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Abstract: In response to rising concerns over crime rates, there has been an increasing demand for
automated video surveillance systems that are capable of detecting human activities involving carried
objects. This paper proposes a hyper-model ensemble to classify humans carrying baggage based on
the type of bags they are carrying. The Fastai framework is leveraged for its computational prowess,
user-friendly workflow, and effective data-cleansing capabilities. The PETA dataset is utilized
and automatically re-annotated into five classes based on the baggage type, including Carrying
Backpack, Carrying Luggage Case, Carrying Messenger Bag, Carrying Nothing, and Carrying Other.
The classification task employs two pretrained models, DenseNet-161 and EfficientNet-B5, with a
hyper-model ensemble that combines them to enhance accuracy. A “fit-one-cycle” strategy was
implemented to reduce the training time and improve accuracy. The proposed hyper-model ensemble
has been experimentally validated and compared to existing methods, demonstrating an accuracy of
98.6% that exceeds current approaches in terms of accuracy, macro-F1, and micro-F1. DenseNet-161
and EfficientNet-B5 have achieved accuracy rates of 95.5% and 97.3%, respectively. These findings
contribute to expanding research on automated video surveillance systems, and the proposed model
holds promise for further development and use in diverse applications.

Keywords: deep learning; hyper model; pre-processing pipeline; baggage type; Fastai framework

1. Introduction

The rapid growth of urbanization and increasing global concerns over public safety
and security have led to the need for enhanced video surveillance systems [1,2]. These
systems play a crucial role in monitoring public spaces, securing critical infrastructures, and
detecting criminal or suspicious activities [3]. A key aspect of these surveillance systems is
the capability to accurately detect and classify human activities, particularly those involving
carried objects such as baggage [4,5]. This is essential in various situations, including airport
security, public transportation, and crowded events, where the identification of individuals
carrying potentially hazardous or prohibited items is of the utmost importance [6].

Deep learning techniques, specifically convolutional neural networks (CNNs), have
demonstrated significant success in various computer vision tasks, including object detec-
tion, classification, and human activity recognition [7,8]. However, there remains a need for
further improvement in the detection and classification of human-carried baggage to ensure
higher accuracy and adaptability to real-world scenarios [9,10]. The detection and classi-
fication of human-carried baggage using deep-learning techniques face challenges such
as occlusion, varied appearances, and real-time processing requirements [11]. Accurately
detecting and classifying baggage is further complicated by factors like background clutter,
motion blur, and limited annotated data [12]. Addressing these challenges is crucial for en-
hancing video surveillance systems and ensuring public safety [13,14]. In response to these
pressing needs, we present an innovative approach that leverages advanced deep-learning
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techniques. The significance of our work lies in its potential to dramatically enhance the de-
tection and classification capabilities of video surveillance systems in real-world scenarios,
particularly those involving human-carried baggage. Our research promises substantial
contributions to public safety and security across various contexts, ranging from airport
security to public transportation and crowded events. Beyond the immediate application
in surveillance, our innovations resonate profoundly within the broader landscape of com-
puter vision. Our pioneering methodologies, from applying hyper model application to
baggage-based human classification to innovative preprocessing strategies, aim to drive
the evolution of computer vision methodologies and their myriad applications. To this end,
we focused on the following contributions:

1. We applied hyper models for the first time to the problem of classifying humans
carrying baggage based on bag types.

2. We developed a reliable hyper model that can classify humans, with or without
baggage, into five classes based on the baggage type.

3. We introduced a pre-processing pipeline that includes increasing the image contrast,
applying a sharpening filter, adjusting image brightness and saturation, and removing
noise to improve model performance.

4. We automatically re-annotated the PETA dataset with direct information about the
baggage type using a custom Python script.

5. We implemented the innovative ‘fit-one-cycle’ policy method to reduce the number of
epochs and iterations required for our model to handle large-scale data.

This paper is organized as follows: Section 2 presents a review of related work on
deep learning techniques for detecting and classifying human-carried baggage; Section 3
describes the methodology, including the dataset, preprocessing steps, and the proposed
hyper model ensemble; Section 4 presents the experimental results and discussion; and
finally, Section 5 presents the conclusion with a discussion on potential future work.

2. Related Work

Recent years have seen the increasing application of deep learning techniques in
various computer vision tasks, including object detection, classification, and human activity
recognition [4]. This section provides an overview of the related work on deep learning
techniques for detecting and classifying human-carried baggage and critically examines
the gaps that persist.

2.1. Human Activity Recognition

Human activity recognition (HAR) is a critical component in video surveillance sys-
tems and has been widely studied over the past few years [15]. Several deep learning-
based HAR techniques have been proposed, such as using convolutional neural networks
(CNNs) [16], recurrent neural networks (RNNs) [17], and long short-term memory (LSTM)
networks [18]. However, despite their efficacy in recognizing basic human actions like
walking and running, these techniques often struggle when it comes to intricate actions
involving carried objects. The granularity of such actions, particularly when objects are
partially obscured, makes them challenging to detect and classify accurately.

2.2. Object Detection and Classification

Deep learning-based object detection and classification techniques have gained popu-
larity due to their ability to identify objects in images and videos with high accuracy [19].
Techniques like Faster R-CNN [20], the Single Shot Multi-Box Detector (SSD) [21], and You
Only Look Once (YOLO) [22,23] have been developed to address these challenges. While
these techniques have shown promise in detecting various objects, their performance in
classifying human-carried baggage is still limited due to challenges such as occlusion, the di-
verse appearances of baggage based on angles and lighting, and the need for instantaneous
processing that limits their efficacy [11].
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Ahammed et al. [24] leveraged deep learning and YOLOv3 for the real-time detection
of unattended baggage and owner identification, achieving notable accuracy. This work
underscores the essential role of precise detection and the classification of human-carried
baggage in enhancing security, an area to which our prior work has made substantial
contributions. We discuss these in the following subsection.

2.3. Human-Carried Baggage Detection and Classification

Numerous studies have focused on detecting and classifying human-carried baggage
using deep-learning techniques. Chen et al. [25] proposed a two-stage framework for
baggage recognition, where a CNN is initially employed to detect humans in images,
followed by a second CNN to classify the baggage type. However, this approach relies on
separate models for human detection and baggage classification, which may not be efficient
for real-time applications.

To address the challenges in human-carried baggage detection and classification,
researchers have explored various techniques, such as attention mechanisms [26], multi-
scale feature learning [27], and temporal information integration [28]. Nonetheless, these
methods continue to face limitations in terms of their accuracy, adaptability to real-world
scenarios, and processing time.

Wahyono et al. [29] developed a framework using custom CNN layers and transfer
learning based on the human viewing direction for classifying objects carried by humans.
Despite its efficacy, this approach faces limitations due to occlusions, similarities in human
appearance, and challenges in identifying front-facing backpack carriers, requiring further
refinement.

In our previous work [30], we addressed this protruding problem by proposing a
model for classifying humans carrying baggage. Our approach involved utilizing the
pretrained DenseNet-161 architecture and employing a “fit-one-cycle policy” strategy to
minimize the training time and enhance accuracy. The model demonstrated high precision
and outperformed existing techniques, achieving an accuracy range of 96–98.75% for binary
classification and 96.67–98.33% for multi-class classification. Notably, our method proved
to be effective in detecting baggage when it was heavily obscured or indistinguishable from
other objects. Moreover, our study focused on the direction in which humans were looking,
not the type of bag they carried.

In summary, while prior studies have showcased significant advancements in human-
carried baggage detection and classification, they also highlight a clear gap: the need
for a method that ensures heightened accuracy, real-time processing, and precise bag
type classification. This paper presents a novel approach, leveraging advanced deep-
learning techniques, particularly hyper-models, to address these challenges and augment
the efficiency of video surveillance systems.

3. Methodology

This section provides a detailed description of the methodology used in this study,
including dataset preparation, data preprocessing, and the development of the proposed
hyper model.

3.1. Dataset Description and Preparation

In this sub-section, a thorough explanation is provided regarding the dataset used
in this study, including the dataset re-annotation process and how data augmentation
techniques were applied to enhance the dataset.

3.1.1. Dataset Description

The dataset utilized in this study is the PETA dataset [31], comprising 19,000 annotated
images of pedestrians with various attributes, such as clothing, gender, age, and object
interactions. This dataset was selected based on its extensive coverage, including diverse
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settings and rich annotations, making it well-suited for detecting and classifying human-
carried baggage, which is a critical task in security applications.

3.1.2. Dataset Re-Annotation

To align the PETA dataset with our research objectives, we conducted a comprehensive
dataset re-annotation process by categorizing the images into five distinct classes based on
the type of baggage being carried. These five classes included Carrying Backpack, Carrying
Luggage Case, Carrying Messenger Bag, Carrying Nothing, and Carrying Other.

To automate this process, we developed a custom Python script that used the attributes
of the dataset to map the original annotations to the new baggage-based classes. This
approach allowed us to efficiently adapt the PETA dataset to our research needs, resulting
in a more focused dataset that was better suited for the task of baggage classification.

Table 1 illustrates the distribution of images across the five newly annotated classes,
which provides valuable insights into the composition of our refined dataset. It displays
the number of images for each class and the total number of images after re-annotation.
Additionally, Figure 1 displays a representative sample of the re-annotated dataset and
displays a sample of images from each of the five classes, providing visual examples of the
types of baggage that fall into each class.

Table 1. Distribution of images across the five classes after re-annotation.

Class Number of Images

Carrying Backpack 3385
Carrying Luggage Case 389
Carrying Messenger Bag 4666

Carrying Nothing 4801
Carrying Other 5759

Total 19,000
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3.1.3. Data Augmentation

In this study, data augmentation techniques [32] were applied only to the “Carrying
Luggage Case” class, involving the generation of additional training samples to increase
the dataset size from 389 to 2000 images. Various techniques, such as image rotation,
flipping, zooming, and translation, were used to create a more diverse dataset for this
class. This process aimed to enhance the model’s ability to accurately recognize and classify
“Carrying Luggage Case”, which is a critical task in security applications. While the other
categories did not require data augmentation, the overall dataset was still augmented
to ensure consistency in the dataset’s size and diversity across all classes. By selectively
applying data augmentation techniques to the “Carrying Luggage Case” class, we were
able to significantly improve the model’s performance in detecting and classifying this
class while maintaining consistency in the dataset.

3.2. Data Preprocessing

This subsection covers the Image Resizing and Image Pre-processing Pipeline, which
are essential components of pipelines for image classification.

3.2.1. Image Resizing

To ensure consistency and compatibility with deep-learning models, all images in the
dataset were resized to a uniform dimension of 224 × 224 pixels. This size was chosen as it
is a common input size for deep learning architectures, such as DenseNet and EfficientNet.

3.2.2. Image Pre-Processing Pipeline

To optimize the model’s performance, a sophisticated pre-processing pipeline was
implemented for the images [33]. This pipeline encompasses several crucial steps aimed at
refining image quality and enhancing the overall capabilities of the model. The key stages
involved in this pipeline are as follows:

• Contrast enhancement: This step focuses on increasing the contrast of the image, which
amplifies the distinction between various objects and their background. Enhanced
contrast facilitates improved object recognition and localization.

• Sharpening Filter Application: By applying a sharpening filter, the edges and bound-
aries of objects within the image were emphasized. This process aids in better fea-
ture extraction and helps the model identify and differentiate between objects more
effectively.

• Brightness and saturation adjustment: Adjusting image brightness and saturation
is vital for enhancing color information and overall visibility. This step allows for
more accurate color-based object recognition, thereby contributing to the model’s
performance.

• Noise reduction: The process of removing noise through Gaussian blur and non-local
means of denoising is crucial to minimize the impact of small artifacts and image noise.
By lowering noise levels, this model can concentrate on relevant features, leading to a
more precise analysis.

Figure 2 provides examples of images that have undergone the aforementioned pre-
processing steps, demonstrating the improvements in image quality and the potential
benefits for the performance of our proposed model.

3.3. Development of Proposed Model

This sub-section describes the development of the proposed model for baggage de-
tection and classification, which involves the selection and fusion of the DenseNet-161
and EfficientNet B5 architectures, the design of a hyper model, and the application of
the fit-one-cycle training method. Figure 3 illustrates the architecture of the hyper model.
Additionally, we outline the evaluation criteria used to assess the model’s performance.
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3.3.1. Densenet-161 Architecture

DenseNet-161 [34] is a variant of the DenseNet architecture, which is well-known for
its excellent performance in image classification tasks. DenseNet-161 consists of 161 layers
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and is characterized by dense connections between layers, wherein each layer receives
input from all the preceding layers. This design promotes efficient gradient flow and
feature reuse, leading to improved performance while using fewer parameters compared
to traditional CNN architectures.

This architecture is organized into multiple dense blocks, each containing several
convolutional layers. These dense blocks, which are integral components of the DenseNet-
161 architecture, are interconnected through transition layers. These layers play a pivotal
role in managing feature map dimensions, effectively reducing computational complexity
and thereby enhancing the efficiency of the overall system. Figure 4 demonstrates the
connection mechanism among various convolutional layers within a DenseNet block.
These feed-forward connections increase the total layer count from L to L × (L + 1)/2. In
this study, the DenseNet-161 architecture was employed as one of the base models for the
proposed hyper model.
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Figure 4. A dense block where each layer uses all the feature maps from the previous layers as
input. (The pink arrow represents the initial input or starting point of the process. The colored layers
transitioning from pink to grey signify various stages of processing. The arrows labeled “BN →
ReLU → Conv” denote a sequence of operations common in neural networks or deep learning, where
“BN” stands for Batch Normalization, “ReLU” is the Rectified Linear Unit activation function, and
“Conv” refers to a Convolutional layer. These are integral components of a Convolutional Neural
Network (CNN). The ‘Translation Layer’ is indicated as the concluding stage in the diagram. The
arrows depict the direction of data flow and the sequence of operations within the process).

3.3.2. EfficientNet B5 Architecture

EfficientNet [35] is a family of CNN architectures that exhibit exceptional performance
in various computer vision tasks, including image classification. The EfficientNet B5 is
a specific instance of the EfficientNet architecture that is designed to strike a balance
between model efficiency and accuracy. It employs a unique compound scaling method
that simultaneously scales the depth, width, and resolution of the network to achieve
optimal performance.

EfficientNet B5 embodies a highly advanced model that strategically extends the
bedrock established by EfficientNet B0 and serves as its fundamental architectural backbone.
The B5 version is an upscaled variant of the base model with increased depth, width, and
input resolution. This scaling enables the network to capture more complex features and
improve its overall performance. Moving beyond the design and workings of EfficientNet
B5, it is crucial to highlight its application within the scope of our research. Figure 5
illustrates the architecture of EfficientNet B5. In our study, the EfficientNet B5 architecture
was also employed as one of the base models for the proposed hyper model.
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3.3.3. Hyper Model Fusion and Design

The proposed hyper model aims to combine the strengths of both DenseNet-161 and
EfficientNet B5 architectures to enhance the accuracy of baggage detection and classification.
The fusion of these two architectures is achieved through the use of a weighted average
method, where the outputs of both models are combined based on their respective weights.
These weights are learned during the training process to optimize the overall performance
of the hyper model.

The decision to fuse DenseNet-161 and EfficientNet-B5 into a hyper model was guided
by their respective strengths. DenseNet-161, with its dense connections excels at feature
extraction, mitigating the vanishing-gradient problem that often affects the performance of
deep networks. On the other hand, EfficientNet-B5, built on the principle of compound
scaling, offers superior performance with a lower computational cost. The fusion of these
models through the weighted average method empowers the hyper model to leverage
the profound feature extraction capabilities of DenseNet-161 and the efficient resource
utilization of EfficientNet-B5. Furthermore, these weights for fusion are not pre-set but are
adaptively learned during the training, allowing the model to optimize its reliance on each
base model for each prediction.

To design the hyper model, the outputs of the DenseNet-161 and EfficientNet B5
models are first concatenated before being passed through a fully connected layer. This
layer is then followed by a SoftMax activation function, which produces the final class of
probabilities for the five baggage classes. The hyper model is trained end-to-end using
the fit-one-cycle method, as described in the subsequent sub-section. This sophisticated
architecture ensures a cohesive system that effectively combines two different architectures
to deliver superior performance in the complex task of baggage classification.

3.3.4. The Fit-One-Cycle Method

The fit-one-cycle method [36,37] is an innovative training approach that aims to
decrease the training time and enhance model accuracy. This method involves varying the
learning rate and momentum during training using a cyclical schedule. Specifically, the
learning rate is gradually increased from a minimum value to a maximum value and then
decreased back to the minimum, while the momentum follows the opposite pattern. By
employing the fit-one-cycle method, our model can adaptively adjust its learning rate and
momentum during training, leading to faster convergence and improved accuracy.

3.3.5. Evaluation Criteria

The evaluation criteria used for assessing the classification performance of our
DenseNet-161 and EfficientNet B5 models, as well as the hyper model, include several
metrics, such as accuracy, macro-F1, and micro-F1.
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As depicted in Equation (1), accuracy measures the proportion of correctly classified
instances among the total instances. It takes into account the true positives (TPs) and true
negatives (TNs), which represent the number of correctly identified positive instances
(baggage correctly classified as positive) and negative instances (non-baggage correctly
classified as negative), respectively. Equation (2) defines the F1-score as the harmonic
average between precision and recall. Precision, calculated as the TP divided by the sum
of TPs and false positives (FPs), quantifies the accuracy of positive predictions. Recall,
calculated as the TP divided by the sum of TPs and false negatives (FNs), measures the
proportion of positive instances that are correctly identified. In Equation (3), macro-F1
calculates the average F1-score for each class, assigning equal weight to each class. In
Equation (4), micro-F1 aggregates the contributions of all classes to determine the average
F1-score, emphasizing global performance.

By considering the metrics of accuracy, macro-F1, and micro-F1, we can comprehen-
sively evaluate the effectiveness of the proposed hyper model in detecting and classifying
human-carried baggage based on the bag type.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1-Score =
2 × (Precision × Recall)

Precision + Recall
(2)

Macro-F1 =
1
N

× ∑ F1i f or i = 1 To N (3)

Micro-Precision =
∑ TPi

(∑ TPi + ∑ FPi f or i = 1 to N)

Micro-Recall = ∑ TPi
(∑ TPi + ∑ FNi f or i = 1 to N)

Micro-F1 = 2 × Micro − Precision × Micro − Recall
Micro − Precision + Micro − Recall

(4)

4. Experimental Results and Discussion

This section presents the experimental results of the proposed hyper model for detect-
ing and classifying human-carried baggage based on the baggage type. We trained and
evaluated three models–DenseNet-161, EfficientNet B5, and the hyper model that combines
both models. These models were trained on the re-annotated PETA dataset using the Fastai
framework [38], which is built on top of PyTorch. All our experiments were conducted
using Google Colab [39], and we specifically utilized the T4 GPU for our computations.

The following subsection presents the results obtained for each model, followed by a
comparison with existing techniques and a discussion and performance analysis.

4.1. Classification Results

We conducted experiments to evaluate the performance of the proposed models on
the re-annotated PETA dataset. The dataset was randomly divided into the following
three sets: a training set comprising 65%, a validation set comprising 15%, and a testing
set comprising 20%. A batch size of 32 was used, and the training process was run for
40 epochs, except for the hyper model, which was trained for only 10 epochs. In all the
experiments, we randomly selected 2000 sample images from each class for classification.
Through extensive experiments, we determined that this number was optimal, adhering to
the recommended rule of thumb of having at least 1000 images per class [40].
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4.1.1. Densenet-161 Results

DenseNet-161 model performance metrics, such as precision, recall, and F1-score, were
calculated for each of the five classes. The classification results are summarized in Table 2,
while Table 3 displays the precision, recall, and F1-scores.

Table 2. Densenet-161 classification results.

Network Accuracy Macro-F1 Micro-F1

Dense-Net 161 95.5% 95.4% 95.5%

Table 3. Precision, recall, and F1-score.

Precision Recall F1-Score

Carrying Backpack 0.97 0.97 0.97
Carrying Luggage Case 0.94 0.99 0.96
Carrying Messenger Bag 0.95 0.92 0.93

Carrying Nothing 0.97 0.94 0.95
Carrying Other 0.96 0.96 0.96

Average 0.958 0.956 0.954

The DenseNet-161 model achieved an overall accuracy of 95.5%. The loss curve of the
model, as shown in Figure 6, indicates a steady decrease in loss during the training process
with no apparent signs of overfitting.
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The confusion matrix in Figure 7 shows the distribution of true and predicted class
labels. The diagonal elements represent the number of correctly classified instances, while
off-diagonal elements indicate misclassifications. From the confusion matrix, it is evident
that the DenseNet-161 model performed well in classifying most instances, particularly
in the Carrying Backpack and Carrying Luggage Case categories, with a high number
of correctly classified instances. The model exhibited some confusion between Carrying
Messenger Bags and Carrying Luggage Cases. However, overall, the model exhibited high
accuracy in correctly identifying the objects that individuals are carrying.
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Figure 7. Confusion matrix for DenseNet-161 model.

The ROC (Receiver Operating Characteristic) curve, shown in Figure 8, demonstrates
the performance of the DenseNet-161 model at various classification thresholds. Based on
the provided information, it appears that this model performed very well in classifying
images into different classes based on baggage carried.
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Figure 8. ROC curve for DenseNet-161 model.

In summary, the DenseNet-161 model demonstrated excellent performance in de-
tecting and classifying human-carried baggage based on the bag type, with an overall
accuracy of 95.5%. The model performed well across all five classes, as evidenced by the
high precision, recall, and F1-score values. Additionally, the average time taken for all
epochs was 1 min and 41 s.

4.1.2. EfficientNet B5 Results

The EfficientNet B5 model performance metrics, including precision, recall, and F1-
score, were calculated for each of the five classes. The classification results are summarized
in Table 4, while Table 5 displays the precision, recall, and F1-scores.

Table 4. EfficientNet B5 classification results.

Network Accuracy Macro-F1 Micro-F1

EfficientNet-B5 97.3% 97.2% 97.3%
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Table 5. Precision, recall, and F1-score.

Precision Recall F1-Score

Carrying Backpack 0.97 0.97 0.97
Carrying Luggage Case 0.97 0.98 0.98
Carrying Messenger Bag 0.98 0.95 0.96

Carrying Nothing 0.97 0.97 0.97
Carrying Other 0.98 0.99 0.98

Average 0.974 0.972 0.972

The EfficientNet B5 model achieved an overall accuracy of 97.3%. The loss curve of
the model, presented in Figure 9, demonstrates the consistent decrease in loss during the
training process, with no apparent signs of overfitting.
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The confusion matrix depicted in Figure 10 shows the distribution of the true and
predicted class labels for the classification task. The EfficientNet B5 model displayed a
strong performance in accurately classifying the baggage carried by individuals, with
a high number of instances correctly labeled for each class. However, this model also
exhibited some confusion between Messenger Bags and Luggage Cases, which could be
due to the similarity in features and the impact of data augmentation on luggage cases.
Despite this, the model maintained high object identification accuracy.
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The ROC curve, illustrated in Figure 11, depicts the performance of the EfficientNet
B5 model at various classification thresholds. The high AUC scores for each class indicate
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a strong classification performance. Therefore, based on the given information, it can be
inferred that this model performed very well in accurately classifying images of people
carrying different types of baggage into various classes.
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In summary, the EfficientNet B5 model exhibited exceptional performance in detecting
and classifying human-carried baggage based on bag type, achieving an overall accuracy
of 97.3%. The model performed well across all five classes, as evidenced by the high preci-
sion, recall, and F1-score values. Comparatively, the EfficientNet B5 model outperformed
the DenseNet-161 model in terms of overall accuracy and individual class performance.
Additionally, the average time taken for all epochs was 1 min and 32 s.

4.1.3. Hyper Model Results

The hyper model is an ensemble technique that combines the predictions of multiple
individual models, in this case, the DenseNet-161 and EfficientNet B5 models. The model
performance metrics, including precision, recall, and F1-score, were calculated for each of
the five classes. The classification results are summarized in Table 6, while Table 7 displays
the precision, recall, and F1-scores.

Table 6. Hyper model classification results.

Network Accuracy Macro-F1 Micro-F1

Hyper Model 98.65% 98.6% 98.65%

Table 7. Precision, recall, and F1-score.

Precision Recall F1-Score

Carrying Backpack 0.99 0.98 0.98
Carrying Luggage Case 0.99 0.99 0.99
Carrying Messenger Bag 0.98 0.97 0.98

Carrying Nothing 0.98 0.99 0.99
Carrying Other 0.99 0.99 0.99

Average 0.986 0.984 0.986

The hyper model achieved an overall accuracy of 98.65%. This represents an im-
provement over the individual DenseNet-161 and EfficientNet B5 models. The ensemble
technique effectively leverages the strengths of both models to achieve a better classification
performance. The loss curve of the hyper model, presented in Figure 12, demonstrates a
consistent decrease in loss during the training process, with no apparent signs of overfitting.
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The confusion matrix in Figure 13 provides an overview of the true and predicted class
labels’ distribution for the classification task. The hyper model demonstrated an impressive
performance by accurately classifying the baggage carried by individuals, with a high
number of instances correctly labeled for each class. The model showed high accuracy
for all classes, with only a few misclassifications, owing to the combination of strengths
from DenseNet-161 and EfficientNet B5. Therefore, the confusion matrix indicates that this
model is effective in accurately classifying the baggage carried by individuals, making it
useful in various applications that require object recognition and classification.
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The ROC curve, depicted in Figure 14, demonstrates the performance of the hyper
model at various classification thresholds. The high AUC scores observed across all classes
are indicative of this model’s ability to accurately distinguish between the various categories.
This performance is attributed to the synergistic benefits derived from the combination of
DenseNet-161 and EfficientNet B5.

In summary, the ROC curve provides compelling evidence of the hyper model’s
ensemble robustness and efficacy in image classification tasks involving people carrying
baggage. The observed high AUC scores validate this model’s exceptional performance,
thereby affirming its suitability for real-world applications. Additionally, the average time
taken for all epochs was 2 min and 35 s.
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4.2. Comparison with Existing Techniques

In this section, we compare the performance of three models—DenseNet-161, Effi-
cientNet B5, and the proposed Hyper Model ensemble—with existing techniques used
for human-carried baggage classification. Table 8 summarizes the classification results
of various methods, including the two models and the proposed hyper model ensemble
developed in this study.

Table 8. Comparison of classification results with existing techniques.

REF Method Accuracy Macro-F1 Micro-F1 Av.
F1-Score

[29] CNNR + DA + TL – – – 0.91

[30] Our previous work
(DenseNet-161) 98.25% 98.28% 98.25% 0.983

– DenseNet-161 95.5% 95.4% 95.5% 0.954

– EfficientNet B5 97.3% 97.2% 97.3% 0.972

– Hyper Model
(Proposed Model) 98.65% 98.6% 98.65% 0.986

Note: The dash symbol (“−”) indicates that certain values were not available or were not addressed by the
respective researchers in their publications.

As shown in Table 8, the hyper model ensemble achieved the highest overall accuracy
and F1-score among all the techniques. The ensemble technique effectively combined the
strengths of DenseNet-161 and EfficientNet B5 models to achieve a superior classification
performance.

Figure 15 provides a visual representation that contrasts the performance metrics
of DenseNet-161, EfficientNet B5, and the hyper model ensemble against established
techniques, focusing on overall accuracy, macro-F1, micro-F1, and the average F1-score.
The delineated results underscore the pronounced advancements that the proposed models
bring forth in comparison to traditional methods.

In summary, the DenseNet-161, EfficientNet B5, and hyper model ensemble manifested
an unparalleled proficiency in the detection and classification of human-carried baggage
categorized by bag type. Notably, the ensemble technique warrants deeper investigation, as
it showcases promise for enhancing object classification endeavors across diverse real-world
applications.
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4.3. Discussion and Performance Analysis

In this section, we critically evaluate the performance of DenseNet-161, EfficientNet B5,
and the hyper model ensemble in the classification of human-carried baggage. We reflect
on the effectiveness of these models, delve into their unique architectures, and discuss
their advantages over traditional methods. Additionally, we identify limitations in our
current approach and propose potential directions for future research, aiming to enhance
the models’ applicability and robustness in real-world scenarios.

4.3.1. Effectiveness of the Models

This study’s experimental results demonstrate the effectiveness of DenseNet-161,
EfficientNet B5, and the hyper model ensemble in classifying human-carried baggage based
on bag types. These models outperformed existing techniques, including custom CNN
(CNNR + DA + TL) and a DenseNet-161 model informed by the human viewing direction.

4.3.2. Architectural Advantages

DenseNet-161 and EfficientNet B5’s standout performance can be attributed to their
unique architectures and design principles. DenseNet-161, with its dense connections,
mitigates the vanishing gradient problem, enhances feature propagation, and fosters feature
reuse. EfficientNet B5 scales the network depth, width, and resolution harmoniously,
contributing to both efficiency and accuracy.

4.3.3. Ensemble Approach

Our hyper model ensemble, which blends DenseNet-161 and EfficientNet B5, further
boosts classification accuracy. This ensemble strategy, known for reducing overfitting and
enhancing generalization, harnesses varied predictions from multiple models, showing
significant promise in advancing object classification in practical scenarios.

4.3.4. Identified Limitations and Future Directions

1. The Dataset’s Size and Diversity:

• Current Limitation: Our study used 2000 images per class from the 19,000-image
PETA dataset. While this sample size was optimal in our experiments, it has
limitations.

• Future Research: Employing larger and more diverse datasets could improve
these models’ generalizability and robustness. This expansion can help the
models avoid overfitting to better handle varied real-world scenarios.
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2. Real-Time Performance:

• Current Limitation: The computational demands of DenseNet-161 and Efficient-
Net B5 pose challenges for real-time applications.

• Future Research: Exploring model optimization techniques, such as compression,
pruning, and efficient deployment on edge devices, could make these models
more viable for real-time use.

3. Transfer Learning and Domain Adaptation:

• Future Research: There is potential to adapt these models to related tasks, such
as baggage content classification or anomaly detection, using transfer learning
and domain adaptation techniques.

4. Multi-Object Detection:

• Current Limitation: Our research was limited to a maximum of five classes.
• Future Research: Expanding the model to accommodate a larger number of

classes could enable comprehensive multi-class classification to a greater extent,
which is crucial for broader applications.

In summary, this research validates the capability of DenseNet-161, EfficientNet B5,
and the hyper model ensemble to classify objects within human-carried baggage. While
these models demonstrate exceptional precision, there is room for further development,
particularly in expanding their applicability to diverse object classification and detection
scenarios. Future studies should focus on enhancing multi-class classification capabilities,
thereby broadening the range of identifiable objects. This work lays a foundational bench-
mark for future advancements in sophisticated object classification and detection methods.

5. Conclusions

In this research, we propose a novel hyper model ensemble for detecting and classify-
ing human-carried baggage based on baggage types in video surveillance systems. The
Fastai framework was leveraged to combine the strengths of DenseNet-161 and EfficientNet-
b5 pretrained models, resulting in enhanced accuracy and robustness. We utilized the
PETA dataset, automatically re-annotating it into five classes corresponding to baggage
types, and implemented an effective pre-processing pipeline to optimize the performance
of our model. Furthermore, we employed the fit-one-cycle policy to expedite the training
time while simultaneously improving model accuracy.

Our experimental results demonstrate the efficacy of the proposed hyper model en-
semble, achieving an impressive accuracy of 98.6%. This surpasses existing methodologies
in terms of accuracy, macro-F1, and micro-F1. The demonstrated potential of our hyper
model ensemble in improving the detection and classification of human-carried baggage
in video surveillance systems opens avenues for future research, such as integrating our
model with object detection algorithms like Faster R-CNN, which could further enhance
baggage detection performance.

Author Contributions: Conceptualization, M.A.S.; Data curation, M.A. and M.K.R.; Formal analysis,
M.A.S. and M.K.R.; Investigation, M.K.R.; Methodology, M.K.R.; Project administration, M.A.S.;
Resources, M.A.; Software, M.K.R.; Supervision, M.K.R.; Validation, M.A.S. and M.A.; Visualization,
M.A.; Writing—original draft, M.K.R.; Writing—review and editing, M.A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the reason that we used the public datasets, and the figures with humans are from public datasets.

Informed Consent Statement: Informed consent was waived for this study due to the reason that we
used the public datasets and because the figures with humans are from public datasets.

Data Availability Statement: The PETA dataset used in the experiments is publicly available online
at: http://mmlab.ie.cuhk.edu.hk/projects/PETA.html and accessed on 16 May 2023.

http://mmlab.ie.cuhk.edu.hk/projects/PETA.html


Big Data Cogn. Comput. 2024, 8, 135 18 of 19

Acknowledgments: The authors are grateful to the reviewers and editors for providing advice and
guidance on to how to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elharrouss, O.; Almaadeed, N.; Al-Maadeed, S. A Review of Video Surveillance Systems. J. Vis. Commun. Image Represent. 2021,

77, 103116. [CrossRef]
2. Mishra, P.K.; Saroha, G.P. A Study on Video Surveillance System for Object Detection and Tracking. In Proceedings of the 2016

3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 221–226.

3. Liu, H.; Chen, S.; Kubota, N. Intelligent Video Systems and Analytics: A Survey. IEEE Trans. Ind. Inform. 2013, 9, 1222–1233.
4. Zhao, Z.-Q.; Zheng, P.; Xu, S.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

30, 3212–3232. [CrossRef]
5. Bayoumi, R.M.; Hemayed, E.E.; Ragab, M.E.; Fayek, M.B. Person Re-Identification via Pyramid Multipart Features and Multi-

Attention Framework. Big Data Cogn. Comput. 2022, 6, 20. [CrossRef]
6. Jha, S.; Seo, C.; Yang, E.; Joshi, G.P. Real Time Object Detection and Trackingsystem for Video Surveillance System. Multimed.

Tools Appl. 2021, 80, 3981–3996. [CrossRef]
7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
8. Chang, L.C.; Pare, S.; Meena, M.S.; Jain, D.; Li, D.L.; Saxena, A.; Prasad, M.; Lin, C.T. An Intelligent Automatic Human Detection

and Tracking System Based on Weighted Resampling Particle Filtering. Big Data Cogn. Comput. 2020, 4, 27. [CrossRef]
9. Yanagisawa, H.; Yamashita, T.; Watanabe, H. A Study on Object Detection Method from Manga Images Using CNN. In Proceedings

of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1–4.

10. Wang, N.; Wang, Y.; Er, M.J. Review on Deep Learning Techniques for Marine Object Recognition: Architectures and Algorithms.
Control Eng. Pract. 2022, 118, 104458. [CrossRef]

11. Khanam, T.; Deb, K. Baggage Recognition in Occluded Environment Using Boosting Technique. KSII Trans. Internet Inf. Syst. 2017,
11, 5436–5458.

12. Han, W.; Chen, J.; Wang, L.; Feng, R.; Li, F.; Wu, L.; Tian, T.; Yan, J. Methods for Small, Weak Object Detection in Optical
High-Resolution Remote Sensing Images: A Survey of Advances and Challenges. IEEE Geosci. Remote Sens. Mag. 2021, 9, 8–34.
[CrossRef]

13. Xu, J. A Deep Learning Approach to Building an Intelligent Video Surveillance System. Multimed. Tools Appl. 2021, 80, 5495–5515.
[CrossRef]

14. Gouiaa, R.; Akhloufi, M.A.; Shahbazi, M. Advances in Convolution Neural Networks Based Crowd Counting and Density
Estimation. Big Data Cogn. Comput. 2021, 5, 50. [CrossRef]

15. Popoola, O.P.; Wang, K. Video-Based Abnormal Human Behavior Recognition—A Review. IEEE Trans. Syst. Man Cybern. Part C
2012, 42, 865–878. [CrossRef]

16. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 2012, 35, 221–231. [CrossRef]

17. Baccouche, M.; Mamalet, F.; Wolf, C.; Garcia, C.; Baskurt, A. Sequential Deep Learning for Human Action Recognition. In
Proceedings of the Human Behavior Understanding: Second International Workshop, HBU 2011, Amsterdam, The Netherlands,
16 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–39.

18. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-Term Recurrent
Convolutional Networks for Visual Recognition and Description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

19. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December
2015; Volume 28.

21. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Proceedings
of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 21–37.

22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

23. Dewi, C.; Chen, A.P.S.; Christanto, H.J. Deep Learning for Highly Accurate Hand Recognition Based on Yolov7 Model. Big Data
Cogn. Comput. 2023, 7, 53. [CrossRef]

https://doi.org/10.1016/j.jvcir.2021.103116
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.3390/bdcc6010020
https://doi.org/10.1007/s11042-020-09749-x
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/bdcc4040027
https://doi.org/10.1016/j.conengprac.2020.104458
https://doi.org/10.1109/MGRS.2020.3041450
https://doi.org/10.1007/s11042-020-09964-6
https://doi.org/10.3390/bdcc5040050
https://doi.org/10.1109/TSMCC.2011.2178594
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.3390/bdcc7010053


Big Data Cogn. Comput. 2024, 8, 135 19 of 19

24. Ahammed, M.T.; Ghosh, S.; Ashik, M.A.R. Human and Object Detection Using Machine Learning Algorithm. In Proceedings of
the 2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON), Bengaluru, India, 26–27 May 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 39–44.

25. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.-S. Sca-Cnn: Spatial and Channel-Wise Attention in Convolutional
Networks for Image Captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 5659–5667.

26. Fu, J.; Zheng, H.; Mei, T. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 4438–4446.

27. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

28. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In Proceedings
of the Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 843–852.

29. Jo, K.-H. Human Carrying Baggage Classification Using Transfer Learning on CNN with Direction Attribute. In Lecture Notes in
Computer Science, Proceedings of the International Conference on Intelligent Computing, Liverpool, UK, 7–10 August 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 717–724.

30. Ramadan, M.K.; Youssif, A.A.A.; El-Behaidy, W.H. Detection and Classification of Human-Carrying Baggage Using DenseNet-161
and Fit One Cycle. Big Data Cogn. Comput. 2022, 6, 108. [CrossRef]

31. Deng, Y.; Luo, P.; Loy, C.C.; Tang, X. Pedestrian Attribute Recognition at Far Distance. In Proceedings of the 22nd ACM
International Conference on Multimedia, Orlando, FL, USA, 7 November 2014; pp. 789–792.

32. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
33. Krig, S.; Krig, S. Image Pre-Processing. In Computer Vision Metrics (Textbook Edition); Springer: Berlin/Heidelberg, Germany, 2016;

pp. 35–74.
34. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
35. Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR: Westminster, London, 2019; pp. 6105–6114.
36. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 464–472.
37. Smith, L.N.; Topin, N. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. In Proceedings of

the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MD, USA, 15–17 April
2019; SPIE: Bellingham, WA, USA, 2019; Volume 11006, pp. 369–386.

38. Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning. Information 2020, 11, 108. [CrossRef]
39. Bisong, E.; Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A

Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64.
40. Shahinfar, S.; Meek, P.; Falzon, G. “How Many Images Do I Need?” Understanding How Sample Size per Class Affects Deep

Learning Model Performance Metrics for Balanced Designs in Autonomous Wildlife Monitoring. Ecol. Inform. 2020, 57, 101085.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/bdcc6040108
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.3390/info11020108
https://doi.org/10.1016/j.ecoinf.2020.101085

	Introduction 
	Related Work 
	Human Activity Recognition 
	Object Detection and Classification 
	Human-Carried Baggage Detection and Classification 

	Methodology 
	Dataset Description and Preparation 
	Dataset Description 
	Dataset Re-Annotation 
	Data Augmentation 

	Data Preprocessing 
	Image Resizing 
	Image Pre-Processing Pipeline 

	Development of Proposed Model 
	Densenet-161 Architecture 
	EfficientNet B5 Architecture 
	Hyper Model Fusion and Design 
	The Fit-One-Cycle Method 
	Evaluation Criteria 


	Experimental Results and Discussion 
	Classification Results 
	Densenet-161 Results 
	EfficientNet B5 Results 
	Hyper Model Results 

	Comparison with Existing Techniques 
	Discussion and Performance Analysis 
	Effectiveness of the Models 
	Architectural Advantages 
	Ensemble Approach 
	Identified Limitations and Future Directions 


	Conclusions 
	References

