
Citation: Nakajima, H.; Sasaki, M.

Text Classification Based on the

Heterogeneous Graph Considering

the Relationships between

Documents. Big Data Cogn. Comput.

2023, 7, 181. https://doi.org/

10.3390/bdcc7040181

Academic Editors: Zuchao Li and

Min Peng

Received: 7 November 2023

Revised: 11 December 2023

Accepted: 11 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Text Classification Based on the Heterogeneous Graph
Considering the Relationships between Documents
Hiromu Nakajima 1,* and Minoru Sasaki 2

1 School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
2 Department of Computer and Information Sciences, Faculty of Engineering, Ibaraki University,

Hitachi 316-8511, Japan; minoru.sasaki.01@vc.ibaraki.ac.jp
* Correspondence: 22nm738g@vc.ibaraki.ac.jp

Abstract: Text classification is the task of estimating the genre of a document based on information
such as word co-occurrence and frequency of occurrence. Text classification has been studied by
various approaches. In this study, we focused on text classification using graph structure data.
Conventional graph-based methods express relationships between words and relationships between
words and documents as weights between nodes. Then, a graph neural network is used for learning.
However, there is a problem that conventional methods are not able to represent the relationship
between documents on the graph. In this paper, we propose a graph structure that considers the
relationships between documents. In the proposed method, the cosine similarity of document vectors
is set as weights between document nodes. This completes a graph that considers the relationship
between documents. The graph is then input into a graph convolutional neural network for training.
Therefore, the aim of this study is to improve the text classification performance of conventional
methods by using this graph that considers the relationships between document nodes. In this study,
we conducted evaluation experiments using five different corpora of English documents. The results
showed that the proposed method outperformed the performance of the conventional method by
up to 1.19%, indicating that the use of relationships between documents is effective. In addition, the
proposed method was shown to be particularly effective in classifying long documents.

Keywords: text classification; graph convolutional neural network; semi-supervised learning

1. Introduction

Text classification is the task of inferring the correct label for a given document from a
set of predefined labels. This text classification technique has been used in applications to
automate the task of classifying documents by humans. Many researchers are interested
in the development of applications that use document classification techniques for spam
classification, topic labeling, and sentiment analysis.

Recently, Graph Convolutional Neural networks (GCNs) [1], which can take advantage
of data in graph structures, have been used to solve text classification tasks. TextGCN [2],
VGCN-BERT [3], and BertGCN [4] are examples of text classification methods that utilize
data from graph structures. In TextGCN [2], word and document nodes are represented
on the same graph (heterogeneous graph), which is input into the GCN. VGCN-BERT [3]
constructs a graph based on the word embedding in Bidirectional Encoder Representations
from Transformers (BERT) and word co-occurrence information and learns by inputting
the graph into Vocabulary Graph Convolutional Network (VGCN). BertGCN [4] is a text
classification method that combines the advantages of transductive learning of GCN with
the knowledge obtained from extensive prior learning of BERT. The graphs produced
by these graph-based text classification methods use relationships between words and
between words and documents. However, conventional graph-based text classification
methods do not use relationships between documents. Thus, they are prone to topic drift,

Big Data Cogn. Comput. 2023, 7, 181. https://doi.org/10.3390/bdcc7040181 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7040181
https://doi.org/10.3390/bdcc7040181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0009-0002-6575-7859
https://orcid.org/0000-0002-8101-2796
https://doi.org/10.3390/bdcc7040181
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7040181?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 181 2 of 15

in which documents with different contents are associated with each other due to word
polysemy. Therefore, we considered that representing the relationship between documents
on a graph would improve the performance of text classification.

The purpose of this study is to improve the classification performance of RoBERTaGCN
by solving the problems of conventional methods by adding new relationships to the
weights of edges between document nodes. First, each document is input into the BERT
model to obtain a vector of special tokens [CLS] in its final hidden layer. Next, the cosine
similarity of the [CLS] vectors for each document is computed. Then, if it exceeds a prede-
fined threshold, the cosine similarity is added as the weight of the edges between document
nodes. This makes the graph an effective graph that considers the relationships among
documents. Therefore, we believe that this will improve the accuracy of text classification.

The proposed method is also expected to reduce topic drift, which is a problem in
graph-based text classification. Topic drift is a problem in which documents on different
topics are associated through words with multiple meanings. For example, the word
“apple” can represent either a fruit or an IT company. In this case, topics about fruits and
topics about electronic devices such as smartphones could be mixed. In the proposed
method, relationships between documents are added directly between document nodes.
Since document information can be propagated without going through word nodes, the
proposed method is expected to be effective in reducing topic drift.

This paper is organized as follows. In Section 2, we describe traditional methods of
text classification and existing research on text classification using neural networks and/or
graph neural networks. In Section 3, the structure of graph created in RoBERTaGCN and
the processing after graph construction are described. In Section 4, we describe the graph
structure of the proposed method. In Section 5, we describe the experiments we conducted
to evaluate the proposed method and show the experimental results. In Section 6, we
discuss the experimental results presented in Section 5 and conclude in Section 7.

The aim of this paper is to solve the problem of conventional methods and improve
the classification performance of conventional methods by adding cosine similarity to the
edges between document nodes. In this paper, we make the following contributions.

• We propose the text classification method that solves the problem of conventional
methods that do not consider relationships between documents.

• The proposed method is effective for text classification, especially for long documents.
• We identify the optimal values of the parameters that control the balance between the

predictions of BERT and GCN.

An early version of the present study was presented at PACLIC2022 [5].

2. Related Works

Text classification is one of the most fundamental tasks in the field of natural language
processing. Traditional text classification research based on machine learning can be catego-
rized into two main phases: vector representation of text using feature engineering and
classification algorithms using machine learning. In feature engineering, text is represented
as a vector by converting it into numerical values to minimize information loss so that the
text can be processed by a computer. For feature engineering, commonly used features
are BOW (Bag-Of-Words) [6], N-gram [7], TF-IDF (Term Frequency-Inverse Document
Frequency) [8], co-occurrence relations between words [9] and so on. Several text clas-
sification models have been proposed to predict categories of text data based on these
features. Among traditional methods for text classification, general classification models
such as Naive Bayes [10], Logistic Regression [11], K-Nearest Neighbor [12], Support Vector
Machine [13] and Random Forest [14] have been proposed.

Text classification based on neural networks has been extensively studied in recent
years. In early research, deep learning architectures were utilized to learn word embeddings
from large text corpora, which were then employed for text classification. The most used
distributed word embedding methods are Word2vec [15], Glove [16], FastText [17], Long
Short-Term Memory (LSTM) [18], ELMo [19], BERT [20] and RoBERTa [21]. Wang et al.

Big Data Cogn. Comput. 2023, 7, 181 3 of 15

introduced Label-Embedding Attentive Models (LEAM), which jointly embed words and
labels in the same space for text classification, leveraging label descriptions to improve
performance [22]. Shen et al. proposed Simple Word-Embedding-based Models (SWEMs),
which are models that use word embeddings and parameter-free pooling operations to
encode text sequences and demonstrated that the effectiveness of deep learning approaches
for text classification [23]. Some recent studies have employed neural networks, such as
the Multi-Layer Perceptron (MLP) [24], the Convolutional Neural Network (CNN) [25]
and LSTM [26], as classification models. The Deep Average Network (DAN), consisting of
two fully connected layers and a softmax layer, learns a sentence vector by averaging the
word vectors that consist of the input sentence using pre-trained word embeddings [24].

In recent text classification, some studies have employed graph structures in which
the relationships between words and between words and documents are expressed in
terms of the weight of the edges between each node. A Graph Neural Network (GNN) [27]
is a neural network that learns relationships between nodes through edges connecting
them. There are several types of GNNs, depending on their form. Employing GNNs for
large-scale text processing comes at a significant cost in terms of computational resources.
To remove unnecessary complexity and redundant computations in the model, Wu et al.
proposed the Simple Graph Convolution model (Simplified GCN) by repeatedly removing
the non-linearities and merging weight matrices between consecutive layers into a single
linear transformation [28]. Graph Convolutional Neural Networks (GCNs) [1] is a neu-
ral network that learns the relationship between a node of interest and its neighbors by
means of convolutional computations that use weights assigned to each edge. A Graph
Autoencoder (GAE) [29] is an extension of autoencoder, which extracts important features
by dimensionality reduction of input data, to handle graph data as well. A Graph Attention
Network (GAT) [30] is a neural network that updates and learns node features by mul-
tiplying the weights of edges between nodes by Attention, a coefficient representing the
importance of neighboring nodes. GNNs have demonstrated high performance in a wide
range of machine learning fields. Text generation, question answering, relation extraction,
and machine translation are examples. The success of GNNs in such a wide range of
tasks has given researchers reason to study text classification methods based on GNNs.
In particular, many text classification methods based on GCNs have been proposed. In
TextGCN [2], document and word nodes are represented on the same graph (heterogeneous
graph). The graph is then input to the GCN for training. In recent years, text classification
methods that combine GCN with pre-trained models such as BERT have also been actively
studied. VGCN-BERT [3] constructs a graph based on word co-occurrence information
and word embeddings of BERT, which is then input into GCN for training. BertGCN [4]
constructs a heterogeneous graph based on BERT word co-occurrence information and
document embedding, and it is input into GCN for learning. The detailed description of
BertGCN is provided in Section 3.

3. Theoretical Background (RoBERTaGCN, RoBERTaGAT)

In this section, RoBERTaGCN and RoBERTaGAT are explained as theoretical back-
ground. Equations (1), (7)–(9), (13) and (14) in this section were taken from RoBERTaGCN [4].
Equation (2) was taken from the literature [31]. Equations (4)–(6) were taken from TF-IDF [8].
Equations (10), (11) and (15) were taken from GAT [30].

BertGCN is a text classification method that combines the knowledge of BERT obtained
by large-scale pre-training utilizing large unlabeled data with the transductive learning of
GCNs, and was proposed by Lin et al. [4]. In BertGCN, each document is input into BERT,
the document vector is extracted from its output, and it is input into GCNs as an initial
representation of document nodes together with a heterogeneous graph of documents and
words for training.

Lin et al. [4] distinguish the names of learning models according to the trained model
and the type of GNN used. The correspondence between pre-trained models and model

Big Data Cogn. Comput. 2023, 7, 181 4 of 15

names is shown in Table 1. In this study, RoBERTaGCN and RoBERTaGAT are targeted
for improvement.

Table 1. Names of the Model.

Name of Model Pre-Trained Model GNN

BertGCN bert-base GCN
BertGAT bert-base GAT

RoBERTaGCN roberta-base GCN
RoBERTaGAT roberta-base GAT

Figure 1 shows an overview of the operation of RoBERTaGCN (RoBERTaGAT). The first
step is to construct a heterogeneous graph of words and documents from the documents.
Next, the graph information consisting of the weight matrix and the initial node feature
matrix is fed into the GCN (GAT), and the document vector is fed into the feedforward
neural network. Finally, a linear interpolation of the two predictions is computed and the
result is used as the final prediction.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 16

into BERT, the document vector is extracted from its output, and it is input into GCNs as
an initial representation of document nodes together with a heterogeneous graph of doc-
uments and words for training.

Lin et al. [4] distinguish the names of learning models according to the trained model
and the type of GNN used. The correspondence between pre-trained models and model
names is shown in Table 1. In this study, RoBERTaGCN and RoBERTaGAT are targeted
for improvement.

Table 1. Names of the Model.

Name of Model Pre-Trained Model GNN
BertGCN bert-base GCN
BertGAT bert-base GAT

RoBERTaGCN roberta-base GCN
RoBERTaGAT roberta-base GAT

Figure 1 shows an overview of the operation of RoBERTaGCN (RoBERTaGAT). The
first step is to construct a heterogeneous graph of words and documents from the docu-
ments. Next, the graph information consisting of the weight matrix and the initial node
feature matrix is fed into the GCN (GAT), and the document vector is fed into the feed-
forward neural network. Finally, a linear interpolation of the two predictions is computed
and the result is used as the final prediction.

Figure 1. Schematic Diagram of the RoBERTaGCN (RoBERTaGAT).

3.1. Constructing Heterogeneous Graph of Words and Documents
The first step is to construct a heterogeneous graph of words and documents from

given documents. RoBERTaGCN defines weights between nodes on heterogeneous
graphs of words and documents as in (1).

 𝐴, = ⎩⎨
⎧ 𝑃𝑃𝑀𝐼(𝑖, 𝑗),𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),1,0, 𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ് 𝑗𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑𝑖 = 𝑗𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

Positive point-wise mutual information (PPMI) is used to weight edges between
word nodes. PPMI is a measure of the degree of association between two events and can
be viewed as word co-occurrence in natural language processing. PMI is given by Equa-
tion (2). 𝑃𝑀𝐼൫𝑤, 𝑤൯ = logଶ 𝑝൫𝑤, 𝑤൯𝑝(𝑤)𝑝൫ 𝑤൯ (2)

Figure 1. Schematic Diagram of the RoBERTaGCN (RoBERTaGAT).

3.1. Constructing Heterogeneous Graph of Words and Documents

The first step is to construct a heterogeneous graph of words and documents from
given documents. RoBERTaGCN defines weights between nodes on heterogeneous graphs
of words and documents as in (1).

Ai,j =

PPMI(i, j),

TF-IDF(i, j),
1,
0,

i, j are words and i 6= j
i is document, j is word

i = j
otherwise

(1)

Positive point-wise mutual information (PPMI) is used to weight edges between word
nodes. PPMI is a measure of the degree of association between two events and can be
viewed as word co-occurrence in natural language processing. PMI is given by Equation (2).

PMI
(
wi, wj

)
= log2

p
(
wi, wj

)
p(wi)p

(
wj
) (2)

wi and wj are words. In RoBERTaGCN, only positive PMI values are used as weights for
edges between word nodes. Therefore, as shown in Equation (3), the maximum of the
calculated PMI and 0 is added as the weight of edges between word nodes.

PPMI
(
wi, wj

)
= max

(
0, PMI

(
wi, wj

))
(3)

Term frequency-inverse document frequency (TF-IDF) is used for the weights of edges
between word nodes and document nodes. TF-IDF values are larger for words that occur
more frequently in a document but less frequently in other documents, i.e., words that
characterize that document. The TF-IDF value can be calculated by multiplying the TF

Big Data Cogn. Comput. 2023, 7, 181 5 of 15

value by the IDF value. The TF value is a value representing the frequency of occurrence of
a word. The TF value is calculated by Equation (4).

TF
(
wi, Dj

)
=

f
(
wi, Dj

)
∑wk∈Dj

f
(
wk, Dj

) (4)

Dj is a document. wi is a word that appears in Dj. f is the frequency of the word. The IDF
value is the reciprocal of the percentage of documents containing a word. The IDF value is
computed by Equation (5).

IDF(wi) = log
(

N
d f (wi) + 1

)
(5)

N is the total number of documents. d f is the number of documents in which wi appears.
TF-IDF value is calculated by Equation (6).

TF− DF
(
wi, Dj

)
= TF

(
wi, Dj

)
·IDF(wi) (6)

As shown in Equation (1), RoBERTaGCN is not able to express the relationship between
document nodes in terms of the weights of edges between nodes. This is a point that needs
to be improved in this study.

3.2. Tokenizing Documents

Next, each document is converted into a sequence of tokens that can be entered into
BERT. A special classification token ([CLS]) is added to the beginning of the document
and a special separator token ([SEP]) is added to the end of the document. A document
is considered and processed as a single sentence, and each document is normalized to
512 tokens.

3.3. Creating the Initial Node Feature Matrix

Next, initialize the node feature matrix for the GCNs. To obtain this matrix, BERT
is used to generate a document embedding, which is then used as the input features of
the document node. The initialize the node feature matrix are represented by a matrix
Xdoc ∈ Rndoc×d, where ndoc is the number of documents and d is the number of embedding
dimensions. Overall, the initial node feature matrix is given by Equation (7), where nword is
the total number of word nodes in the training and test data sets.

X =

(
Xdoc

0

)
(ndoc+nword)×d

(7)

3.4. Input into GCN (GAT) and Learning by GCN (GAT)

Heterogeneous graph A and initial node feature matrix X are given to GCN for
training. The output feature matrix L(i) of layer i is computed by (8).

L(i) = ρ

(∼
AL(i−1)W(i)

)
(8)

ρ is the activation function and
∼
A is the normalized adjacency matrix of A. W(i) ∈

Rdi−1×di is the weight matrix at layer i. L(0) is the matrix X, which is the input feature
matrix of the model. The dimension of the final layer of W is (number of embedded
dimensions) × (number of output classes). The GCNs’ outputs are treated as final docu-
ment representations, which are then fed to the softmax layer for classification. This GCNs’
prediction is given by the following Equation (9)

ZGCN = so f tmax(gcn(X, A)), (9)

Big Data Cogn. Comput. 2023, 7, 181 6 of 15

where the function gcn represents the GCNs model. The cross-entropy loss of the labeled
document nodes is used to jointly train BERT and GCNs.

When GAT is used, the feature update of node i is given by Equation (10).

→
h′i = ρ

(
∑

j∈Ni

αijW
→
h j

)
(10)

→
h is a vector, of each node. N is some neighborhood of node i. α is an attention between i
and j. Attention α is given by Equation (11).

αij =

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i

∥∥∥∥W
→
h j

]))
∑k∈Ni

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i

∥∥∥∥W
→
h k

])) (11)

The attention mechanism a is a single-layer feedforward neural network and applying
the LeakyReLU nonlinearity. GAT’s prediction is given by the following Equation (12).

ZGAT = so f tmax(gat(X, A)), (12)

3.5. Input into Feedforward Neural Network and Learning by Feedforward Neural Network

To speed up convergence and improve performance, RoBERTaGCN optimizes the
model with auxiliary classifier that directly operates on the BERT embedding [4]. Specifi-
cally, a document embedded representation X is input into a Feedforward Neural Network.
The output is then fed directly into a softmax function with a weight matrix W to create
an auxiliary classifier with BERT. The auxiliary classifier predicts the output predictions
ZBERT of the input documents using the following Equation (13).

ZBERT = so f tmax(WX) (13)

3.6. Interpolation of Predictions with BERT and GCN (GAT)

To output the result of the linear interpolation as a final prediction, A linear interpola-
tion is computed with the output predictions ZGCN using RoBERTaGCN and the output
predictions ZBERT using BERT. The result of the linear interpolation is represented by the
following Equation (14)

Z = λZGCN + (1− λ)ZBERT , (14)

where λ determines how much weight is given to each prediction. λ = 1 means using
the full RoBERTaGCN model, while λ = 0 means using only the BERT model. Given the
parameter λ ∈ (0, 1), the predictions from both models can be balanced. Experiments by
Lin et al. using the graph structure in (1) show that λ = 0.7 is the optimal value of λ [4].

Similarly for the case using GAT, the final prediction is the result of linear interpolation
of the BERT prediction and the GAT prediction. Thus, the final prediction when GAT is
used is given by Equation (15).

Z = λZGAT + (1− λ)ZBERT , (15)

4. Proposed Method

This section describes the proposed new graph structure. Equation (17) in this section
was taken from the literature [31].

Big Data Cogn. Comput. 2023, 7, 181 7 of 15

The weights of the edges connecting nodes i and j are given by Equation (16).

Ai,j =

COS_SIM(i, j),

PPMI(i, j),
TF-IDF(i, j),

1,
0,

i, j are documents and i 6= j
i, j are words and i 6= j
i is document, j is word

i = j
otherwise

(16)

As shown in Equation (1), RoBERTaGCN represents only the relationships between
words and between words and documents as the weight of edges in a graph, but it does
not directly consider the relationships between documents. Figure 2 is an image of the
graph. In our proposed method, we modified RoBERTaGCN to consider not only these
relationships but also the relationship between documents by expressing the weights of
edges between document nodes. The weights of the edges between document nodes in
Equation (16) represent the cosine similarity COS_SIM(i, j) between the two nodes i and j,
which is a measure of how similar the two documents are. Specifically, the weights of the
edges between document nodes are added to the heterogeneous graph by the following
three steps.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 16

4. Proposed Method
This section describes the proposed new graph structure. Equation (17) in this section

was taken from the literature [31].
The weights of the edges connecting nodes i and j are given by Equation (16).

𝐴, = ⎩⎪⎨
⎪⎧𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),𝑃𝑃𝑀𝐼(𝑖, 𝑗), 𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),1,0, 𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ് 𝑗𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ് 𝑗𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑𝑖 = 𝑗𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (16)

As shown in Equation (1), RoBERTaGCN represents only the relationships between
words and between words and documents as the weight of edges in a graph, but it does
not directly consider the relationships between documents. Figure 2 is an image of the
graph. In our proposed method, we modified RoBERTaGCN to consider not only these
relationships but also the relationship between documents by expressing the weights of
edges between document nodes. The weights of the edges between document nodes in
Equation (16) represent the cosine similarity 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗) between the two nodes i and
j, which is a measure of how similar the two documents are. Specifically, the weights of
the edges between document nodes are added to the heterogeneous graph by the follow-
ing three steps.

Figure 2. An image of the proposed graph.

1. Document tokenization: Each document is converted into a sequence of tokens that
can be understood by the BERT model. A special classification token ([CLS]) is added
to the beginning of the document, and a special separator token ([SEP]) is added to
the end of the document. These two tokens are special tokens. [CLS] denotes the be-
ginning of the sentence, and [SEP] denotes the end of the sentence. In this study, a
single document was regarded as a single sentence and processed. For long docu-
ments (more than 512 words), we extract the first 510 words and add special tokens
to make it 512 words long. For short documents (fewer than 510 words), we pad them
with 0 s to reach the 512-word limit for BERT.

2. Extracting [CLS] embeddings: We feed each tokenized document into BERT to get a
[CLS] vector in the last hidden layer. The [CLS] vector is a representation of the entire
document, capturing its context.

3. Calculating cosine similarity as weights of edges: We calculate the cosine distance
between the [CLS] encodings of each document and add edges between correspond-
ing document nodes if the cosine similarity is greater than a predefined threshold,
where the weight of each edge is the cosine similarity of the [CLS] vectors.
PPMI is used for the weights of edges between word nodes, and TF-IDF values are

used for the weights of edges between word and document nodes. The formulas for cal-
culating PPMI are the same as in Equations (2) and (3). The formulas for calculating TF-

Figure 2. An image of the proposed graph.

1. Document tokenization: Each document is converted into a sequence of tokens that
can be understood by the BERT model. A special classification token ([CLS]) is added
to the beginning of the document, and a special separator token ([SEP]) is added
to the end of the document. These two tokens are special tokens. [CLS] denotes
the beginning of the sentence, and [SEP] denotes the end of the sentence. In this
study, a single document was regarded as a single sentence and processed. For long
documents (more than 512 words), we extract the first 510 words and add special
tokens to make it 512 words long. For short documents (fewer than 510 words), we
pad them with 0 s to reach the 512-word limit for BERT.

2. Extracting [CLS] embeddings: We feed each tokenized document into BERT to get a
[CLS] vector in the last hidden layer. The [CLS] vector is a representation of the entire
document, capturing its context.

3. Calculating cosine similarity as weights of edges: We calculate the cosine distance
between the [CLS] encodings of each document and add edges between corresponding
document nodes if the cosine similarity is greater than a predefined threshold, where
the weight of each edge is the cosine similarity of the [CLS] vectors.

PPMI is used for the weights of edges between word nodes, and TF-IDF values are
used for the weights of edges between word and document nodes. The formulas for
calculating PPMI are the same as in Equations (2) and (3). The formulas for calculating

Big Data Cogn. Comput. 2023, 7, 181 8 of 15

TF-IDF are the same as in Equations (4)–(6). Cosine similarity is given by Equation (17). Vi
and Vj are the vectors of documents i and j. n is the number of vector dimensions.

COS_SIM(i, j) =
∑n

k=1 VikVjk√
∑n

k=1 Vik
2
√

∑n
k=1 Vjk

2
(17)

The process after graph construction is the same as in Sections 3.2–3.6.

5. Experiments
5.1. Data Set

Experiments were conducted on the five data sets listed in Table 2 to evaluate the perfor-
mance of the proposed method. Many of the previous studies, including RoBERTaGCN [4]
and TextGCN [2], have conducted experiments using these five datasets. Therefore, these
five datasets were also used in this study. These data used were the same as those used
in RoBERTaGCN. Each dataset was used as is because it had already been split into train-
ing and test data. All five datasets were used in the experiments after the preprocessing
described in Section 5.3.

Table 2. Information of Data Set.

Data Set Average of
Words

Number of
Documents Training Data Test Data

20NG 206.4 18,846 11,314 7532
R8 65.7 7674 5485 2189
R52 69.8 9100 6532 2568

Ohsumed 129.1 7400 3357 4043
MR 20.3 10,662 7108 3554

• 20-Newsgroups (20NG)

Each document in 20NG is classified into one of the 20 news labels. The number of
documents is 18,846 in total. A total of 11,314 documents, corresponding to about 60%
of all documents, are training data. 7532 documents, corresponding to about 40% of all
documents, are test data.

• R8, R52

Both R8 and R52 are subsets of the dataset (21,578 documents) provided by Reuters.
Each document in R8 is classified into one of the eight labels. The number of documents in
R8 is 7674 in total. A total of 5485 documents, corresponding to about 71.5% of all docu-
ments, are training data. 2189 documents, corresponding to about 28.5% of all documents,
are test data. Each document in R52 is classified into one of the 52 labels. The number
of documents in R52 is 9100 in total. 6532 documents, corresponding to about 71.8% of
all documents, are training data. 2568 documents, corresponding to about 28.2% of all
documents, are test data.

• Ohsumed

Ohsumed is a dataset of medical documents from the U.S. National Library of Medicine.
The total number of documents is 13,929; each document has one or more associated disease
labels from a list of 23 disease labels. In our experiments, we used documents with only
one disease label. The total number of documents used was 7400. A total of 3357 docu-
ments, corresponding to about 45.4% of all documents, are training data. 4043 documents,
corresponding to about 54.6% of all documents, are test data.

• Movie Review (MR)

MR is a dataset used for sentiment classification, and each review is classified into two
categories: positive and negative. The number of documents is 10,662 in total. A total of

Big Data Cogn. Comput. 2023, 7, 181 9 of 15

7108 documents, corresponding to about 66.7% of all documents, are training data. A total
of 3554 documents, corresponding to about 33.3% of all documents, are test data.

5.2. Experimental Settings

In this study, three experiments were conducted to evaluate the performance of the
proposed method.

Experiment 1. Experiment to confirm the effectiveness of the proposed method.

In Experiment 1, the experiment is conducted with a threshold of 0.5 and 0.005 increments
from 0.95 to 0.995 for the cosine similarity. The classification performance of the proposed
method is evaluated by comparing it with the classification performance of the original
RoBERTaGCN and other text classification methods. The value of λ was fixed at 0.7.
Preliminary experiments were conducted on the validation data to analyze the optimal
value for each dataset of the cosine similarity threshold. The optimal values are shown in
Table 3.

Table 3. Optimal Value for Cosine Similarity Threshold.

Data Set Optimal Threshold Value

20NG 0.99
R8 0.975

R52 0.96
Ohsumed 0.965

MR 0.97

Experiment 2. Experiment to analyze the optimal value of λ in the proposed method.

In Experiment 2, we conducted the experiment by changing the value of λ from
0.1 to 0.9 in order to analyze the optimal value of λ for the proposed method using the
graph structure in Equation (16). For the threshold value of cosine similarity, we used the
threshold value that resulted in the highest classification performance in Experiment 1. In
the previous study, only the optimal value for the 20NG data set was shown. Therefore, in
this study, the optimal value of λ in five datasets (20NG, R52, R8, Ohsumed, and MR) is
clarified through experiments. Then, by analyzing the trend and the characteristics of each
dataset, we discuss the relationship between the characteristics of the data and the optimal
value of λ.

Experiment 3. Experiment to confirm classification performance when using GAT.

We verify whether the heterogeneous graphs constructed by the proposed method are
effective for other GNN. Specifically, we check the classification performance when GAT
is used, and evaluate the effectiveness of the graph structure of the proposed method. In
Experiment 3, we set the threshold of cosine similarity and the value of λ that gave the best
classification performance based on the results of Experiments 1 and 2.

5.3. Preprocessing

The following three preprocessing steps were applied to all data. These preprocessing
steps are the same as those done in RoBERTaGCN [4].

Step1: Noise Removal.

All characters and symbols except alphanumeric characters and certain symbols (() , !
? ‘ ’) were removed as noise.

Step2: Word Normalization.

All alphanumeric characters were normalized to half-width alphanumeric characters.
Then, normalized alphanumeric characters are unified into lowercase letters.

Big Data Cogn. Comput. 2023, 7, 181 10 of 15

Step3: Stop Words Removal.

Stop words in text were removed using stop words list of Natural Language Toolkit
(NLTK).

5.4. Experimental Environment

We conducted our experiments using Google Colaboratory Pro+ (5 May 2023). Co-
laboratory Pro+ is an execution environment for Python 3.6.9 and other languages pro-
vided by Google (Mountain View, CA, USA). Table 4 shows the specifications of Google
Colaboratory Pro+.

Table 4. Google Colaboratory Pro+ Specification Details.

Memory GPU Disk

12.69 GB (standard)
/51.01 GB (CPU/GPU (high memory))

/35.25 GB (TPU (high memory))

Tesla V100 (SXM2)
/A100 (SXM2)

225.89 GB (CPU/TPU)
/166.83 GB (GPU)

5.5. Evaluation Index

The accuracy was used as the evaluation index for the experiment. In previous studies,
including RoBERTaGCN [4] and TextGCN [2], accuracy has been used as an evaluation
index, and to make comparing results easier, it was also used in this study. The accuracy
is calculated by Equation (18). Positive is the label of the correct answer, and negative is
the label of the incorrect answer. Negatives are all the remaining labels except the correct
answer label. TP (True-Positive) is the number of items that should be classified as positive
that were correctly classified as positive. TN (True-Negative) represents the number of
items that should be classified as negative that were correctly classified as negative. FP
(False-Positive) indicates the number of cases where items that should have been classified
as negative were incorrectly classified as positive. FN (False-Negative) indicates the number
of cases where items that should have been classified as positive were incorrectly classified
as negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

5.6. Result of Experiment 1

Table 5 shows the classification performance of the proposed method for each cosine
similarity threshold. “×” indicates that the experiment could not be completed due to lack
of memory. Furthermore, “-” indicates that the experiment is not described in the reference.
Experiments with the same number of edges in COS_SIM are listed together in Table 5.

For all datasets, the proposed method outperforms the original RoBERTaGCN in
classification performance at certain thresholds. However, in the experiments using R8,
R52, and MR, the proposed method outperformed the original RoBERTaGCN for only
one to two threshold values. In other words, those three datasets did not show a stable
improvement in classification performance. On the other hand, 20NG outperformed
the original RoBERTaGCN in every threshold value from 0.95 to 0.995. Ohsumed also
outperformed the original RoBERTaGCN in most threshold values. For 20NG, the proposed
method outperformed the original RoBERTaGCN by 0.67% at the threshold of 0.975. The
proposed method also outperformed the original RoBERTaGCN by 1.19% at a threshold of
0.965 for Ohsumed.

Compared to the classification performance of methods other than the original RoBERT
aGCN, the classification performance of the proposed method was the best for three
datasets: 20NG, R8, and Ohsumed. On the other hand, R52 showed the best classification
performance of BERT, and MR showed the best performance of RoBERTa. For R52 and MR,
Experiment 2 shows that the classification performance of the proposed method is best
when the value of λ is set smaller than 0.7. The details are explained in Section 5.7.

Big Data Cogn. Comput. 2023, 7, 181 11 of 15

Table 5. Classification Performance of the Proposed Method. Experimental results for the baseline
methods were provided by [2].

20NG R8 R52 Ohsumed MR

Text GCN [2] 86.34 97.07 93.56 68.36 76.74
Simplified GCN [28] 88.50 - - 68.50 -

LEAM [22] 81.91 93.31 91.84 58.58 76.95
SWEM [23] 85.16 95.32 92.94 63.12 76.65
TF-IDF+LR 83.19 93.74 86.95 54.66 74.59
LSTM [21] 65.71 93.68 85.54 41.13 75.06

FastText [12] 79.38 96.13 92.81 57.70 75.14
BERT [15] 85.30 97.80 96.40 70.50 85.70

RoBERTa [16] 83.80 97.80 96.20 70.70 89.40
RoBERTaGCN [4] 89.15 98.58 94.08 72.94 88.66
Proposed Method

0.5 × 49.47 × 64.73 ×
0.95 89.29 98.26 92.83 73.73 88.21
0.955 89.42 98.63 94.08 72.74 88.21
0.96 89.74 98.49 94.16 73.49 88.52
0.965 89.54 98.45 93.15 74.13 88.15
0.97 89.43 98.45 93.77 73.41 88.66
0.975 89.82 98.63 93.57 73.49 89.00
0.98 89.60 98.54 93.96 88.29
0.985 89.64 98.54 92.95 73.46 88.58
0.99 89.76 98.36 93.42 73.71 88.55
0.995 89.51 98.81 93.26 88.31

5.7. Result of Experiment 2

The classification performance of the proposed method for different values of the
parameter λ is shown in Figure 3. For 20NG and Ohsumed, the higher the value of λ, the
higher the accuracy. For R8, the classification accuracy tends to be higher when the value
of λ is set to an intermediate value. For R52 and MR, accuracy is higher when λ is set to a
lower value. For R52, when λ is set to 0.3, the classification performance is 96.73%, which is
0.33% higher than the classification performance of BERT in Table 5. For MR, when λ is set
to 0.2, the classification performance is 90.21%, which is 0.81% higher than the performance
of RoBERTa in Table 5.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 16

Figure 3. Classification Performance of the Proposed Method When Changing the Value of λ.

5.8. Result of Experiment 3
The classification performance when using GAT is shown in Table 6. When using

GAT, the classification performance of the proposed graph outperformed that of original
RoBERTaGAT for the three datasets R8, R52, and MR. For R52, the classification perfor-
mance exceeded that of the original RoBERTaGAT by 0.98%. For MR, the classification
performance exceeded that of the original RoBERTaGAT by 0.54%.

Table 6. Classification Performance When Using GAT.

 20NG R8 R52 Ohsumed MR
RoBERTaGAT 86.87 97.90 95.83 68.34 89.25

Proposed Method 86.71 98.26 96.81 67.82 89.79

6. Discussion
6.1. Effectiveness of the Proposed Method

As shown in Table 5, the classification performance of the proposed method outper-
forms that of the original RoBERTaGCN on all datasets in the experiments. This indicates
that the heterogeneous graphs constructed in the proposed method were effective. Figure
4 shows the percentage of cosine similarity weights added to edges between document
nodes with the same label. In all datasets, the percentage of correct answers for cosine
similarity is high, indicating that many weights are added to the edges between document
nodes with the same label. Therefore, it can be considered that the high classification per-
formance of the proposed method on heterogeneous graphs is due to the fact that more
weight is added to the edges between document nodes with the same label.

70

75

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.9

Accuracy

λ

20ng R8 R52 Ohsumed MR

89.990.21

74.2

96.73

98.81

Figure 3. Classification Performance of the Proposed Method When Changing the Value of λ.

Big Data Cogn. Comput. 2023, 7, 181 12 of 15

5.8. Result of Experiment 3

The classification performance when using GAT is shown in Table 6. When using
GAT, the classification performance of the proposed graph outperformed that of original
RoBERTaGAT for the three datasets R8, R52, and MR. For R52, the classification performance
exceeded that of the original RoBERTaGAT by 0.98%. For MR, the classification performance
exceeded that of the original RoBERTaGAT by 0.54%.

Table 6. Classification Performance When Using GAT.

20NG R8 R52 Ohsumed MR

RoBERTaGAT 86.87 97.90 95.83 68.34 89.25
Proposed Method 86.71 98.26 96.81 67.82 89.79

6. Discussion
6.1. Effectiveness of the Proposed Method

As shown in Table 5, the classification performance of the proposed method outper-
forms that of the original RoBERTaGCN on all datasets in the experiments. This indicates
that the heterogeneous graphs constructed in the proposed method were effective. Figure 4
shows the percentage of cosine similarity weights added to edges between document nodes
with the same label. In all datasets, the percentage of correct answers for cosine similarity
is high, indicating that many weights are added to the edges between document nodes
with the same label. Therefore, it can be considered that the high classification performance
of the proposed method on heterogeneous graphs is due to the fact that more weight is
added to the edges between document nodes with the same label.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 16

Figure 4. Accuracy of Cosine Similarity.

The results of Experiment 1 in Table 5 show that the classification performance of the
proposed method with GCN is particularly high on two datasets, 20NG and Ohsumed.
From Table 3, it can be seen that 20NG and Ohsumed are the datasets with the first and
second highest average number of words among the datasets used. Therefore, the pro-
posed method using GCN is particularly effective in classifying relatively long documents
such as 20NG and Ohsumed.

The results of Experiment 3 in Table 6 show that the classification performance of the
proposed method with GAT is particularly high on the two datasets of R52 and MR.
Therefore, we can say that the proposed method with GAT is particularly effective in clas-
sifying relatively short documents, such as R52 and MR, contrary to the case with GCN.

6.2. Optimal Value of λ for Each Dataset
The results of Experiment 2, shown in Figure 3, indicate that the optimal value of λ

is between 0.6 and 0.7 for the three datasets of 20NG, R8, and Ohsumed. Thus, for these
three datasets, the classification performance of the proposed method tends to be higher
when the value of λ is set higher and the prediction from GCN is more important than
BERT. On the contrary, the optimal value of λ in R52 and MR is 0.2~0.3. Therefore, for
these two datasets, the classification performance of the proposed method tends to be
higher when the value of λ is set lower and the prediction of BERT is more important than
GCN. The reason for these two trends is the number of labels. While the number of labels
for 20NG, R8, and Ohsumed is 20, 8, and 23, the number of labels for R52 is extremely
high (52) and the number of labels for MR is extremely low (2). Therefore, when classify-
ing documents with an extremely high or low number of labels, we found that setting a
lower value of λ and focusing on the prediction of BERT yielded higher classification per-
formance. In contrast, when classifying documents with an average number of labels, we
found that setting a higher value of λ and focusing on the predictions of GCN yielded
higher classification performance.

30

40

50

60

70

80

90

100

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

Accuracy

Threshold

20NG R8 R52 Ohsumed MR

Figure 4. Accuracy of Cosine Similarity.

The results of Experiment 1 in Table 5 show that the classification performance of the
proposed method with GCN is particularly high on two datasets, 20NG and Ohsumed.
From Table 3, it can be seen that 20NG and Ohsumed are the datasets with the first and
second highest average number of words among the datasets used. Therefore, the proposed

Big Data Cogn. Comput. 2023, 7, 181 13 of 15

method using GCN is particularly effective in classifying relatively long documents such
as 20NG and Ohsumed.

The results of Experiment 3 in Table 6 show that the classification performance of
the proposed method with GAT is particularly high on the two datasets of R52 and MR.
Therefore, we can say that the proposed method with GAT is particularly effective in
classifying relatively short documents, such as R52 and MR, contrary to the case with GCN.

6.2. Optimal Value of λ for Each Dataset

The results of Experiment 2, shown in Figure 3, indicate that the optimal value of λ
is between 0.6 and 0.7 for the three datasets of 20NG, R8, and Ohsumed. Thus, for these
three datasets, the classification performance of the proposed method tends to be higher
when the value of λ is set higher and the prediction from GCN is more important than
BERT. On the contrary, the optimal value of λ in R52 and MR is 0.2~0.3. Therefore, for these
two datasets, the classification performance of the proposed method tends to be higher
when the value of λ is set lower and the prediction of BERT is more important than GCN.
The reason for these two trends is the number of labels. While the number of labels for
20NG, R8, and Ohsumed is 20, 8, and 23, the number of labels for R52 is extremely high
(52) and the number of labels for MR is extremely low (2). Therefore, when classifying
documents with an extremely high or low number of labels, we found that setting a lower
value of λ and focusing on the prediction of BERT yielded higher classification performance.
In contrast, when classifying documents with an average number of labels, we found
that setting a higher value of λ and focusing on the predictions of GCN yielded higher
classification performance.

6.3. Items with Significantly Low Classification Accuracy

Table 7 shows the Average of Cosine Similarity and the Number of Added Edges
when the threshold for adding weights to the cosine similarity was set to 0.5. The items
marked “×” are those that could not finish adding weights because they ran out of memory
during the process of calculating the cosine similarity. When the threshold was set to
0.5, experiments using 20NG, R52, and MR could not be completed due to insufficient
memory. Experiments using R8 and Ohsumed could be completed, but the classification
performance was significantly lower than the original RoBERTaGCN. This may be due to
too many weights being added between document nodes. The number of edges of cosine
similarity is more than twice the number of the other two edges in all datasets. The average
value of the cosine similarity is between 0.8 and 0.85 in all datasets. Therefore, it is likely
that many weights are added between document nodes that do not have the same label
and that these weights are noise.

Table 7. Average of Cosine Similarity and Number of Added Edges.

Data Set Average of Cosine
Similarity PPMI TF-IDF COS_SIM

20NG 0.838 2,241,3246 2,276,720 ×
R8 0.846 2,841,760 323,670 29,441,186
R52 0.840 3,574,162 407,084 41,400,215

Ohsumed 0.837 6,867,490 588,958 27,376,155
MR 0.823 1,504,598 196,826 56,674,250

7. Conclusions

In this paper, we propose a text classification method using a graph constructed by
adding the cosine similarity of CLS vectors of documents as weights of edges between
document nodes in order to solve the problem of conventional text classification meth-
ods that do not use relationships among documents. Experiments confirmed that our
proposed method, which classifies documents using an effective graph that considers the
relationships among documents, outperforms the original RoBERTaGCN and achieves high

Big Data Cogn. Comput. 2023, 7, 181 14 of 15

classification performance. In particular, experiments showed that the proposed method is
effective for long documents. The optimal value of λ, a parameter that controls the balance
between the prediction results of BERT and GCN, was also clarified. It should be set low
when the number of labels in the document to be classified is extremely large or small.
On the other hand, experiments showed that when the number of labels in a document is
average, setting it high is optimal.

Future work includes using other features instead of cosine similarity and devising a
way to handle documents exceeding 510 words.

Author Contributions: Conceptualization, H.N. and M.S.; methodology, H.N.; software, H.N.; vali-
dation, H.N.; formal analysis, H.N.; investigation, H.N. and M.S.; resources, H.N.; data curation, H.N.;
writing—original draft preparation, H.N.; writing—review and editing, H.N. and M.S.; visualization,
H.N.; supervision, H.N. and M.S.; project administration, H.N. and M.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is available on GitHub. The data can be ac-
cessed online at: https://github.com/ZeroRin/BertGCN/tree/main/data (accessed on 25 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907.
2. Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial

Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 7370–7377. [CrossRef]
3. Lu, Z.; Du, P.; Nie, J.Y. Vgcn-bert: Augmenting bert with graph embedding for text classification. In Proceedings of the European

Conference on Information Retrieval, Lisbon, Portugal, 14–17 April 2020; pp. 369–382. [CrossRef]
4. Lin, Y.; Meng, Y.; Sun, X.; Han, Q.; Kuang, K.; Li, J.; Wu, F. BertGCN: Transductive Text Classification by Combining GCN and

BERT. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021; Association for Computational Linguistics:
Kerrville, TX, USA, 2021; pp. 1456–1462. [CrossRef]

5. Nakajima, H.; Sasaki, M. Text Classification Using a Graph Based on Relationships Between Documents. In Proceedings of the
36th Pacific Asia Conference on Language, Information and Computation, Manila, Philippines, 20–22 October 2022; pp. 119–125.
Available online: https://aclanthology.org/2022.paclic-1.14.pdf (accessed on 16 October 2023).

6. Zhang, Y.; Jin, R.; Zhou, Z. Understanding bag-of-words model: A statistical framework. Int. J. Mach. Learn. Cybern. 2010, 1,
43–52. [CrossRef]

7. Cavnar, W.B.; Trenkle, J.M. N-gram-based text categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, Las Vegas, NV, USA, 1 September 1994; Citeseer: Las Vegas, NV, USA, 1994; Volume 161175.

8. Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval; ACM Press: New York, NY, USA, 1999; Volume 463.
9. Figueiredo, F.; Rocha, L.; Couto, T.; Salles, T.; Gonçalves, M.A.; Meira, W., Jr. Word co-occurrence features for text classification.

Inf. Syst. 2011, 36, 843–858. [CrossRef]
10. Maron, E. Automatic indexing: An experimental inquiry. J. ACM 1961, 8, 404–417. [CrossRef]
11. Ng, A.Y.; Jordan, M.I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In

Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver,
BC, Canada, 3–8 December 2001; pp. 841–848.

12. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
13. Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of

the 10th European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 137–142. Available online:
https://link.springer.com/chapter/10.1007/BFb0026683 (accessed on 16 October 2023).

14. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
15. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
16. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [CrossRef]
17. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. arXiv 2016, arXiv:1607.01759.
18. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

https://github.com/ZeroRin/BertGCN/tree/main/data
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1007/978-3-030-45439-5_25
https://doi.org/10.18653/v1/2021.findings-acl.126
https://aclanthology.org/2022.paclic-1.14.pdf
https://doi.org/10.1007/s13042-010-0001-0
https://doi.org/10.1016/j.is.2011.02.002
https://doi.org/10.1145/321075.321084
https://doi.org/10.1109/TIT.1967.1053964
https://link.springer.com/chapter/10.1007/BFb0026683
https://doi.org/10.1007/BF00058655
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276

Big Data Cogn. Comput. 2023, 7, 181 15 of 15

19. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237. Available online: http://aclweb.org/anthology/
N18-1202 (accessed on 16 October 2023).

20. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

21. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

22. Wang, G.; Li, C.; Wang, W.; Zhang, Y.; Shen, D.; Zhang, X.; Henao, R.; Carin, L. Joint Embedding of Words and Labels for Text
Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia,
15–20 July 2018; pp. 2321–2331. Available online: https://aclanthology.org/P18-1216 (accessed on 16 October 2023).

23. Shen, D.; Wang, G.; Wang, W.; Min, M.R.; Su, Q.; Zhang, Y.; Li, C.; Henao, R.; Carin, L. Baseline Needs More Love: On
Simple Word-Embedding-Based Models and Associated Pooling Mechanisms. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 440–450. Available online:
http://aclweb.org/anthology/P18-1041 (accessed on 16 October 2023).

24. Iyyer, M.; Manjunatha, V.; Boyd-Graber, J.; Daumé, H., III. Deep Unordered Composition Rivals Syntactic Methods for Text
Classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing, Beijing, China, 27–31 July 2015; pp. 1681–1691. [CrossRef]

25. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, 22–27 June 2014; pp. 655–665.
[CrossRef]

26. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, Beijing, China, 27–31 July 2015; pp. 1556–1566. [CrossRef]

27. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61–80. [CrossRef] [PubMed]

28. Wu, F.; Zhang, T.; Souza, A.H.; Fifty, C., Jr.; Yu, T.; Weinberger, K.Q. Simplifying Graph Convolutional Networks. In Proceedings
of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6861–6871. Available
online: https://arxiv.org/abs/1902.07153 (accessed on 16 October 2023).

29. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
30. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
31. Witten, I.H.; Moffat, A.; Bell, T.C. Managing Gigabytes: Compressing and Indexing Documents and Images; Morgan Kaufmann: San

Francisco, CA, USA, 1999. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://aclweb.org/anthology/N18-1202
http://aclweb.org/anthology/N18-1202
https://doi.org/10.48550/arXiv.1810.04805
https://aclanthology.org/P18-1216
http://aclweb.org/anthology/P18-1041
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1109/TNN.2008.2005605
https://www.ncbi.nlm.nih.gov/pubmed/19068426
https://arxiv.org/abs/1902.07153
https://doi.org/10.1023/A:1011472308196

	Introduction
	Related Works
	Theoretical Background (RoBERTaGCN, RoBERTaGAT)
	Constructing Heterogeneous Graph of Words and Documents
	Tokenizing Documents
	Creating the Initial Node Feature Matrix
	Input into GCN (GAT) and Learning by GCN (GAT)
	Input into Feedforward Neural Network and Learning by Feedforward Neural Network
	Interpolation of Predictions with BERT and GCN (GAT)

	Proposed Method
	Experiments
	Data Set
	Experimental Settings
	Preprocessing
	Experimental Environment
	Evaluation Index
	Result of Experiment 1
	Result of Experiment 2
	Result of Experiment 3

	Discussion
	Effectiveness of the Proposed Method
	Optimal Value of for Each Dataset
	Items with Significantly Low Classification Accuracy

	Conclusions
	References

