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Abstract: In this paper, we demonstrate that fixed-weight layers generated from random distribution
or logistic functions can effectively extract significant features from input data, resulting in high
accuracy on a variety of tasks, including Fisher’s Iris, Wisconsin Breast Cancer, and MNIST datasets.
We have observed that logistic functions yield high accuracy with less dispersion in results. We have
also assessed the precision of our approach under conditions of minimizing the number of spikes
generated in the network. It is practically useful for reducing energy consumption in spiking neural
networks. Our findings reveal that the proposed method demonstrates the highest accuracy on
Fisher’s iris and MNIST datasets with decoding using logistic regression. Furthermore, they surpass
the accuracy of the conventional (non-spiking) approach using only logistic regression in the case of
Wisconsin Breast Cancer. We have also investigated the impact of non-stochastic spike generation
on accuracy.

Keywords: spiking neural network; logistic functions; fixed weights; random weights; classification;
feature extraction

1. Introduction

Spiking neural networks (SNNs), considered to be the third generation of artificial
neural networks, combine inspiration from biological neural networks with the capability
to address traditional machine-learning tasks. In SNNs, neurons are dynamic systems that
communicate through current impulses.

Over the past two decades, alongside the rapid development of spiking neural net-
works, neuromorphic processors have emerged, such as TrueNorth [1], Loihi [2], Tianjic [3],
and others [4]. These processors realize models that imitate functionality existing in the
nervous system and perform machine learning, including realizations of reservoir-based
spiking neural network topologies rooted in short-term effects [5] and long-term effects [6].
Their primary advantages include low energy consumption as demonstrated for ZnO-
based memristor [7], high parallelism as demonstrated for image skeletonizing [8], signal
processing efficiency as shown in [9] for a device with a very low switching current level
and self-rectifying characteristics that can be utilized for reservoir computing and real-time
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adaptability as was discussed in [10]. Efficient solutions for a set of tasks, such as sensory
information processing as demonstrated for novel artificial retinal neuron with ultra-low
power in [11], pattern analysis as for Fashion MNIST dataset [12], speech recognition, e.g.,
for the Texas Instruments digit sequences dataset in [13], the Heidelberg Digits dataset and
the Speech Commands dataset [14], and other perception and environment interaction-
related activities as for reinforcement learning in [15] can be achieved by neuromorphic
processors. In some cases, this requires the application of methods based on the utilization
of a limited number of trainable synaptic weights, which necessitates the development
of spiking neural network topologies with limited plasticity synapses [16]. This concern
is especially pertinent when training networks on a chip. Lowering the number of train-
able weights offers advantages such as reduced overfitting [17], simplifying the fitting
algorithm’s complexity, and thus facilitating implementation on neuromorphic processors.

Our approach involves utilizing spiking networks with fixed synaptic weights that
remain unchanged during training. This reduces the number of tunable network param-
eters, simplifying the potential hardware implementation of training on neuromorphic
computing devices. This approach is inspired by reservoir neural networks [18]. However,
instead of a reservoir with recurrent connections, we use a fully connected layer with
weights fixed based on logistic functions or a uniform random distribution. This approach
has been previously demonstrated for conventional neural networks [19] and subsequently
extended to spiking networks [20]. In our work, we explore the capabilities of layers with
fixed weights in solving benchmark tasks of real-valued vector and image classification.
With this aim, the current paper presents the following contributions:

• We demonstrate the ability of the proposed layer to perform effective reduction in the
dimension of the input data vectors without loss of classification performance;

• We explore the tradeoff between the number of spikes needed for encoding the in-
put information and classification performance to find input encoding parameters
that minimize the number of spikes while maintaining competitive classification
performance;

• We compare different methods for initializing the weights of the proposed layer.

As a result, we find that:

1. Layers with random or logistic function-generated weights can efficiently extract
meaningful features from input data;

2. Logistic functions enable achieving high accuracy with less result dispersion.

We conduct numerical experiments on a set of commonly used benchmark datasets
described in Section 2: Fisher’s Iris, Wisconsin Breast Cancer, and MNIST. The spiking
network used is described in Section 3. Section 4 provides descriptions of the experiments
and their results. Finally, an analysis of the results is presented in Section 5.

2. Datasets

Our methodology is employed across various tasks. Each of the tasks is a machine-
learning benchmark. Therefore, the datasets contain information from different areas
expressed in vector format. These representations detail the characteristics of flowers in the
Fisher’s Iris dataset and medical parameters in the case of Wisconsin cancer or encapsulated
in the structure of pixel matrices, portraying images of handwritten digits in the case of
MNIST. The sizes and distributions of the data vary significantly. To examine the efficacy
of the suggested approach across diverse tasks, we perform a comprehensive assessment
of the adaptability and resilience of the proposed layer, characterized by fixed weights.

1. The MNIST dataset contains 60,000 training and 10,000 testing black-and-white images
of size 28 × 28 pixels, representing handwritten digits from 0 to 9. The brightness of
each pixel ranges from 0 to 255, where 0 corresponds to an absolutely black pixel and
255 to an absolutely white pixel. This dataset has become a benchmark for evaluating
the performance of various classification algorithms. The examples from the dataset
are depicted in Figure 1.
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Figure 1. The MNIST dataset.

2. The Fisher’s Iris dataset contains 150 samples of iris flowers, with 50 samples for
each of the three species. Each sample consists of four numeric features describing
the length and width of the sepals and the length and width of the petals. The data
visualization is presented in Figure 2A, illustrating the non-linearity of the task using
only two features.

3. The Breast Cancer Wisconsin (Diagnostic) dataset consists of 569 samples containing
information on cell characteristics from breast biopsy samples and their corresponding
diagnosis: malignant or benign tumor, with 212 and 357 samples, respectively. The
features are numeric and describe the morphological and structural characteristics
of the cells, such as nucleus size, radius, area, and others. The data visualization, as
shown in Figure 2B, employs only two features, akin to the case of Fisher’s irises.

A B

Figure 2. Visualization of: (A)—Fisher’s Iris data, (B)—Wisconsin Breast (Diagnostic) Cancer data.

3. Spiking Neural Network
3.1. General Architecture

Figure 3 illustrates the proposed algorithm’s general scheme: The input is encoded
from numeric representation into spike sequences, which are fed into the spiking layer, and
then the output spike sequences emitted by the layer are subsequently decoded back into
numeric representation and processed by the classifier.
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Figure 3. The topology of the proposed approach.

3.2. Spike Generators

The transition from numeric input (green squares in Figure 3) to spiking representation
of the input is based on frequency encoding, where a higher input value (e.g., for digit
images, higher brightness) means a higher number of spikes emitted by the corresponding
generator in the spiking neural network. The advantage of frequency encoding lies in its
naturalness and biological analogy, as neurons in the brain, for instance, in sensory cortical
areas, often respond to signals by changing the spike generation frequency.

This numeric-to-spiking transition is performed by a layer of N spike generators
(orange diamonds in Figure 3), where N is the input dimension. The output of each
generator is a sequence of spikes, and the times of these spikes are aligned to numerical
simulation timesteps of 0.1 ms. Poisson generators emit spikes at random times so that
the total number of spikes in the sequence that encodes its corresponding input vector
component xi obeys a Poisson distribution with the mean xi · Rate. Poisson generators,
further referred to as stochastic generators, are used in all experiments except Section 4.6,
where they are compared to non-stochastic generators that emit spikes with equal interspike
intervals, keeping the total number of spikes equal to xi · Rate. Here, Rate is an adjustable
coefficient that is examined during the experiments.

3.3. Processing Elements

We consider two types of processing elements (blue circles in Figure 3). The first one is
the Leaky Integrate-and-Fire spiking neuron [21] with exponential post-synaptic currents.
The dynamic of this neuron model is described by the following system:

dVj

dt
= −

Vj − Vrest

τ
+

Isyn
j

C
,

Isyn
j = ∑

i

wij · I ∗ ∑
tspike
ij

δ
(

tspike
ij

),

I(t) = e
− t

τsyn ,
Vm ≥ Vth =⇒ Vm = Vrest,

(1)

where Vj is the membrane potential of j-th neuron, Vrest = −70 mV is the resting potential,
τ = 10 ms is the synaptic decay time constant, Isyn is the total synaptic current, C = 250 pF
is the membrane capacitance, wij is the synaptic weight, Iij is the individual synaptic
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current, tspike is spike timing, and τsyn = 2 ms is the time constant of synaptic current. The
asterisk (∗) denotes convolution, and the sum is over the input synapses i of neuron j, and
then overall times tspike

ij of input spikes arriving at the i-th input of neuron j. The values of
parameters are set according to our previous study [20].

When the neuronal membrane potential reaches a threshold value of Vth, the neuron
fires a spike, and the membrane potential resets to the Vrest value and remains unchanged
during tref = 2 ms. Vth was adjusted during the experiments.

The spiking neuron model implementation was adopted from the NEST Python library,
specifically referred to as iaf_psc_exp within that context.

After presenting an input vector to the spiking layer, the output of the spiking neuron
is the number of spikes it emits.

We also use another type of processing element, further referred to as adder. It is an
element that receives a vector of numbers of spikes emitted by spike generators as an input
(spike_counti), then multiplies it by a vector of weights (wij) corresponding to this element
j, and outputs the result:

outj =
N

∑
i=1

wij · spike_counti. (2)

Effectively, the output of an adder is the upper limit of the output of a spiking neuron
with infinitely small threshold and simulation timestep. On the plots, the adder is therefore
symbolically placed as if it had Vth = Vrest.

In the case of adders, the output data from processing elements is numeric and directly
fed into logistic regression.

3.4. Weight Initialization

Below, we use and further compare two methods of weight initialization:

1. Random values—the weights are generated from a uniform distribution within the
range of −1 to 1;

2. Logistic functions—the weights are determined by the values of logistic functions, the
general form of which looks as follows:{

wi,1 = A · sin ( i
N · π

B ),
wi,j+1 = 1 − r · w2

i,j,
(3)

where N is the number of inputs, r was set at 1.885, A is 0.3, B is 5.9 as in the original
study [19] for this paper as tuning these parameters for the proposed spiking model
did not result in a significant impact on accuracy.

3.5. Decoding

During a fixed time window, determined through experiments, generators emit spikes
from 0 to the maximum per second, depending on the feature value. These spikes reach
adders or spiking neurons via the weights, triggering them to emit spikes themselves. The
numbers of spikes fired by the neurons or the outputs of adders are recorded. At the end
of the time window, these values are passed to a logistic regression (LR) classifier [22],
which outputs a class label based on the received numeric vector. The one-vs-rest scheme
was used for the training stage of the LR classifier, and the rest of the parameters were
set by default as in the scikit-learn Python library. LR serves as an intermediate step
in our research. In future investigations, we intend to replace it with a layer of spiking
neurons with trainable weights. This transition aims to improve the model’s generalization
capabilities and achieve a more efficient solution to the task at hand.
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4. Experiments and Results
4.1. Agenda of Experiments

In our experiments, we aimed to achieve optimal accuracies on the aforementioned
benchmarks while using a limited number of spikes. This problem formulation is of
practical interest when developing energy-efficient biomorphic systems.

For the benchmarks, we conducted sequences of experiments to clear:

1. The criteria for selecting the feed time window;
2. The accuracy dependence on the number of processing elements;
3. The accuracy dependence on the maximal number of spikes in the case of a more

effective number of processing elements, defined in experiments of point 1;
4. The accuracy dependence on the number of output spikes with a given number of

neurons with thresholds;
5. The influence of stochastic input signal on the accuracy.

The experiments were conducted using both weight initialization methods: Logistic
functions and Random values. The dependence of accuracy on the time window, the
number of processing elements, and the number of input spikes have been obtained for
adders as processing elements, while the influence of spiking neuron dynamics is assessed
separately in Section 4.5.

Due to the extensive time required for experiments with MNIST data, they were con-
ducted on a reduced training set. Its size was determined through additional experiments,
the results of which are presented in Figure 4. These demonstrated that accuracy saturation
on the MNIST dataset is achieved at 60% of the training set. With such a volume of training
data, LR reached an accuracy comparable to that obtained on the full training data set:

10 20 30 40 50 60 70 80 90 100
Training data usage volume, %

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

F1
-m

ac
ro

Saturation value = 0.92

Figure 4. The impact of the volume of the used MNIST training data on model accuracy.

All subsequent experiments were conducted on the reduced MNIST dataset.
To mitigate the influence of randomness caused by the stochasticity of Poisson spike

generators and the weight initialization method, we performed several accuracy calcula-
tions (further, we call it an attempt) for each point in the experiments. Additionally, we
conducted a 5-fold cross-validation on the Fisher’s Iris and Wisconsin’s Breast Cancer data.
The ‘box-and-whisker’ plots below were obtained after five attempts for the MNIST dataset
and ten attempts for the Fisher’s Iris and Wisconsin’s Cancer datasets. The box spans from
the first quartile (Q1) to the third quartile (Q3) of the dataset, featuring an orange line at the
mean value. The whiskers reach from the box to the furthest data point within 1.5 times
the interquartile range from the box. Outliers that lie beyond the ends of the whiskers are
denoted with circles.

Furthermore, in Table 1, the minimum and maximum accuracies obtained across all
attempts are presented.

The dotted lines shown on the plots indicate the saturation level of accuracy deter-
mined by the mean values of the boxplots. The parameters with which the saturation level
of accuracy was achieved were chosen for subsequent experiments.
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Table 1. Comparison of accuracies with both weight initialization methods.

Weights
Spike Counts Performance

Minimum Desired Min Max

Fisher’s Iris

Logistic
functions 26 312 0.95 0.96

Random
values 52 312 0.93 0.97

Logistic regression 0.93 0.97

STDP-based approach on rate and temporal input encoding [23] 0.95 1.0

SpikeProp and Theta Neuron BP [24] 0.96 0.98

2-layer SNN with NC or PPX plasticity [25] 0.93 1.0

Wisconsin Breast Cancer

Logistic
functions 3 8 0.94 0.97

Random
values 2 24 0.94 0.97

Logistic regression 0.92 0.95

STDP-based approach on rate and temporal input encoding [23] 0.88 0.92

SpikeProp and Theta Neuron BP [24] 0.97 0.99

2-layer SNN with NC or PPX plasticity [25] 0.88 0.96

MNIST

Logistic
functions 160 160 0.92 0.92

Random
values 160 160 0.92 0.92

Logistic regression 0.92 0.92

3-layer SNN with STDP [26] 0.95 0.95

3-layer SNN with STDP and BP [27] 0.98 0.98

2-layer SNN (100 neurons) with NC plasticity [28] 0.89 0.89

4.2. Analyzing the Time Window Size for Each Dataset

In the experiments conducted in this study, the maximum spike generation frequency
of the generators is capped at 1000 Hz. This limitation is imposed to prevent generators from
emitting more than one spike per discretization step, which is physiologically implausible.
The purpose of this experiment is precisely to determine the minimum temporal window
required to achieve optimal accuracy under these constraints.

Figure 5 demonstrates that the saturation of accuracy is achieved at a time window
size of 5200 ms. Therefore, this time window size is used in future experiments.

In Figure 6, it is shown that the optimal accuracy with the Wisconsin cancer dataset is
achieved with a 200 ms time window. Therefore, this window size is used in subsequent
experiments.
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Figure 5. The dependence of Fisher’s Iris classification accuracy (solid blue line) on the time window
length.
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Figure 6. The dependence of Breast Cancer Wisconsin (Diagnostic) classification accuracy (solid blue
line) on the time window length.

For subsequent experiments, the time window size of 200 ms has been chosen, at
which the accuracy saturates as illustrated in Figure 7.
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Figure 7. The dependence of MNIST classification accuracy (solid blue line) on the time window
length.

4.3. Searching the Optimal Number of Processing Elements

The objective of this experiment was to determine the minimum number of processing
elements directly influencing the number of spikes propagating through the network
required to achieve saturation accuracy.

Using 3 processing elements, we observe that accuracy saturates for both weight
initializations according to Figure 8.
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random values

Saturation value = 0.94

Figure 8. The dependence of Fisher’s Iris classification accuracy on the number of processing elements
(PE) in the layer: left subplot, for the layer with weights based on logistic functions; right subplot, for
random weights.

For the subsequent experiments, we have chosen to use 24 processing elements, as the
accuracy plateaus across all initiations at this number of elements following the details in
Figure 9.

Figure 10 indicates that maximum accuracies are achieved using 250 processing ele-
ments with logistic function initialization and 200 elements with random number initializa-
tion. The relevant values have been selected for further experiments.
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Figure 9. The dependence of Breast Cancer Wisconsin (Diagnostic) classification accuracy on the
number of processing elements in the layers with logistic-function-based weights and with random
weights.
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Figure 10. The dependence of MNIST classification accuracy on the number of processing elements
in the layers with logistic-function-based weights and with random weights.

4.4. Searching the Optimal Number of Generated Spikes with a Given Number of PE from the
Previous Experiments

During this experiment, generator frequencies were gradually increased to establish
the minimum number of spikes required to achieve saturation accuracy.

Accuracy reaches saturation with several generated spikes set at 52 for logistic weights
and 312 for random weights as outlined in Figure 11. For subsequent experiments, we
chose a value of 312 for logistic weights because the variance in accuracy is relatively small,
and the average accuracy is comparable to that obtained with 52 spikes. It is also worth
noting that when weights are initialized with random numbers, the variances in accuracy
are higher compared to weight initialization using logistic functions.

Accuracy saturation is achieved with several generated spikes set at 8 for logistic
weights and 24 for random weights, as indicated by the data presented in Figure 12. These
respective values were selected for subsequent experiments.

Saturation is reached when the number of generated spikes is set to 160 for both
weight initializations as per Figure 13.
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Figure 11. The dependence between accuracy and the number of spikes on the Fisher’s Iris data.
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Figure 12. The dependence between accuracy and the number of spikes generated by the generators
on the Breast Cancer Wisconsin (Diagnostic) data.
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Figure 13. The dependence between accuracy and the number of spikes generated by the generators
on the MNIST data.
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4.5. Searching the Optimal Threshold Reflecting the Number of Output Spikes with a Given
Number of Processing Elements That Are Replaced by Neurons and Several Generated Spikes from
the Previous Experiments

In this experiment, spiking neurons were employed to examine their impact on the
accuracy of models. On the graphs, summators are denoted with a conditional threshold of
−70.0 mV.

It is important to note that as the threshold potential value increases, the number of
emitted spikes decreases. Therefore, the threshold value at which the firing rate saturates is
sought from right to left rather than from left to right, as in previous experiments.

Figure 14 clearly demonstrates that processing elements without a threshold yield
the highest level of accuracy. Similar to the previous experiment, we observe a relatively
significant variance when weights are initialized with random numbers, in contrast to
initializing them using logistic functions.
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Figure 14. The dependence between accuracy and the threshold potential of spiking neurons on the
Fisher’s Iris data.

In Figure 15, it is evident that when weights are initialized with logistic functions,
accuracy saturates at a threshold of −69.94, whereas with random weights, the plateau
accuracy is observed at a threshold of −69.8, taking into account the variance. A higher
threshold level indicates a lower number of spikes emitted by neurons.
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Figure 15. The dependence between accuracy and the threshold potential of spiking neurons on the
Breast Cancer Wisconsin (Diagnostic) data.
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Increasing the threshold in both weight initialization methods results in a substantial
reduction in accuracy based on Figure 16.
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Figure 16. The dependence between accuracy and the threshold potential of spiking neurons on the
MNIST data.

4.6. The Influence of Stochastic Input Signal on the Accuracy

During the experiment, we conducted a comparison between stochastic spike genera-
tion, where spikes are emitted according to a Poisson distribution at each discretization
step of 0.1 ms, and non-stochastic spike generation, where they are uniformly generated
within a time window determined by the corresponding input.

As before, accuracies were calculated several times, and the data were visualized
using box plots. However, to eliminate the potential impact of weight initialization on the
model’s accuracy, the weights were initialized once for all the attempts for both types of
generators.

The use of stochastic generators results in outliers in accuracy, while the averages are
comparable for both types of generators and both weight initialization methods as depicted
in Figure 17.
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Figure 17. The dependence between accuracy and spike generation method on the Fisher’s Iris data.

When using logistic functions, the accuracies of stochastic and non-stochastic genera-
tors are similar in line with Figure 18. However, in the case of random weight initialization,
stochastic generators exhibit a considerable variance in accuracy compared to their non-
stochastic counterparts.
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Figure 18. The dependence between accuracy and spike generation method on the Breast Cancer
Wisconsin (Diagnostic) data.

In the context of Figure 19, accuracies are consistent for both initialization methods
and generator types, with differences of no more than 1%. Non-stochastic generators
completely remove accuracy deviation.
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Figure 19. The dependence between accuracy and spike generation method on the MNIST data.

4.7. Efficiency of the Proposed Approach and Comparison with Other Existing Methods

In Table 1, we present the minimum spike counts required to achieve an average
accuracy of 92% (referred to as minimum spike counts) and the spike counts needed to
attain the highest achievable accuracy (referred to as Desired Spike counts) for each dataset
for weight initialization method. The minimum and maximum F1-macro values across
all attempts are linked to Desired Spike counts, which can be found in Figure 14 for the
Fisher’s Iris dataset, in Figure 15 for the Wisconsin Breast Cancer dataset, in Figure 16
for the MNIST dataset. The table includes LR and other existing spike-based approaches
for comparative analysis. NC and PPX plasticities refer to the plasticity that models the
conductance change in nanocomposite memristors [28] and the plasticity of highly plastic
poly-p-xylylene memristor [29], respectively. The table includes other existing methods for
the MNIST dataset for comparison, whose accuracies were obtained using the complete
training dataset.

Table 2 presents the model parameters that result in the highest accuracies.
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Table 2. Parameter values of the models that achieved the best performance on each dataset and
weight initialization.

Weights Number of PE Spike Counts Vth, mV Time Window, ms

Fisher’s Iris

Logistic
functions 3 312 −70 5200

Random values 3 312 −70 5200

Wisconsin Breast Cancer

Logistic
functions 16 8 −69.94 200

Random values 16 24 −69.8 200

MNIST

Logistic
functions 350 160 −70 200

Random values 350 160 −70 200

4.8. Discussion

Striving for low energy consumption of the prospective hardware implementation,
our experiments were aimed at minimizing the number of processing elements in the
network and the total number of spikes emitted. Our experiments followed this aim by
selecting the temporal window for presenting examples, adjusting the number of processing
elements and spike generator frequencies, and choosing the threshold value for neuron
potentials. However, input generators emitting too few spikes per input sample would
lead to loss of information at the input encoding stage, while neurons emitting too few
output spikes would lead to information loss at the decoding stage. Accordingly, a lower
neuron threshold makes samples of different classes more distinguishable by their output
spike counts. Therefore, a processing element without a threshold, the adder, modeling an
extreme case of a neuron with an infinitely low threshold, allows one to obtain the lower
bound on the number of input spikes sufficient for acceptable classification performance.

As a result, for all the three datasets used, we find that competitive accuracy can be
achieved with few elements in the layer (furthermore, for the Fisher’s Iris dataset, just
three neurons are sufficient, one neuron per class) and a few hundred input spikes per
input vector.

Competitive accuracy was also achieved by the proposed approach on several other
classification tasks. Our prior study [30] involving Free Spoken Digits data exhibited an
accuracy of approximately 94%, while the Optical Recognition of Handwritten Digits data
from our previous research [20] achieved an accuracy of around 92%. This shows the
efficiency of the proposed approach for transforming input features into spike sequences.

Drawing weights from a random distribution rather than setting them on the base of
logistic functions introduces more variability in accuracy, particularly in cases with limited
datasets, such as Fisher’s Iris and Wisconsin Breast Cancer. Larger datasets, such as MNIST,
yield more stable training results due to their larger number of examples.

The comparison of stochastic and non-stochastic spike generators did not reveal
significant differences in the average accuracy between the two. However, the stochastic
nature of the generators affects the accuracy variance, which increases for smaller datasets.

5. Conclusions

On a set of benchmarks—Fisher’s Iris, Wisconsin Breast Cancer, and MNIST—we have
empirically demonstrated the efficiency of the proposed non-trainable layer in transforming
numeric input values into a less-dimensional space of counts of spikes emitted during a
specified time window, allowing the subsequent decoding of the classes from the spike
counts. We also show that the number of elements in the proposed layer, as well as the
number of spikes needed for encoding an input sample, can be kept minimal without much
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accuracy loss. The highest classification accuracy achieved using this approach (see Table 1)
are on par (in the case of Fisher’s Iris and MNIST) or exceed (in the case of Wisconsin
Breast Cancer) the accuracy that LR alone achieves on the respective tasks, thus proving
the efficiency of the proposed layer as a feature extraction step. Synaptic weights of the
non-trainable layer can be set at random or be based on logistic functions; logistic functions
reduce the resulting variability.

The results of this study are, to our knowledge, the first proof of concept of data
preprocessing using a layer of spiking neurons with fixed weights, which has only been
proposed earlier for conventional neural networks [19].

The obtained results lay a foundation for creating both efficient and economical spiking
neural network topologies to be deployed on prospective biomorphic devices.
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