, while the rest of the
weight vectors (20%) are randomly generated.

5. Results

The optimized algorithmic trading strategy is applied to Litecoin (LTC). The algorithm
is trained first on the training data set, and then the set of the obtained optimized parameters
is applied to the testing set. As mentioned before, the training and testing sets were selected
in order to evaluate the performance of the proposed strategy during the COVID-19
pandemic. The cryptocurrency historical data used in this research is from CoinMarketCap
and Yahoo Finance. The algorithmic trader is publicly available at https://github.com/
SherinOmran/CryptoMarket.git (accessed on 23 September 2023).

5.1. Evaluation Metrics

The evaluation metric is an indicator or a measure of the quality of the generated
solutions. There are various kinds of metrics to evaluate the MOO algorithms, each of which
is used to evaluate different criteria [66]. Among the most important evaluation criteria
are convergence, diversity, and statistical measurements. Different metrics have been
found that evaluate either one or more criteria simultaneously. Three different indicators
were used in this study: the Generational Distance (GD), the Hypervolume (HV), and the
Average Fitness Value (AFV).

The GD is a convergence indicator that is used to measure the distance between the
obtained non-dominated solutions (the obtained, also called the approximated PF) and
the true PF [66,67]. Since the true PF is not known in real-world problems, a reference

https://github.com/SherinOmran/CryptoMarket.git
https://github.com/SherinOmran/CryptoMarket.git


Big Data Cogn. Comput. 2023, 7, 174 12 of 23

set that is obtained from the collection of the final non-dominated solution set among the
approximated PFs found by all the considered search algorithms can be used instead. As
a measure of how close the obtained solution set is to the true PF or the reference set, the
lowest GD value is the best, and vice versa.

The HV indicator is a measure of both diversity and convergence. The HV quantifies
the N-dimensional volume of the objective space area bounded by the approximated PF
(y) and a dominated reference point (r) [66]. Higher values of the HV indicate a larger
dominated area by the obtained approximated PF, so a higher HV is always preferred.

The AFV of each objective is calculated as the average of the fitness of the non-
dominated solutions found during R independent runs. Such that the total number of solu-
tions are the number of non-dominated solutions found during each run multiplied by R.
However, the number of non-dominated solutions is not necessarily the same during each
run. The results are available at https://drive.google.com/drive/folders/1V-bBCcs2L9
XoOrXasHa4aowTf0oj0C8a (accessed on 23 September 2023).

5.2. Benchmark Problems

The proposed algorithm is first tested on three benchmark minimization problems
with different PF shapes, i.e., ZDT2 [21], ZDT3 [21], and Viennet [68]. Such that, ZDT2 and
ZDT3 are bi-objective problems, whereas the Viennet problem is a tri-objective problem.

To evaluate the performance of the hybrid assignment mechanism (MOPSO/D-Hyb),
the proposed algorithm is compared against both Pareto-dominance-based algorithms,
i.e., SPEA2 [69] and decomposition-based algorithms, i.e., the original MOEA/D and
MOPSO/D with systematic weight distribution (MOPSO/D-Sys). For fair comparison and
to evaluate the effect of the hybrid strategy clearly without any external improvements
(specifically the normalization effect), all the three decomposition-based algorithms are
implemented using the non-normalized WTCH aggregation function. In this case, all the
algorithm steps are the same as mentioned, except step 2.1 in Algorithm 1, which will be
replaced with Equation (11).

The parameter settings for the bi-objectives benchmark problems are as follows: The
number of SPs for each of the algorithms is set to 250, the number of iterations is 100, the
neighborhood size (T) is 20, a uniform mutation with a mutation rate of 0.25 (in this case,
only one randomly selected decision variable is changed with each SP according to the
mutation probability). The inertia weight w is 0.98, and both c1 and c2 are set to 2. For the
original MOEA/D, a blend crossover with a crossover rate of 1 is used, whereas the other
parameters are the same. The number of SPs for the Viennet problem is set to 435 with
150 iterations while the rest of the parameters are kept the same as the other problems.

The results of the benchmark problems are evaluated based on the GD and HV
obtained by each algorithm on each benchmark problem, such that the reported results are
the best and average values over 20 independent runs.

Table 1 shows the best and average GD and HV as well as their standard deviations
(STD) obtained by each algorithm for ZDT2, ZDT3, and the Viennet benchmark problems
in sequence. The best result in each case is highlighted in bold.

As seen from the table, the original MOEA/D always had the least performance in
terms of all the evaluation metrics at hand. Although SPEA2 showed the best obtain-
able GD in the Viennet problem, it could not efficiently cover the whole PF as shown
by the associated HV values. In ZDT3 problem, it showed a good approximation to the
true PF as it provided the second-best average values for both GD and HV, whereas
it provided the lowest performance in the ZDT2 problem for all metrics. It can be
seen that the MOPSO/D-Sys could provide good performance in the continuous opti-
mization problem, i.e., ZDT2, as it provided the least average GD and could efficiently
cover the whole PF. However, the STD of the GDs of the provided solutions is not the
best. For the other benchmarks, the performance of MOPSO/D-Sys reduces in terms
of both GD and HV, and the performance is not always stable, as can be seen through
the STD of both metrics. On the other hand, the hybrid weight generation MOPSO/

https://drive.google.com/drive/folders/1V-bBCcs2L9XoOrXasHa4aowTf0oj0C8a
https://drive.google.com/drive/folders/1V-bBCcs2L9XoOrXasHa4aowTf0oj0C8a
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D-Hyb provided the best performance in problems with scattered PFs, i.e., ZDT3, and
Viennet. MOPSO/D-Hyb has the best coverage of the PF, having the highest HVs, and
the closest solution set to the true PF as it has the least GD. For the continuous problem,
i.e., ZDT2, it could always cover the whole PF, giving equal best and average HV with
MOPSO/D-Sys. Although the hybrid distribution strategy could not find the best average
GD, it could find the best obtainable GD. The hybrid distribution strategy provided the
least STD over all the test instances, which emphasizes its stability during different runs.

Table 1. The GDs and HVs obtained by each algorithm for each benchmark problem.

GD HV

Best Average STD Best Average STD

ZDT2

SPEA2 2.0350 × 10−4 2.5175 × 10−4 3.2318 × 10−5 4.4380 × 10−1 4.4234 × 10−1 1.0559 × 10−3

MOEA/D 5.7890 × 10−7 8.0228 × 10−7 9.6221 × 10−8 4.4620 × 10−1 4.4480 × 10−1 6.9510 × 10−4

MOPSO/D-Sys 1.2353 × 10−7 1.5280 × 10−7 3.5567 × 10−8 4.4890 × 10−1 4.4890 × 10−1 5.6953 × 10−17

MOPSO/D-Hyb 1.2152 × 10−7 1.6424 × 10−7 2.2852 × 10−8 4.4890 × 10−1 4.4890 × 10−1 5.6953 × 10−17

ZDT3

SPEA2 8.7146 × 10−5 1.4222 × 10−4 7.8160 × 10−5 6.0030 × 10−1 5.9765 × 10−1 4.6254 × 10−1

MOEA/D 2.9423 × 10−5 1.1886 × 10−4 9.9334 × 10−5 5.9890 × 10−1 5.9646 × 10−1 1.2709 × 10−3

MOPSO/D-Sys 7.2900 × 10−6 4.5964 × 10−4 1.5465 × 10−3 6.0090 × 10−1 5.9687 × 10−1 1.1177 × 10−2

MOPSO/D-Hyb 6.9152 × 10−6 2.8271 × 10−5 2.5840 × 10−5 6.0160 × 10−1 6.0020 × 10−1 9.9233 × 10−4

Viennet

SPEA2 1.6463 × 10−4 1.9837 × 10−4 1.8045 × 10−5 6.2180 × 10−1 6.1925 × 10−1 9.2593 × 10−4

MOEA/D 2.688 × 10−4 7.7789 × 10−4 2.864 × 104 6.218 × 10−1 6.177 × 10−1 2.520 × 10−3

MOPSO/D-Sys 2.138 × 10−4 2.3292 × 10−4 1.577 × 10−5 6.246 × 10−1 6.227 × 10−1 9.080 × 10−4

MOPSO/D-Hyb 1.745 × 10−4 1.9829 × 10−4 1.458 × 10−5 6.251 × 10−1 6.233 × 10−1 8.113 × 10−4

For more clarity, the PF solutions with the median GD for each algorithm over the
different problems are presented in the following figures, such that Figure 3 shows the PFs
obtained by the algorithms under study for the ZDT2 problem. Figure 4 presents the PFs for
the ZDT3 problem, whereas Figure 5 shows the obtained PFs for the Viennet optimization
problem. It can be seen from the figures that the hybrid weight generation could maintain
the best distribution of solutions along the entire PFs for all the test instances. MOPSO/
D-Sys showed the best distribution of solutions for only ZDT2. The MOEA/D algorithm
always provided the least performance and could not efficiently cover the entire PFs for all
the test instances. For SPEA2, it could efficiently cover the PF only in the ZDT3 problem.

5.3. The Algorithmic Trader Experimental Results

As seen above, the hybrid weight distribution methodology could provide the best
results for the benchmark problems. For the algorithmic trader optimizer problem, four
algorithms are used in comparison. The original MOEA/D is tested against the MOPSO/D
using the normalized WTCH scalarization (N-WTCH). The other two are MOPSO/D using
the proposed normalized AWTCH presented in Equation (14); one uses the systematic
weight distribution denoted as (N-AWTCH-Sys), whereas the other uses the hybrid weight
distribution denoted as (N-AWTCH-Hyb).

The parameter settings are as follows: The swarm size m = 351, where the organizing
parameter H = 25. For the N-AWTCH-Hyb, the swarm is divided into two partitions;
the first partition used for systematic weight distribution is chosen with H = 22, which
generates 276 SPs, while the other partition size is 75 to keep the same total number of SPs
(351 as the other algorithms). The maximum number of iterations is 200. The augmentation
parameter ρ is set to 0.05. A small neighborhood size T = 20 is selected to maintain the
solutions’ diversity. For PSO parameters, the inertia parameter ω is 0.98, whereas the
constant accelerators c1 and c2 are set to 2 and the mutation rate is 0.15. For MOEA/D,
the crossover rate is 1 and the mutation rate is 0.15. The indicators’ parameters ranges are
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as follows: The number of days for any of the indicators ranges from 3 to 200 days. The
St-RSI over-bought level ∈ [60, 90], whereas the over-sold level ∈ [10, 40]. The S-RoC
over-bought and over-sold levels range from 0 to 20% above and below the center line.
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As mentioned before, the algorithms are evaluated based on the GD, the HV, and the
AFVs found by each algorithm over five independent runs.

Table 2 shows the best and average HV and GD values obtained by optimizing the
four trading strategies, i.e., L-WMA, St-RSI, S-ROC, and BB, using the four counterpart
algorithms. The best results in each case are highlighted in bold. The results show clearly
that the proposed N-AWTCH could outperform both the original MOEA/D and the N-
WTCH in terms of the distribution of solutions and the distance to the true PF. Adding the
hybrid distribution to the N-AWTCH could further improve the accuracy of the obtained
results for most of the test instances.

Figures 6 and 7 show the approximated PFs obtained by optimizing the L-WMA and
the St-RSI indicators in sequence. The two indicators, i.e., L-WMA and St-RSI, are selected
as samples to figure out the shape of the true PF for each case and the distribution of the
results. The figures show a comparison between the approximated PF solutions obtained by
each of the algorithms under study and the true PF, such that the approximated PFs shown
are the final solutions obtained from the run with the least GD. As seen from the figures,
the shape of the true PFs is different for each test instance; however, they are all scattered.
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To evaluate the results obtained by each algorithm in accordance with the indicators
using their standard parameters, the AFVs for the final set of non-dominated solutions
obtained by each algorithm are calculated. The non-dominated solutions are a set of vectors,
where each vector has three components, one for each objective, i.e., ROI, SOR, and number
of trades. The AFV is calculated by averaging the objectives of the non-dominated PF
solutions over a set of five independent runs for each test instance in training.

During testing, the solutions obtained by each algorithm are re-evaluated, and the
performance is averaged in the same way as in the training period. As is the case of all
MOO problems, there are always tradeoffs between the objectives, so in order to compare
the overall performance of each of the algorithms with the indicators’ standard parameters,
each of the competitors is given a rank associated with each objective. The best value is
given a rank of 1, and the second best is given a rank of 2, etc., while the worst value is
assigned a rank of 5. The comparison includes the four counterpart algorithms and the
indicator′s performance using their standard parameters.

Tables 3 and 4 show a comparison of the AFVs by each algorithm for each trading
strategy, i.e., TI, during the training and testing periods in sequence. The results reported as
standard are the values of the objectives obtained by trading using the standard parameters
of each indicator.
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Table 2. The best and average GD and HV values obtained by each algorithm for the set of optimized
indicators.

GD HV

Best Average Best Average

L-WMA

MOEA/D 1.35 × 10−4 9.00 × 10−4 4.76 × 10−1 4.73 × 10−1

N-WTCH 1.20 × 10−3 6.96 × 10−2 4.45 × 10−1 4.11 × 10−1

N-AWTCH-Sys 1.50 × 10−3 1.93 × 10−2 4.76 × 10−1 4.26 × 10−1

N-AWTCH-Hyb 9.07 × 10−5 2.38 × 10−4 4.82 × 10−1 4.78 × 10−1

St_RSI

MOEA/D 0.344 × 101 0.768 × 101 3.75 × 10−1 3.30 × 10−1

N-WTCH 1.11 × 10−1 1.51 × 10−1 4.75 × 10−1 4.68 × 10−1

N-AWTCH-Sys 8.33 × 10−2 1.38 × 10−1 4.76 × 10−1 4.68 × 10−1

N-AWTCH-Hyb 6.17 × 10−2 1.07 × 10−1 4.88 × 10−1 4.70 × 10−1

S-RoC

MOEA/D 2.84 × 10−2 2.34 × 10−1 5.04 × 10−1 4.21 × 10−1

N-WTCH 1.56 × 10−2 7.61 × 10−2 6.97 × 10−1 6.84 × 10−1

N-AWTCH-Sys 5.50 × 10−3 1.12 × 10−2 7.20 × 10−1 7.01 × 10−1

N-AWTCH-Hyb 5.30 × 10−3 9.38 × 10−3 7.02 × 10−1 6.96 × 10−1
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Table 2. Cont.

GD HV

Best Average Best Average

BB

MOEA/D 0 3.92 × 10−3 6.877 × 10−1 6.875 × 10−1

N-WTCH 5.19 × 10−5 4.77 × 10−3 6.903 × 10−1 6.897 × 10−1

N-AWTCH-Sys 0 8.80 × 10−4 6.897 × 10−1 6.845 × 10−1

N-AWTCH-Hyb 0 2.25 × 10−3 6.903 × 10−1 6.900 × 10−1Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 17 of 24 
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Table 3. The AFVs obtained for each indicator using the algorithms under study during the training
period for LTC.

Standard MOEA/D N-WTCH N-AWTCH-Sys N-AWTCH-Hyb

ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades

L-
WMA

AFV 2677.46 0.97 10.00 1676.62 1.43 2.59 2101.66 1.42 3.01 2088.16 1.34 2.69 2178.14 1.52 3.33
Rank 1 5 5 5 2 1 4 3 3 3 4 2 2 1 4

St-
RSI

AFV −90.54 -0.31 61.00 306.34 0.56 35.95 791.89 0.96 12.90 693.04 0.93 11.72 834.94 0.95 13.32
Rank 5 5 5 4 4 4 2 1 2 3 3 1 1 2 3

S-
RoC

AFV −71.32 -0.21 4.00 178.67 25.23 2.48 411.19 24.26 7.11 416.39 18.90 7.18 403.17 20.01 6.80
Rank 5 5 2 4 1 1 2 2 4 1 4 5 3 3 3

BB
AFV 251.470 8.409 2.000 306.62 17.68 2.553 625.95 12.12 2.59 651.408 11.94 2.583 652.253 11.92 2.583
Rank 5 4 1 4 1 2 3 2 5 2 5 3 1 3 3

Sum of ranks 48 33 33 36 29

Table 4. The AFVs obtained for each indicator using the algorithms under study during the testing
period for LTC.

Standard MOEA/D N-WTCH N-AWTCH-Sys N-AWTCH-Hyb

ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades ROI% SOR #Trades

L-
WMA

AFV 266.81 0.78 10.00 70.81 0.62 4.83 91.95 0.68 19.83 92.54 0.67 4.75 118.63 0.69 5.29
Rank 1 1 4 5 5 2 4 3 5 3 4 1 2 2 3

St-
RSI

AFV −85.02 −0.32 58.00 43.01 0.09 40.51 23.43 0.30 19.83 25.42 0.31 18.05 29.5736 0.31 20.51
Rank 5 5 5 1 4 4 4 3 2 3 1 1 2 1 3

S-
RoC

AFV −30.39 −0.07 5.00 69.74 2.02 0.91 144.63 2.10 5.02 148.74 2.21 5.09 150.85 2.26 4.82
Rank 5 5 2 4 4 4 3 3 3 2 2 5 1 1 1

BB
AFV 107.87 3.00 1.00 106.48 2.07 3.45 115.28 2.43 2.59 117.24 2.44 2.60 118.83 2.46 2.50
Rank 4 1 1 5 5 5 3 4 3 2 3 4 1 2 2

Sum of ranks 39 48 40 31 21

For example, as shown in Table 3, applying the L-WMA indicator using the crossovers
between the 20–50 days L-WMAs to generate the trading signals, i.e., buy and sell, gives
a set of 10 trades (each buy-sell pair is considered a single trade) with an overall ROI of
2677.46% and a SOR of 0.97, such that SOR is the measure of risk. By applying the same
parameters to the L-WMA indicator during testing (Table 4), the overall ROI is 266.81%
with a SOR of 0.78 over 10 trades.

The best AFV obtained in each case is highlighted in bold and given a rank of 1. As
mentioned before, the optimization problem at hand has three objectives. Two of them are
to be maximized, i.e., ROI and SOR, whereas the third objective is to be minimized, i.e.,
number of trades. So that the highest ROI values, SOR, and the minimum number of trades
are highlighted in each case.

As seen from Table 4, the average number of trades is less than one in some cases.
That is because some of the obtained parameters did not generate trading signals during
testing. In such a case, values less than one cannot be considered the best values. To handle
this limitation, the algorithm that provided an average number of trades less than one is
assigned the same rank as the ROI.

To evaluate the results presented in the last tables, the ranks obtained by each algorithm
are summed, and the algorithm with the least summation of ranks is preferred. The
summation of the ranks obtained by each algorithm during both training and testing is
clarified in Figure 8.

For example, by going back to Table 3, the sum of ranks for MOEA/D during training
is 33. The ranks assigned to the MOEA/D algorithm for L-WMA (5, 2, 1) for ROI, SOR, and
number of trades in sequence, the ranks for St-RSI are (4, 4, 4), the ranks assigned to S-RoC
are (4, 1, 1), and the ranks for BB are (4, 1, 2). The summation of the ranks obtained by each
case gives an overall rank of 33, and so on for the rest of the competitive algorithms and
the standard trading strategies.
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It is obvious from the figure that N-AWTCH-Hyb has the best ranking during both
training and testing, followed by both MOEA/D and N-WTCH during training, and N-
AWTCH-Sys during testing. As seen from the results, the proposed algorithm provided the
best trading strategies as compared to the other counterparts.

6. Discussion

Finding the best trading strategies is a great challenge for traders, as they always aim
to find the most profitable strategy with the minimum level of risk. The crypto market is
one of the most challenging markets due to the sudden daily fluctuations in prices. This
research aims at finding the optimal parameters for four different trading strategies (also
called TIs), i.e., L-WMA, St-RSI, S-RoC, and BB. The proposed algorithm is applied for one
of the highest volume cryptocurrencies, i.e., LTC, using decomposition-based strategies,
taking into consideration three conflicting objectives, i.e., ROI, SOR, and number of trades.
The first two objectives are to be maximized whereas the last one is to be minimized.

As seen from the figures, the true PF shapes for our test instances are complex and
scattered, with no definite shape. In this research, a MOPSO/D algorithm is proposed
with a hybrid weight generation strategy that merges both systematic and random weight
generations in order to handle the complexity of the PFs for the problem at hand.

In general, weight vector generation is one of the main factors that affect the performance
of decomposition-based algorithms, as these weights are used to determine the neighborhood
of each SP, which is important for recombination purposes and the generation of new
solutions. Zhang [21] suggested that the recombination be performed within the same
neighborhood; however, some argued that this is not efficient for more complex problems
and suggested recombination with solutions from different neighborhoods instead [69].

With the proposed hybrid weight generation strategy, the recombination process (rep-
resented by position update) is performed with the help of the information gained from the
same neighborhood; however, some particles (specifically, the particles with random weight
generation) move through different neighborhoods over the iterations. This in turn im-
proves the experience of the particles over time and ensures both diversity and convergence.

To test the performance of the proposed algorithm before applying it to our real-world
problem, it was tested on three different benchmark problems with different PF shapes,
i.e., ZDT2, ZDT3, and Viennet, such that ZDT2 has a concave continuous PF, whereas
ZDT3 and Viennet have more complex and discontinuous PFs. It was proved that the
proposed MOPSO/D-Hyb could overcome the performance of both the original MOEA/D
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and MOPSO/D using the systematic weight generation (MOPSO/D-Sys) in terms of all
the evaluation metrics for the test instances at hand except for the average GD for ZDT2
problem, which was slightly worse than MOPSO/D-Sys. This means that the proposed
algorithm could efficiently cover the true PF for complex problems, with discontinuity
covering all the scattered partitions.

As the objectives of our real-world optimization problem have a very wide and exten-
sively different range of variables, there was a need for an objective normalization process.

In this research, a new linearly normalized AWTCH (N-AWTCH) scalarization method
has been proposed. The proposed algorithm was implemented in both systematic
(N-AWTCH-Sys) and hybrid (N-AWTCH-Hyb) weight distribution strategies and is com-
pared against the MOPSO/D using normalized WTH (denoted as N-WTCH) and the
original MOEA/D.

As seen from Table 2, the proposed normalization method N-AWTCH-Sys could
obtain better solutions in terms of GD and HV as compared to the original MOEA/D and
N-WTCH, where it could outperform them in three out of the four test instances in terms
of the average GD and two test instances in terms of the average HV.

As compared to the hybrid weight distribution strategy, the N-AWTCH-Hyb could fur-
ther improve the performance of the N-AWTCH-Sys in terms of both GD and HV obtaining
the best results in three out of the four test instances as compared to the other counterparts.

As noticed from the figures Figures 6 and 7, the number of true PF points is limited
that is due to many reasons. Among the factors that affect the number of true PF points is
the relationship between the objectives, such that the objectives at hand are highly skewed.
The second reason is the effect of the market changes during the period under study (i.e.,
the COVID-19 pandemic), such that a large number of parameter combinations are found to
be non-sensitive to the market changes, generating either non-profitable trades or no trades.
Moreover, some parameter combinations are found to generate the same trading signals.

To examine the performance of the proposed algorithm in terms of the efficiency
of the generated trading strategies, the AFVs of the algorithms under study as well as
the indicators using their standard parameters are calculated and ranked, such that the
lowest rank is the best and the highest is the worst. It was found that the proposed
algorithm (N-AWTCH-Hyb) obtains the best summation of ranks during both the training
and testing periods.

By examining the ranking of the proposed algorithm in terms of each objective indi-
vidually, we can find that it has the best ranking in terms of both ROI and SOR during
both training and testing periods. In terms of the number of trades, it was found that the
proposed algorithm sometimes provides a high number of trades during training; however,
these trades are profitable. During testing, it could also provide the best ranking in terms
of the number of trades.

7. Conclusions

The crypto market is extremely risky and volatile, which makes it hard to predict. An
optimized algorithmic trading approach using four independent technical indicators (i.e.,
L-WMA, St-RSI, S-RoC, and BB) has been proposed, taking into consideration the trade-offs
between different objectives. A Normalized MOPSO/D has been used to optimize the
algorithmic trading over three different objectives: ROI, SOR, and number of trades. The
normalization mechanism is applied for the Augmented Weighted-Tchebycheff (A-WTCH)
scalarization function (N-AWTCH). As real-world optimization, problems always have
complex PFs that are hardly covered with the regular weight generation strategy of the
original decomposition approach, a hybrid weight distribution strategy is proposed that
combines both systematic and random weight generations. In this context, a single grid
of weight vectors is generated and partitioned such that the first partition is assigned
constant and equally distant weight vectors that are generated once, whereas the other
partition is randomly generated during each iteration. To evaluate the performance of
the hybrid weight distribution strategy, it was first applied to some benchmark problems
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with different PF shapes and tested against the original MOEA/D and MOPSO/D with
systematic weight distribution. The proposed algorithm was found to optimize the PF
finding the best Generational Distance (GD) and Hyper Volume (HV) for problems with
irregular PF shapes (i.e., noncontinuous and degenerated), which emphasizes the ability of
the proposed weight generation strategy to handle complex PFs.

The proposed algorithm combining the N-AWTCH aggregation function as well as the
hybrid weight distribution (N-AWTCH-Hyb) is applied to the real-world problem at hand
and is compared against the N-AWTCH using systematic weight distribution (N-AWTCH-
Sys), the normalized version of the WTCH scalarization (N-WTCH), the original MOEA/D,
as well as the indicators with their standard parameters. Three different evaluation criteria
have been taken into account: the GD, the HV, and the Average Fitness Values (AFV).
The proposed approaches were tested on Litecoin, across training and testing sets. The
COVID-19 outbreak has been taken into consideration such that the training period is the
pre-pandemic period, whereas the testing period is considered the pandemic period.

Results showed that the proposed N-AWTCH-Hyb outperformed the other counter-
part algorithms in 75% of the test instances in terms of both convergence and diversity
indicators (i.e., GD and HV). In terms of the AFVs, the proposed strategy provided the best
ranking as compared to all the competitive algorithms as well as the indicators with their
standard parameters. Although there were extreme market changes during both training
and testing due to the outbreak effect, the optimized trading strategy using the proposed
algorithm revealed its stability over the other counterparts during both training and testing
periods (which is the main challenge).

Author Contributions: Conceptualization, A.A.A.Y. and W.H.E.-B.; data curation, S.M.O.; formal
analysis, S.M.O. and A.A.A.Y.; investigation, W.H.E.-B.; methodology, S.M.O.; supervision, A.A.A.Y.;
validation, W.H.E.-B.; writing—original draft, S.M.O.; writing—review and editing, A.A.A.Y. and
W.H.E.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent is not required for this study.

Data Availability Statement: The data used in this study is publicly available on CoinMarketCap.

Conflicts of Interest: All authors declare that they have no conflict of interest.

References
1. Daskalakis, N.; Georgitseas, P. An Introduction to Cryptocurrencies: The Crypto Market Ecosystem; Routledge: London, UK, 2020.
2. Sebastião, H.; Godinho, P. Forecasting and trading cryptocurrencies with machine learning under changing market conditions.

Financ. Innov. 2021, 7, 3. [CrossRef]
3. Jaquart, P.; Dann, D.; Weinhardt, C. Short-term bitcoin market prediction via machine learning. J. Financ. Data Sci. 2021, 7, 45–66. [CrossRef]
4. Borrageiro, G.; Firoozye, N.; Barucca, P. The Recurrent Reinforcement Learning Crypto Agent. IEEE Access 2022, 10, 38590–38599. [CrossRef]
5. Gyamerah, S.A. Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on

Technical Indicators, Variational Mode Decomposition, and Support Vector Regression. Complexity 2021, 2021, 1767708. [CrossRef]
6. Carbó, J.M.; Gorjon, S. Application of Machine Learning Models and Interpretability Techniques to Identify the Determinants of the Price of

Bitcoin; Working Paper No. 2215; Carbó, J.M., Gorjon, S., Eds.; IdeBanco de Espana: Madrid, Spain, 2022.
7. Ammer, M.A.; Aldhyani, T.H.H. Deep Learning Algorithm to Predict Cryptocurrency Fluctuation Prices: Increasing Investment

Awareness. Electronics 2022, 11, 2349. [CrossRef]
8. Akila, V.; Nitin MV, S.; Prasanth, I.; Reddy, S.; Kumar, A. A Cryptocurrency Price Prediction Model using Deep Learning. E3S

Web Conf. 2023, 391, 01112.
9. Negi, P.; Dhawad, R.; Morris, N.C.; Agrawal, R.; Dhule, C. Cryptocurrency Price Analysis using Deep Learning. In Proceedings

of the International Conference on Sustainable Computing and Smart Systems (ICSCSS), New Delhi, India, 10–12 July 2023.
10. El-Berawi, A.S.; Belal, M.A.F.; Abd Ellatif, M.M. Adaptive Deep Learning based Cryptocurrency Price Fluctuation Classification.

Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2021, 12, 487–500. [CrossRef]
11. Frajtova-Michalikova, K.; Spuchl’akova, E.; Misankova, M. Portfolio Optimization. In Proceedings of the 4th World Conference

on Business, Economics and Management, WCBEM, Ephesus, Turkey, 30 April–2 May 2015.
12. Hrytsiuk, P.; Babych, T.; Bachyshyna, L. Cryptocurrency Portfolio Optimization Using Value-At-Risk Measure. In Proceedings of

the 6th International Conference on Strategies, Models and Technologies of Economic Systems Management (SMTESM 2019),
Khmelnytskyi, Ukraine, 4–6 October 2019.

https://doi.org/10.1186/s40854-020-00217-x
https://doi.org/10.1016/j.jfds.2021.03.001
https://doi.org/10.1109/ACCESS.2022.3166599
https://doi.org/10.1155/2021/1767708
https://doi.org/10.3390/electronics11152349
https://doi.org/10.14569/IJACSA.2021.0121264


Big Data Cogn. Comput. 2023, 7, 174 22 of 23

13. He, Y.; Aranha, C. Solving Portfolio Optimization Problems Using MOEA/D and L´evy Flight. Adv. Data Sci. Adapt. Anal. 2020,
12, 2050005. [CrossRef]

14. Joemon, B.; Ghazanfar, M.A.; Azam, M.A.; Jhanjhi, N.Z.; Khan, A.A. Novel heuristics for Stock portfolio optimization using
machine learning and Modern Portfolio Theory. In Proceedings of the International Conference on Business Analytics for
Technology and Security (ICBATS), Dubai, United Arab Emirates, 7–8 March 2023.

15. Lorenzo, L.; Arroyo, J. Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering
algorithm. Financ. Innov. 2023, 9, 25. [CrossRef]
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