Toward Morphologic Atlasing of the Human Whole Brain at the Nanoscale
Abstract
:1. Introduction
2. Process of Nanoscale Atlas Creation
3. Neuroanatomy Morphology Modeling
3.1. Neuroanatomy Morphology Modeling at the Macroscale
3.2. Neuroanatomy Morphology Modeling at the Nanoscale
Root | |
|
NEURON Neuron ID (n-ID) Type of neuron Subtype of neuron Gross anatomy ID (nga-ID) neuron belongs to SOMA Center coordinates Shape (predefined or free shape) DENDRITES Number of dendritic trunks For each trunk Trunk ID (dt-ID) Proximal (at soma) coordinates Proximal diameter Dendritic tree root coordinates Dendritic tree root diameter Number of bi(multi)furcations in the dendritic tree Number of terminals in the dendritic tree For each dendritic tree bi(multi)furcation Dendritic tree bi(multi)furcation ID (dtb-ID) Dendritic tree bi(multi)furcation coordinates Dendritic tree bi(multi)furcation diameter For each dendritic tree terminal Dendritic tree terminal ID (dtt-ID) Dendritic tree terminal coordinates Dendritic tree terminal diameter AXON Axon ID (a-ID) Hillock proximal (at soma) coordinates Hillock proximal diameter Axonal trunk proximal coordinates Axonal trunk proximal diameter Axonal tree root coordinates Axonal tree root diameter Number of bi(multi)furcations in the axonal tree Number of terminals in the axonal tree For each axonal tree bi(multi)furcation Axonal tree bi(multi)furcation ID (ab-ID) Axonal tree bi(multi)furcation coordinates Axonal tree bi(multi)furcation diameter For each axonal tree terminal Axonal tree terminal ID (at-ID) Axonal tree terminal coordinates Axonal tree terminal diameter |
[NEURON] n1 [Neuron ID (n-ID)] pyramidal [Type of neuron] none [Subtype of neuron] precentral gyrus [Gross anatomy ID (nga-ID) neuron belongs to] [SOMA] n1(X) [Center coordinates] predefined, pyramid, scaling factor [Shape (predefined or free shape)] [DENDRITES] 3 [Number of dendritic trunks] For {1, 2, 3} [For each trunk] {dt1, dt2, dt3} [Trunk ID (dt-ID)] {dt1, dt2, dt3}Proximal(X) [Proximal (at soma) coordinates] {dt1, dt2, dt3}Proximal(D) [Proximal diameter] {dt1, dt2, dt3}Dendritic tree root(X) [Dendritic tree root coordinates] {dt1, dt2, dt3}Dendritic tree root(D) [Dendritic tree root diameter] {0, 0, 2} [Number of bifurcations in the dendritic tree] {2, 3, 4} [Number of terminals in the dendritic tree] For {1, 2, 3} [For each dendritic tree bifurcation] {dtb31, dtb32} [Dendritic tree bifurcation ID (dtb-ID)] {dtb31(X), dtb32(X)} [Dendritic tree bifurcation coordinates] {dtb31(D), dtb32(D)} [Dendritic tree bifurcation diameter] For {2, 3, 4} [For each dendritic tree terminal] | |
{dtt11, dtt12; dtt21, dtt22, dtt23; dtt31, dtt32, dtt33, dtt34} [Dendritic tree terminal ID (dtt-ID)] {dtt11(X), dtt12(X); dtt21(X), dtt22(X), dtt23(X); dtt31(X), dtt32(X), dtt33(X), dtt34(X)} [Dendritic tree terminal coordinates] {dtt11(D), dtt12(D); dtt21(D), dtt22(D), dtt23(D); dtt31(D), dtt32(D), dtt33(D), dtt34(D)} [Dendritic tree terminal diameter] | |
[AXON] a1 [Axon ID (a-ID)] Hillock(X) [Hillock proximal (at soma) coordinates] Hillock(D) [Hillock proximal diameter] Axonal trunk proximal(X) [Axonal trunk proximal coordinates Axonal trunk proximal(D) [Axonal trunk proximal diameter Axonal tree root(X) [Axonal tree root coordinates] Axonal tree root(D) [Axonal tree root diameter] 0 [Number of bifurcations in the axonal tree] 5 [Number of terminals in the axonal tree] For {0} [For each axonal tree bifurcation] none [Axonal tree bifurcation ID (ab-ID)] none(X) [Axonal tree bifurcation coordinates] none(D) [Axonal tree bifurcation diameter] For {1, 2, 3, 4, 5} [For each axonal tree terminal} {at11, at12, at13, at14, at15} [Axonal tree terminal ID (at-ID)] {at11(X), at12(X), at13(X), at14(X), at15(X)} [Axonal tree terminal coordinates] {at11(D), at12(D), at13(D), at14(D), at15(D)} [Axonal tree terminal diameter] |
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sunkin, S.M.; Ng, L.; Lau, C.; Dolbeare, T.; Gilbert, T.L.; Thompson, C.L.; Hawrylycz, M.; Dang, C. Allen Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2013, 41, D996–D1008. [Google Scholar] [CrossRef] [PubMed]
- Amunts, K.; Lepage, C.; Borgeat, L.; Mohlberg, H.; Dickscheid, T.; Rousseau, M.É.; Evans, A.C. Bigbrain: An ultra-high-resolution 3D human brain model. Science 2013, 340, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K. The WU-Minn Human Connectome Project: An overview. NeuroImage 2013, 80, 62–79. [Google Scholar] [CrossRef] [PubMed]
- BRAIN Initiative BRAIN Working Group. BRAIN 2025. A Scientific Vision. NIH 2014. Available online: https://www.braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf (accessed on 22 November 2023).
- Markram, H.; Muller, E.; Ramaswamy, S.; Reimann, M.W.; Abdellah, M.; Sanchez, C.A.; Ailamaki, A.; Alonso-Nanclares, L.; Antille, N.; Arsever, S.; et al. Reconstruction and simulation of neocortical microcircuitry. Cell 2015, 163, 456–492. [Google Scholar] [CrossRef] [PubMed]
- Amunts, K.; Ebell, C.; Muller, J.; Telefont, M.; Knoll, A.; Lippert, T. The human brain project: Creating a european research infrastructure to decode the human brain. Neuron 2016, 92, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.-L.; Yang, S.-M.; Chen, H.-H.; Li, M.-T.; Lee, T.-T.; Hwu, Y. A synchrotron X-ray imaging strategy to map large animal brains. Chin. J. Phys. 2020, 65, 24–32. [Google Scholar] [CrossRef]
- Nowinski, W.L. Evolution of human brain atlases in terms of content, applications, functionality, and availability. Neuroinformatics 2021, 19, 1–22. [Google Scholar] [CrossRef]
- Roland, P.; Zilles, K. Brain Atlases—A new research tool. Trends Neurosci. 1994, 17, 458–467. [Google Scholar] [CrossRef]
- Evans, A.C.; Janke, A.L.; Collins, D.L.; Baillet, S. Brain templates and atlases. NeuroImage 2012, 62, 911–922. [Google Scholar] [CrossRef]
- Kuan, L.; Li, Y.; Lau, C.; Feng, D.; Bernard, A.; Sunkin, S.M.; Zeng, H.; Dang, C.; Hawrylycz, M.; Ng, L. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods 2015, 73, 4–17. [Google Scholar] [CrossRef]
- Oishi, K.; Linda Chang, L.; Huang, H. Baby brain atlases. NeuroImage 2019, 185, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Nowinski, W.L. Towards an architecture of a multi-purpose, user-extendable reference human brain atlas. Neuroinformatics 2022, 20, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Sundsten, J.W.; Brinkley, J.F.; Eno, K.; Prothero, J. The Digital Anatomist. Interactive Brain Atlas. CD ROM for the Macintosh; University of Washington: Seattle, WA, USA, 1994. [Google Scholar]
- Kikinis, R.; Shenton, M.E.; Iosifescu, D.V.; McCarley, R.W.; Saiviroonporn, P.; Hokama, H.H.; Robatino, A.; Metcalf, D.; Wible, C.G.; Portas, C.M.; et al. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans. Vis. Comp. Graph. 1996, 2, 232–241. [Google Scholar] [CrossRef]
- Hoehne, K.H. VOXEL-MAN, Part 1: Brain and Skull, Version 2.0; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Nowinski, W.L.; Chua, B.C.; Thaung, T.S.L.; Wut Yi, S.H. The Human Brain, Head and Neck in 2953 Pieces; Thieme: New York, NY, USA, 2015. [Google Scholar]
- Chiang, A.-S.; Chuang, C.-C.; Chang, H.-M.; Hsieh, C.-H.; Yeh, C.-W.; Shih, C.-T.; Wu, J.-J.; Wang, G.-T.; Chen, Y.-C.; Wu, C.-C.; et al. Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Curr. Biol. 2011, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Landhuis, E. Neuroscience: Big brain, big data. Nature 2017, 541, 559–561. [Google Scholar] [CrossRef]
- Hwu, Y.; Margaritondo, G.; Chiang, A.-S. Q&A: Why use synchrotron X-ray tomography for multi-scale connectome map-ping? BMC Biol. 2017, 15, 122. [Google Scholar]
- Walsh, C.L.; Tafforeau, P.; Wagner, W.L.; Jafree, D.J.; Bellier, A.; Werlein, C.; Kühnel, M.P.; Boller, E.; Walker-Samuel, S.; Robertus, J.L.; et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 2021, 18, 1532–1541. [Google Scholar] [CrossRef]
- Stampfl, A.P.; Liu, Z.; Hu, J.; Sawada, K.; Takano, H.; Kohmura, Y.; Ishikawa, T.; Lim, J.-H.; Je, J.-H.; Low, C.-M.; et al. SYNAPSE: An International Roadmap To Large Brain Imaging. Phys. Rep. 2023, 999, 1–60. [Google Scholar] [CrossRef]
- Chen, S.; He, Z.; Han, X.; He, X.; Li, R.; Zhu, H.; Zhao, D.; Dai, C.; Zhang, Y.; Lu, Z.; et al. How big data and high-performance computing drive brain science. Genom. Proteom. Bioinform. 2019, 17, 381–392. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Liu, L.; Ding, L.; Ruan, Z.; Dong, H.-W.; Ascoli, G.A.; Hawrylycz, M.; Zeng, H.; Peng, H. Petabyte-scale multi-morphometry of single neurons for whole brains. Neuroinformatics 2022, 20, 525–536. [Google Scholar] [CrossRef]
- Nowinski, W.L. Toward the human nanoscale connectome: Neuronal morphology format, modeling, and storage requirement estimation. In International Conference on Computational Science; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2023; Volume 14074, pp. 691–698. [Google Scholar]
- DeWeerdt, S. How to map the brain. Nature 2019, 571, S6–S8. [Google Scholar] [CrossRef]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 2009, 46, 786–802. [Google Scholar] [CrossRef]
- Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable medical image registration: A survey. IEEE Trans. Med. Imaging 2013, 32, 1153–1190. [Google Scholar] [CrossRef]
- Viergever, M.A.; Maintz, J.A.; Klein, S.; Murphy, K.; Staring, M.; Pluim, J.P. A survey of medical image registration–under review. Med. Image Anal. 2016, 33, 140–144. [Google Scholar] [CrossRef]
- Yoo, T.S.; Metaxas, D.N. Open science–combining open data and open source software: Medical image analysis with the Insight Toolkit. Med. Image Anal. 2005, 9, 503–506. [Google Scholar] [CrossRef]
- Nowinski, W.L. 3D atlas of the brain, head and neck in 2953 pieces. Neuroinformatics 2017, 15, 395–400. [Google Scholar] [CrossRef]
- Bakker, R.; Tiesinga, P.; Kötter, R. The scalable brain atlas: Instant web-based access to public brain atlases and related content. Neuroinformatics 2015, 13, 353–366. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Fan, L.; Li, H.; Zhuo, J.; Zhang, Y.; Wang, J.; Chen, L.; Yang, Z.; Chu, C.; Xie, S.; Laird, A.R.; et al. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex 2016, 26, 3508–3526. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Chua, B.C.; Ngai, V. 3D Atlas of Neurologic Disorders; Version 1.0 for iPad; AppStore; Thieme: New York, NY, USA, 2013. [Google Scholar]
- Lorensen, W.; Cline, H. Marching cubes: A high resolution 3-D surface construction algorithm. Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Volkau, I.; Zheng, W.; Baimouratov, R.; Aziz, A.; Nowinski, W. Geometric modeling of the human normal cerebral arterial system. IEEE Trans. Med. Imaging 2005, 24, 529–539. [Google Scholar] [CrossRef]
- Allen Cell Types Database. Technical White Paper: Overview. Available online: https://help.brain-map.org/display/celltypes/Documentation (accessed on 20 September 2023).
- Ecker, J.R.; Geschwind, D.H.; Kriegstein, A.R.; Ngai, J.; Osten, P.; Polioudakis, D.; Regev, A.; Sestan, N.; Wickersham, I.R.; Zeng, H. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 2017, 96, 542–557. [Google Scholar] [CrossRef]
- Mumenthaler, M.; Mattle, H. Fundamentals of Neurology: An Illustrated Guide; Thieme: New York, NY, USA, 2005. [Google Scholar]
- Shapson-Coe, A.; Januszewski, M.; Berger, D.R.; Pope, A.; Wu, Y.; Blakely, T.; Lichtman, J.W. A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv 2021. [Google Scholar] [CrossRef]
- Capowski, J. An automatic neuron reconstruction system. J. Neurosci. Methods 1983, 8, 353–364. [Google Scholar] [CrossRef]
- Glaser, J.R.; Glaser, E.M. Neuron imaging with neurolucida—A PC-based system for image combining microscopy. Comput. Med. Imaging Graph. 1990, 14, 307–317. [Google Scholar] [CrossRef]
- Cannon, R.; Turner, D.; Pyapali, G.; Wheal, H. An on-line archive of reconstructed hippocampal neurons. J. Neurosci. Methods 1998, 84, 49–54. [Google Scholar] [CrossRef]
- Ascoli, G.A.; Krichmar, J.L.; Nasuto, S.J.; Senft, S.L. Generation, description and storage of dendritic morphology data. Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 1131–1145. [Google Scholar] [CrossRef]
- Akram, M.A.; Nanda, S.; Maraver, P.; Armañanzas, R.; Ascoli, G.A. An open repository for single-cell reconstructions of the brain forest. Sci. Data 2018, 5, 180006. [Google Scholar] [CrossRef]
- Akram, M.A.; Ljungquist, B.; Ascoli, G.A. Efficient metadata mining of web-accessible neural morphologies. Prog. Biophys. Mol. Biol. 2022, 168, 94–102. [Google Scholar] [CrossRef]
- Ascoli, G.A.; Krichmar, J.L.; Scorcioni, R.; Nasuto, S.J.; Senft, S.L.; Krichmar, G.L. Computer generation and quantitative morphometric analysis of virtual neurons. Anat. Embryol. 2001, 204, 283–301. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Ascoli, G.A.; Mitra, P.; Wang, Y. Metrics for comparing neuronal tree shapes based on persistent homology. PLoS ONE 2017, 12, e0182184. [Google Scholar] [CrossRef]
- Kanari, L.; Dłotko, P.; Scolamiero, M.; Levi, R.; Shillcock, J.; Hess, K.; Markram, H. A topological representation of branching neuronal morphologies. Neuroinformatics 2018, 16, 3–13. [Google Scholar] [CrossRef]
- Rembrandt, B.; Paul, T. Web-based neuron morphology viewer as an aid to develop new standards for neuron morphology file formats. Front. Neuroinform. Conf. Abstr. Neuroinform. 2016. [Google Scholar] [CrossRef]
- Hines, M.L.; Carnevale, N.T. The NEURON simulation environment. Neural Comput. 1997, 9, 1179–1209. [Google Scholar] [CrossRef]
- Cuntz, H.; Forstner, F.; Borst, A.; Häusser, M. The TREES Toolbox—Probing the Basis of Axonal and Dendritic Branching. Neuroinformatics 2011, 9, 91–96. [Google Scholar] [CrossRef]
- Bower, J.M.; Beeman, D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Peng, H.; Hawrylycz, M.; Roskams, J.; Hill, S.; Spruston, N.; Meijering, E.; Ascoli, G.A. BigNeuron: Large-scale 3d neuron recon-struction from optical microscopy images. Neuron 2015, 87, 252–256. [Google Scholar] [CrossRef]
- Nowinski, W.L. High performance computing requirements for the calculation of a morphology model of the human whole brain at the nanoscale. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine, Istanbul, Turkey, 5–8 December 2023; pp. 3321–3327. [Google Scholar]
- Meyer, D.; Bonhoeffer, T.; Scheuss, V. Balance and stability of synaptic structures during synaptic plasticity. Neuron 2014, 82, 430–443. [Google Scholar] [CrossRef]
- Nowinski, W.L. Computational and mathematical methods in brain atlasing. Neuroradiol. J. 2017, 30, 520–534. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Thirunavuukarasuu, A. The Cerefy Clinical Brain Atlas on CD-ROM; Thieme: New York, NY, USA, 2004. [Google Scholar]
- García-Cabezas, M.; Pérez-Santos, I.; Cavada, C. Mapping the primate thalamus: Historical perspective and modern approaches for defining nuclei. Anat. Embryol. 2023, 228, 1125–1151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowinski, W.L. Toward Morphologic Atlasing of the Human Whole Brain at the Nanoscale. Big Data Cogn. Comput. 2023, 7, 179. https://doi.org/10.3390/bdcc7040179
Nowinski WL. Toward Morphologic Atlasing of the Human Whole Brain at the Nanoscale. Big Data and Cognitive Computing. 2023; 7(4):179. https://doi.org/10.3390/bdcc7040179
Chicago/Turabian StyleNowinski, Wieslaw L. 2023. "Toward Morphologic Atlasing of the Human Whole Brain at the Nanoscale" Big Data and Cognitive Computing 7, no. 4: 179. https://doi.org/10.3390/bdcc7040179
APA StyleNowinski, W. L. (2023). Toward Morphologic Atlasing of the Human Whole Brain at the Nanoscale. Big Data and Cognitive Computing, 7(4), 179. https://doi.org/10.3390/bdcc7040179