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Abstract: An aspect-based sentiment analysis (ABSA) aims to perform a fine-grained analysis of text
to identify sentiments and opinions associated with specific aspects. Recently, transformers and large
language models have demonstrated exceptional performance in detecting aspects and determining
their associated sentiments within text. However, understanding the decision-making processes of
transformers remains a significant challenge, as they often operate as black-box models, making it
difficult to interpret how they arrive at specific predictions. In this article, we examine the performance
of various transformers on ABSA and we employ explainability techniques to illustrate their inner
decision-making processes. Firstly, we fine-tune several pre-trained transformers, including BERT,
RoBERTa, DistilBERT, and XLNet, on an extensive set of data composed of MAMS, SemEval, and
Naver datasets. These datasets consist of over 16,100 complex sentences, each containing a couple of
aspects and corresponding polarities. The models were fine-tuned using optimal hyperparameters
and RoBERTa achieved the highest performance, reporting 89.16% accuracy on MAMS and SemEval
and 97.62% on Naver. We implemented five explainability techniques, LIME, SHAP, attention weight
visualization, integrated gradients, and Grad-CAM, to illustrate how transformers make predictions
and highlight influential words. These techniques can reveal how models use specific words and
contextual information to make sentiment predictions, which can improve performance, address
biases, and enhance model efficiency and robustness. These also point out directions for further
focus on the analysis of models’ bias in combination with explainability methods, ensuring that
explainability highlights potential biases in predictions.

Keywords: explainability; transformers; large language models; LIME; SHAP; attention visualization;
integrated gradients; GRAD-CAM; aspect-based sentiment analysis

1. Introduction

A sentiment analysis is a natural language processing technique used to determine
the attitude in textual data, often to understand customer opinions, feedback, or social
media interactions. An aspect-based sentiment analysis (ABSA) is a specialized branch of
a sentiment analysis that focuses on determining the sentiment expressed about specific
aspects or attributes of a product, service, or entity within a given text. Unlike a traditional
sentiment analysis, which aims to classify the overall sentiment of a text (e.g., positive,
negative, or neutral), an aspect-based sentiment analysis provides a more granular analysis
by identifying and evaluating sentiments associated with aspects [1]. For instance, in a
product review, an aspect-based sentiment analysis can determine the sentiment expressed
towards the product’s features such as battery life, camera quality, or customer service,
rather than just labeling the entire review as positive or negative.

An aspect-based sentiment analysis is a critical tool in natural language processing
(NLP) that addresses the limitations of a traditional sentiment analysis by providing more
granular insights. The main aim of an aspect-based sentiment analysis is to provide a
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detailed and nuanced understanding of opinions and sentiments expressed in textual
data. This is particularly valuable in various domains such as product reviews, social
media monitoring, customer feedback analyses, and market research [2]. While a general
sentiment analysis focuses on identifying the overall sentiment of a piece of text, ABSA
delves deeper by associating sentiments with specific aspects or attributes of entities
mentioned in the text. This fine-grained approach is essential in real-world applications
where understanding the sentiment towards individual product features, services, or
components is necessary. So, the need for an aspect-based sentiment analysis (ABSA) arises
from the limitations of a traditional sentiment analysis, which often provides only an overall
sentiment (positive, negative, or neutral) for a given text. However, in many real-world
scenarios, sentiments are expressed towards specific aspects or features rather than the
entire entity. By identifying sentiments at the aspect level, businesses and organizations
can gain actionable insights into specific strengths and weaknesses of their products or
services. For example, a company can identify that while their product is generally well
received, customers are dissatisfied with the battery life, allowing them to make targeted
improvements. For example, in customer reviews of a product, a user might express
satisfaction with the battery life but dissatisfaction with the design. Without ABSA, such
detailed insights are lost, and companies are left with an incomplete understanding of
customer feedback. ABSA addresses this issue by identifying and analyzing sentiments
at a more granular level, allowing for a precise understanding of how users feel about
specific aspects of products, services, or experiences. This capability is crucial in industries
like e-commerce, hospitality, and social media analyses, where organizations must focus
on both the overall sentiment and the sentiments associated with individual aspects. By
improving the ability to capture feedback, ABSA enables businesses to make more informed
decisions, improve customer satisfaction, and target specific areas for improvement. For
instance, in customer reviews of electronic products, ABSA allows companies to extract
sentiments tied to features like battery life, camera quality, or customer support, offering
actionable insights for targeted improvements. Similarly, in the hospitality industry, ABSA
enables hotels and restaurants to assess feedback on individual aspects such as service
quality, ambiance, or pricing, thereby providing a clearer understanding of areas requiring
attention. In financial services, ABSA can analyze sentiment towards specific elements of a
service, such as interest rates, mobile app features, or customer service interactions, helping
institutions better respond to customer needs. By offering these detailed insights, ABSA
plays a pivotal role in decision-making processes across various industries, highlighting its
necessity for businesses seeking to remain competitive in a data-driven world.

Accurate and efficient aspect-based sentiment analysis methods are quite important
and desirable for many reasons. First, they enhance the accuracy and relevance of sentiment
analyses by considering the context in which sentiments are expressed. This context aware-
ness is crucial in understanding the true sentiment of a text, as the same word or phrase
can convey different sentiments depending on the aspect being discussed. Second, they
can provide more detailed insights, enabling organizations to make data-driven decisions
and address specific issues that matter to their customers. Finally, with the proliferation
of user-generated content on the internet, they can effectively process and analyze large
volumes of text data, making it a vital tool for businesses seeking to maintain a competitive
edge in today’s data-driven world [3]. So, an aspect-based sentiment analysis has become
crucial for effectively interpreting and understanding opinions and public stances towards
events, products, and services and accurate methods are highly desirable [4].

Deep learning techniques and transformers have revolutionized the field of sentiment
analyses [5]. Deep learning methods have greatly improved the performance and the capa-
bilities of systems by automatically learning features from textual data [6]. Indeed, one of
the most significant breakthroughs has been the development of transformers. Introduced
by Vaswani [7], transformers have become the backbone of many state-of-the-art natural
language processing (NLP) models [8]. Transformers leverage self-attention mechanisms to
process and understand the relationships between words in a sentence, regardless of their
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position. This allows transformers to capture long-range dependencies and context more
effectively than previous models, such as Recurrent Neural Networks (RNNs) and Convo-
lutional Neural Networks (CNNs). Transformers have paved the way for several powerful
pre-trained language models, such as BERT (Bidirectional Encoder Representation from
Transformers), DistilBERT, ALBERT, RoBERTa, and XLNet. These models are pre-trained
on large corpora of text data to learn general language representations, which can then be
fine-tuned for specific tasks like ABSA. Fine-tuning involves training the pre-trained model
on a smaller, task-specific dataset, allowing it to adapt its knowledge to the nuances of the
target task. The ability of transformers to leverage large-scale pre-training and fine-tuning
has led to significant improvements in a wide range of tasks, including an aspect-based
sentiment analysis.

In this article, we examine the performance of various transformers on ABSA and
we employ explainability techniques to illustrate their inner decision-making processes.
Firstly, we fine-tune several pre-trained transformers, including BERT, ALBERT, RoBERTa,
DistilBERT, and XLNet, on extensive datasets such as MAMS, SemEval, and Naver. These
datasets consist of over 16,100 complex sentences, each containing at least two aspects and
corresponding polarities. The models were fine-tuned using optimal hyperparameters, and
RoBERTa achieved the highest accuracy of 89.16% on SemEval and MAMS and 97.62%
on Naver. After that, to shed light on the decision-making processes of trans-formers, we
implemented five explainability techniques: LIME, SHAP, attention weight visualization,
integrated gradients, and Grad-CAM. These techniques provide valuable insights into how
transformers make predictions and highlight influential words and phrases. Also, they
illustrate the inner workings of transformer models, showing how they utilize specific
words and contextual information to make sentiment predictions.

The article is structured as follows. Section 2 provides a comprehensive review of
recent works on aspect-based sentiment analyses, highlighting the challenges and the
limitations of existing methods. Also, it provides the context and the motivation for our
study. Section 3 outlines our methodology, detailing the datasets used, which span different
domains. It also elaborates on the fine-tuning process of transformer models and explains
how explainability is applied to interpret the model outputs at the aspect level. Section 4
presents an in-depth explanation of the explainability techniques utilized in the study,
discussing how they generate explanations for predictions and the insights they offer into
model behavior. Section 5 discusses the main results and findings of the study, offering
insights into how explainability techniques operate and can provide transparency in real-
world applications. Finally, Section 6 concludes the article and outlines potential future
research directions.

2. Related Works

In the work presented in [9], the authors introduced T-MGAN, a model for an aspect-
based sentiment analysis with four layers: Input Word Embedding, Intra-Feature Extraction,
Inter-Feature Multi-Attention, and Output. The model takes a sentence and its aspects as
input and classifies sentiment polarity (positive, negative, or neutral) for each aspect. GloVe
embeddings are used in the Input Layer. The Intra-Feature Layer uses transformer and tree
transformer encoders for word-level and phrase-level representations. The Inter-Feature
Layer employs a multi-attention mechanism to capture context–aspect interactions. The
Output Layer concatenates these representations and uses a SoftMax layer for sentiment
classification, trained with cross-entropy loss and L2 regularization. T-MGAN achieved
76.38% accuracy and 73.02% Macro-F1 on the laptop dataset, 82.06% accuracy and 72.65%
Macro-F1 on the restaurant dataset, and 71.23% accuracy and 70.63% Macro-F1 on the
Twitter dataset.

In the work in [10], the authors proposed the FGAOM model for Aspect–Opinion Min-
ing, comprising five main components: BERT domain adaptation, context feature extraction,
long-term dependency learning, aspect feature capturing, and polarity classification. The
model fine-tunes BERT with domain-specific corpora to create DA-BERT, capturing local
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and global context embeddings. These embeddings are processed through a dynamic
masking layer, a fusion layer, and a fine-tuning layer with Bidirectional GRU, Multi-Head
Self-Attention, and convolutional layers. Finally, the model uses a fully connected layer
with an MLP and SoftMax function for the classification. FGAOM achieves 85.24% accuracy
and an 83.67% F1 score on the laptop dataset, 91.6% accuracy and an 88.01% F1 score on
the restaurant dataset, and 80.6% accuracy and a 79.21% F1 score on the Twitter dataset.

In [11], the authors proposed the SA-EXAL model, which enhances a pre-trained BERT-
base model with syntactically aware self-attention mechanisms. This model integrates
dependency relations into the self-attention mechanism, adding syntactically aware heads
in parallel to BERT during fine-tuning and testing stages. This allows leveraging both
external syntactic information and BERT’s pre-trained knowledge. The SA-EXAL model
improves sentiment prediction across domains, achieving F1 scores of 47.59 for the aspect
sentiment (AS) and 75.79 for the overall sentiment (OP) in the target domain “laptop” when
trained on “restaurant.” It also achieved 40.50 (AS) for “Device”, 54.67 (AS) and 80.85 (OP)
for “restaurant”, and 42.19 (AS) for “Device” and 54.54 (AS) for “restaurant” when trained
on “Device”.

Authors in [12] proposed the HSAN model with six main components: the Word
Embedding Layer, Word and Sentence Encoder Layer, Global Context-Aware Word Repre-
sentation (GCWR) Layer, Information Fusion Layer, Word-Specific Context-Aware Repre-
sentation (WSCR) Layer, and Output Layer. The model uses bidirectional LSTM for con-
textual word representations and attention mechanisms for assigning importance weights.
A self-attention mechanism identifies internal dependencies among words, and a Condi-
tional Random Field (CRF) predicts aspect-term tags. HSAN achieved precision = 88.43,
recall = 80.04, and F-Score = 84.01 on the laptop dataset, and precision = 90.24, recall = 89.70,
and F-Score = 89.96 on the restaurant dataset.

In the work in [13], the authors proposed the MDAE-BERT model, which fine-tunes a
pre-trained BERT model for aspect extraction using labeled data from multiple domains. It
employs an IOB (Inside, Outside, Beginning) token classification framework. The source
domain (Ds) has labeled reviews, while the target domain (Dt) has unlabeled reviews. BERT
encodes review token sequences to generate contextual word embeddings and predict
masked tokens. For aspect extraction, the model is fine-tuned with token classification,
classifying tokens into IOB tags through a dense layer and SoftMax, optimized with cross-
entropy loss. MDAE-BERT showed a minimum performance increase of 7.99% for F1-Macro
and 10.62% for accuracy over LSTM. It achieved 65.86% F1-Macro for the laptop domain,
nearly 90% better than LSTM.

In [14], the authors proposed the DualGCN model, which integrates syntactic and
semantic information using either BiLSTM or BERT for encoding. It has two main modules:
SynGCN for syntactic dependencies and SemGCN for semantic relationships via self-
attention. A BiAffine module facilitates information exchange between these modules. The
final aspect representation is used for sentiment prediction. The model employs orthogonal
and differential regularizers and minimizes cross-entropy loss. Experimental results show
that DualGCN achieves 78.48% accuracy and 74.74% Macro-F1 on the laptop dataset, 84.27%
accuracy and 78.08% Macro-F1 on the restaurant dataset, and 75.92% accuracy and 74.29%
Macro-F1 on the Twitter dataset.

Authors in [15] proposed the dotGCN model that uses a recognition network to create
an opinion tree from an input sentence and aspect term, capturing structural relationships.
Multi-layered Graph Convolutional Networks (GCNs) are applied to BERT output vectors
to model these relations and extract aspect-specific features. An attention-based model then
learns sentiment polarity. The model is trained using reinforcement learning for opinion
tree induction and backpropagation for classification, incorporating various loss functions.
Experimental results show that dotGCN achieves 84.95% accuracy and 84.44% F1 on the
MAMS dataset, 78.11% accuracy and 77.00% F1 on SemEval Twitter, 81.03% accuracy and
78.10% F1 on the laptop dataset, 86.16% accuracy and 80.49% F1 on Rest14, 85.24% accuracy
and 72.74% F1 on Rest15, and 93.18% accuracy and 82.32% F1 on Rest16.
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Authors in [16] proposed the KDGCN model, which includes a sentence encoder, a
knowledge enhancement module, a semantic learning module, a syntax-aware module, and
a sentiment classifier. It uses embeddings from Glove, BERT, or BiLSTM, enhanced with
SenticNet sentiment vectors and aspect-related words, and employs Graph Convolutional
Networks (GCNs) for semantic and syntactic information. The model combines these for
sentiment polarity. It achieves 79.00% accuracy and 75.03% macro-F1 on laptop14, 84.91%
accuracy and 78.48% macro-F1 on restaurant14, 82.10% accuracy and 67.13% macro-F1 on
restaurant15, and 90.74% accuracy and 73.46% macro-F1 on restaurant16.

In [17], the authors proposed the BERT-XGBoost model for an aspect-based sentiment
analysis on customer reviews. The model preprocesses data, uses BERT to encode semantic
information, and employs transformer encoders and an attention mechanism to capture
relationships between context and aspect. XGBoost then predicts sentiment polarity. Results
show that bert-xgboost achieves 85.01% accuracy and 78.9% macro-F1 on laptop14, 87.86%
accuracy and 81.64% macro-F1 on restaurant14, 86.7% accuracy and 79.77% macro-F1 on
restaurant15, and 93.71% accuracy and 80.37% macro-F1 on restaurant16.

Authors in [18] proposed the LDEGCN model for an aspect-based sentiment analysis.
The model uses a multi-layer attention structure and graph neural networks to capture
syntactic and semantic information, integrating external sentiment knowledge and depen-
dency types. It includes an embedding layer, a semantic feature extraction, a feature fusion,
and a sentiment classifier. BERT initializes aspect-aware word vectors, and a multi-layer
attention mechanism to extract semantic features. The model fuses information using a
Graph Convolutional Network for sentiment classification. Results show 81.25% accuracy
and 78.17% macro-F1 on laptop14, 86.34% accuracy and 81.16% macro-F1 on restaurant14,
85.42% accuracy and 72.05% F1 on restaurant15, 91.56% accuracy and 79.45% macro-F1 on
restaurant16, and 76.43% accuracy and 75.22% F1 on Twitter.

Authors in [19] proposed the SDTGCN method for a sentiment analysis, leverag-
ing sentence information like aspect positions, sentiment relationships, POS tags, and
dependency distances. It constructs two dependency weight matrices: the adjacency-
enhanced and the sub-adjacent dependency weight matrices. These matrices emphasize
relevant nodes and capture sentiment propagation. The weighted GCN aggregates node
information, assigning higher weights to important nodes, while Bi-LSTM embeddings
capture contextual information. An attention mechanism refines the analysis by focusing
on aspect–context relationships. The model is optimized using cross-entropy loss and
gradient descent. Experimental results show that SDTGCN achieves 78.64% accuracy and
75.50% F1 on laptop14, 83.82% accuracy and 76.13% F1 on restaurant14, 83.21% accuracy
and 67.07% F1 on restaurant15, 91.53% accuracy and 77.08% F1 on restaurant16, and 76.25%
accuracy and 74.59% F1 on the Twitter dataset.

Authors in [20] proposed the IDGNN model, which uses BERT for word embeddings,
followed by BiLSTM for contextual representation, and employs RGAT for syntactic depen-
dencies and GCN with attention for semantic associations. These are combined through a
gated fusion mechanism and a fully connected layer for sentiment classification. Results
show that IDGNN achieves 78.07% accuracy and 74.17% macro-F1 on the laptop, 83.40%
accuracy and 76.37% macro-F1 on the restaurant, 81.80% accuracy and 80.90% macro-F1
on MAMS, and 75.94% accuracy and 74.37% macro-F1 on Twitter, with BERT embeddings;
IDGNN scores higher: 81.12% accuracy and 77.73% macro-F1 on the laptop, 87.25% ac-
curacy and 81.16% macro-F1 on the restaurant, 84.57% accuracy and 83.42% macro-F1 on
MAMS, and 76.72% accuracy and 75.92% macro-F1 on Twitter.

In recent years, large language models like GPT have shown significant potential
in ABSA. The authors of the paper in [7] explore the application of GPT-3.5 in ABSA,
particularly focusing on its few-shot learning capabilities. The proposed method employs
prompt engineering to guide GPT in performing core ABSA tasks, such as aspect extraction,
sentiment classification, and opinion–target pairing, with minimal labeled data. By de-
signing specific prompts, the model can generate predictions with little to no task-specific
training, making it highly adaptable to real-world situations where annotated datasets are
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scarce. The study evaluates the impact of manual prompts and auto-generated prompts to
optimize GPT’s performance in few-shot settings. Despite the flexibility and generalization
ability of GPT, the study finds that fine-tuned models like BERT consistently outperform
GPT in structured ABSA tasks that demand deep domain understanding, such as precise
aspect–opinion extraction. While GPT demonstrates strong generalization, it struggles with
tasks requiring more nuanced context comprehension. The results suggest that while GPT’s
few-shot capabilities are useful, especially in scenarios with limited labeled data, models
fine-tuned for specific tasks, like BERT, provide better accuracy and consistency.

Another significant advancement in the application of transformer models to ABSA is
presented in [21]. The authors propose a novel approach that integrates BERT, post-trained
specifically for the ABSA task, with an Interactive Attention Network (IAN) to enhance
the model’s ability to capture aspect–target interactions and sentiment dependencies. In
this method, BERT is fine-tuned on domain-specific data to improve its understanding of
the aspect-level sentiment, while the IAN component is designed to refine the interaction
between the aspect and its corresponding context in the text. The attention mechanism
used in IAN allows the model to focus on the most relevant parts of the sentence for both
the aspect and the sentiment, leading to more precise sentiment predictions. This hybrid
architecture aims to leverage the strengths of BERT’s pre-training with the fine-grained
attention mechanism of IAN to improve ABSA performance. The paper demonstrates that
IAN-BERT outperforms standard BERT models in both sentiment classification and aspect
extraction, showing the importance of combining attention mechanisms with transformer-
based models for better handling of aspect-level tasks.

In [22], the authors explore the effectiveness of ChatGPT in performing ABSA through
prompt-based techniques. The paper evaluates ChatGPT’s ability to extract aspects and
their corresponding sentiment polarities using zero-shot and few-shot learning. To assess
ChatGPT’s capabilities, the authors design specific prompts aimed at instructing the model
to identify sentiment and opinion targets without requiring extensive task-specific training.
This approach allows ChatGPT to generalize across different datasets with minimal labeled
data. The study compares ChatGPT’s performance to fine-tuned models like BERT, high-
lighting ChatGPT’s strength in general sentiment understanding. However, the authors
find that BERT and other fine-tuned models still outperform ChatGPT in structured tasks
that require domain-specific knowledge, particularly in cases where aspect–opinion pairs
are crucial. While ChatGPT performs well in zero-shot settings, its performance in ABSA
tasks often lacks the precision and depth achieved by fine-tuned models, emphasizing the
importance of task-specific training for more nuanced sentiment analyses.

The authors in [23] present a comprehensive evaluation of GPT models, particularly
GPT-3.5, for a sentiment analysis. The study proposes three key strategies to enhance a sen-
timent analysis: prompt engineering, fine-tuning, and embedding classification. First, the
authors employ prompt engineering to guide GPT-3.5 in performing a sentiment analysis
by crafting task-specific prompts that extract sentiment information directly from the text.
This method leverages GPT-3.5′s ability to generalize from minimal task-specific training,
making it efficient in handling sentiment tasks with limited labeled data. Second, the study
fine-tunes GPT models on labeled datasets to enhance performance, allowing the model to
adapt its pre-trained knowledge to specific sentiment analysis tasks. Finally, an innovative
approach to embedding classification is introduced, focusing on optimizing sentiment
representation within the GPT framework. The results show a significant improvement
over state-of-the-art sentiment analysis methods, with an increase of more than 22% in
the F1 score compared to traditional models. Moreover, the paper addresses common
challenges in sentiment analyses, such as handling complex language constructs, context,
and sarcasm, demonstrating the enhanced capabilities of GPT models in these areas.

Despite the significant advancements in an aspect-based sentiment analysis (ABSA),
existing methods still face several limitations that justify the need for further research [24].
Traditional ABSA models often struggle with handling complex sentences containing
multiple aspects with varying sentiments. This challenge is particularly pronounced in real-
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world applications where nuanced sentiment detection is crucial. Moreover, many current
models rely heavily on pre-defined aspect categories, limiting their flexibility and adapt-
ability to new domains or datasets. Another critical limitation is the lack of explainability
in many state-of-the-art models. While models like BERT and RoBERTa have demonstrated
impressive performance in ABSA tasks, their decision-making processes remain opaque,
making it difficult for users to trust and interpret their predictions. Additionally, existing
methods may suffer from biases in data, which can lead to skewed sentiment predictions, es-
pecially in cases involving minority groups or less frequent aspects. Our research addresses
these gaps by integrating advanced transformer models with explainability techniques,
aiming to enhance both the accuracy and interpretability of ABSA models. By providing
clearer insights into how models arrive at their predictions, we hope to improve user trust
and make the models more applicable in real-world scenarios where transparency and
adaptability are key.

3. Transformer Model Fine-Tuning

In this section, we outline the process we followed. First, we present the dataset
collection used in the study and analyze the characteristics of the data. Then, we present
the fine-tuning process of the pre-trained transformer models for the aspect-based sentiment
analysis task, and we report their performance. After that, we present the implementation
and use of explainability techniques and the way that each technique shed light on the
decision-making procedure of the fine-tuned transformer models and how they utilize
words and contextual content in sentences. Figure 1 illustrates the overall workflow of our
aspect-based sentiment analysis (ABSA) framework.
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The process begins with data collection, where reviews containing labeled aspects and
their corresponding sentiment polarities are gathered. We then create a labeled dataset and
fine-tune pre-trained transformer models (such as BERT and RoBERTa) on this data. After
fine-tuning, we evaluate the models using performance metrics (e.g., accuracy, F1 score)
and select the best-performing model. Finally, explainability techniques (LIME, SHAP,
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attention weight visualization, integrated gradients, Grad-CAM) are applied to the selected
model to provide insights into how the model makes predictions at the aspect level. This
diagram provides a visual guide to the methodological steps outlined in this section, from
data preparation to explainability analyses.

3.1. Study Design and Datasets Utilized

In the context of the study, and for fine-tuning the pre-trained transformer models,
we utilized labeled datasets in an aspect-based sentiment analysis, having their aspects
and the respective aspect polarities defined. Specifically, five widely used and diverse
datasets were selected and used, which are the MAMS dataset [25], the SemEval 2014 Task
4: laptop reviews and restaurant reviews dataset [26], the SemEval 2015 Task 12: restaurant
reviews dataset [27], the SemEval-2016 Task 5: restaurant reviews dataset [28], the ACOS
dataset [29], and the Naver Labs dataset.

The MAMS dataset has more than 4297 sentences and 11,186 aspects. It is a large-scale
multi-aspect dataset. MAMS is a challenging dataset for an aspect-based sentiment analysis,
in which each sentence contains at least two aspects with different sentiment polarities.

The SemEval 2014 Task 4 dataset is designed for an aspect-based sentiment anal-
ysis and includes laptop and restaurant reviews. The laptop reviews dataset contains
3845 sentences, while the restaurant reviews dataset contains 3.041 sentences. These re-
views focus on various aspects of laptops and restaurants. Each review is annotated with
specific aspect terms and the corresponding sentiment polarity (positive, negative, neutral).
In the laptop reviews, consumers discuss features such as battery life, screen quality, per-
formance, design, and price. For example, they might mention the long battery life of a
particular model or criticize the screen resolution. Each aspect mentioned in the reviews is
tagged with the sentiment expressed towards it.

The SemEval 2015 Task 12 dataset also focuses on an aspect-based sentiment analysis
specifically for restaurant reviews. It contains 2541 sentences from customer reviews of
various restaurants. Each review includes text discussing different aspects of the dining
experience, such as food quality, service, ambiance, price, and location. The dataset is
annotated with aspect terms and their corresponding sentiment polarity.

The SemEval-2016 Task 5 dataset is also focused on an aspect-based sentiment analysis
for restaurant reviews. This dataset includes 3500 sentences from customer reviews of
various restaurants. Each review contains text that discusses different aspects of the dining
experience, such as food quality, service, ambiance, price, and location. The dataset is
annotated with aspect terms and their corresponding sentiment polarity (positive, negative,
neutral). In these restaurant reviews, customers provide detailed feedback on specific
aspects. For instance, a review might praise the excellent taste of the food, criticize the
unfriendly service, or comment on the restaurant’s pleasant ambiance. Each mentioned
aspect is tagged with the sentiment expressed towards it.

The ACOS dataset consists of the restaurant and the laptop parts and extends the
existing SemEval restaurant dataset by adding annotations for implicit aspects, implicit
opinions, and quadruples. Also, the laptop part is collected from the Amazon laptop
domain and includes annotations for quadruples encompassing all explicit and implicit
aspects and opinions.

The Naver Labs dataset consists of user reviews from Foursquare, manually annotated
according to the SemEval2016 guidelines for the restaurant domain. From the approxi-
mately 215K English-language reviews, a sample of 585 reviews containing 1006 sentences
was randomly selected for annotation. This dataset provides a real-world benchmark to
evaluate the models’ robustness beyond our dataset.

These datasets were combined, and a larger dataset was created containing more
than 16,100 text sentences, where each sentence has at least one aspect along with the
corresponding polarity. More specifically, we had 30,813 aspects in total, of which there
are 14,455 positive polarities, 9261 negative polarities, and 7097 neutral polarities. These
data were used to fine-tune pre-trained transformer models used and evaluate their perfor-
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mance. In the following subsections, the experimental setups and the collected results are
thoroughly presented.

3.2. Transformer Models and Fine-Tuning Process

We investigated the eight pre-trained transformer models that are the BERT, the
DistilBERT, the ALBERT, the RoBERTa, the XLNet, and their variations. Specifically, we
utilized BERT-base, BERT-large [30], DistilBERT-base [31], ALBERT-base [32], RoBERTa-
base, RoBERTa-large [33], and XLNet-base [34].

BERT-base-uncased is a transformer model designed to understand the context of
words in a sentence by looking at both directions (left-to-right and right-to-left) simultane-
ously to understand the full context of a word. It has 12 layers, each with a hidden size
of 768 and 12 attention heads, totaling 110 million parameters. It is trained on pairs of
sentences to understand the relationship between them.

BERT-large-uncased expands upon BERT-base with 24 layers, each having a hidden
size of 1024 and 16 attention heads, totaling 340 million parameters. It has higher capacity
and complexity due to its larger number of layers, hidden units, and parameters and it is
designed to capture more detailed and complex patterns in the data, leading to potentially
better performance on complex tasks.

DistilBERT-base-uncased is a smaller, distilled version of BERT. It is created via knowl-
edge distillation, where a smaller model is trained to reproduce the behavior of a larger
model. DistilBERT has 6 layers, a hidden size of 768, and 12 attention heads, resulting in
66 million parameters in total.

ALBERT-base-v1 is designed to reduce the model size of BERT and increase training
efficiency. It employs parameter sharing and factorized embedding parameterization to
achieve a compact model with 12 layers, each having a hidden size of 768 and 12 attention
heads, summing to 12 million parameters. ALBERT uses parameter-reduction techniques
that allow for large-scale configurations, overcome previous memory limitations, and
report good behavior with respect to model degradation.

ALBERT-large-v1 is a larger model of ALBERT providing more capacity for complex
tasks. It has 24 layers, each with a hidden size of 1024 and 16 attention heads. It employs pa-
rameter efficiency across layers and has 18 million parameters in total. It shares parameters
across layers, assisting in avoiding overfitting of the model.

RoBERTa-base is a robustly optimized BERT having an optimized pre-training process
including training the model longer, with bigger batches over more data; removing the next
sentence prediction objective; training on longer sequences; and dynamically changing the
masking pattern applied to the training data. It has 12 layers, a hidden size of 768, and
12 attention heads and a total of 125 million parameters. Unlike the static masking of the
BERT model, it uses dynamic masking, applying different masks to each input sequence.

RoBERTa-large is an enhanced version of RoBERTa-base, featuring 24 layers, a hidden
size of 1024, and 16 attention heads, summing to 355 million parameters. RoBERTa-large
benefits from the same optimizations in the pre-training process; however, it has the
potential to better leverage these improvements due to its larger architecture.

XLNet-base-cased is an autoregressive pre-training model with 12 layers, each with a
hidden size of 768 and 12 attention heads, totaling 110 million parameters. It is designed
to overcome limitations of BERT by integrating the strengths of autoregressive (AR) and
autoencoding (AE) models and leverages a Transformer-XL as its backbone for better
handling of long-term dependencies.

GPT-3.5-turbo is a variant of OpenAI’s GPT-3.5 model, optimized for faster perfor-
mance and lower cost. It is based on the same transformer architecture as previous GPT
models, such as GPT-3, which had 175 billion parameters. GPT-3.5-turbo is likely smaller
than GPT-4 but still highly capable of handling a wide range of natural language tasks.
Unlike models like BERT, which are bidirectional and suited for tasks like classification,
GPT-3.5-turbo is an autoregressive model, generating text in one token at a time.
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GPT-4 is a large language model built on the transformer architecture, designed to
process and generate human-like text by understanding the context within a given input.
Unlike BERT, which primarily focuses on understanding text bidirectionally for tasks like
classification and sequence labeling, GPT-4 is autoregressive, excelling in text generation,
language understanding, and task adaptation. It has a vast number of parameters and has
been trained on a diverse and extensive corpus, allowing it to handle a wide variety of
tasks without task-specific fine-tuning.

3.3. Transformer Fine-Tuning

In the fine-tuning process, we first split the dataset into training, validation, and test
sets, with respective proportions of 70%, 15%, and 15%. To ensure that each model receives
the input in a format that maximizes its ability to learn the relationships between the
text and its corresponding aspects, we tokenize the text in a specific manner. For each
sentence, we concatenate the text with its corresponding aspect using the appropriate
separator token designated by the pre-trained models (e.g., [SEP] for BERT, <sep> for
XLNet). This token effectively demarcates the main text from the aspect, allowing the
model to distinctly understand the relationship between the two parts during training. The
use of these separator tokens is crucial because it enables the transformer models to handle
the input as a pair of sequences rather than a single concatenated string. This separation
ensures that the models can focus on the sentiment expressed specifically in relation to the
aspect in question, rather than making a generalized prediction based on the entire text. By
maintaining the integrity of the sequence-pair structure, we allow the models to leverage
their pre-trained capabilities more effectively, improving the precision of aspect-based
sentiment predictions.

We conducted several experiments to train our models, varying the learning rate and
batch size while maintaining a constant number of epochs at 15, without altering the loss
function or the optimizer. Through these experiments, we identified optimal values for each
hyperparameter. Specifically, a grid search was performed to identify the best combination
of these parameters of our models.

Regarding the learning rate, we experimented with a wide range of different learning
rates and found that a learning rate of 2 × 10−5 provided the best balance between con-
vergence speed and model performance. Lower learning rates allowed for more precise
optimization but required more epochs, while higher learning rates led to unstable training.

Regarding the batch size, we experimented with a wide range of sizes in the study. In
general, larger batch sizes can lead to faster training while smaller batch sizes allow for
more frequent updates to the model but can slow down training. Our experiments showed
that a batch size of 16 strikes the best balance between training speed and memory usage
for base transformer models, while for large versions, a larger batch size up to 128 assisted
greatly in their efficient fine-tuning process.

An epoch refers to one complete pass through the entire training dataset. We fixed
the number of epochs at 15 after determining that this value was sufficient for the model
to learn effectively from the data. Also, we noted that training for more epochs did not
significantly improve performance and sometimes tended to lead to overfitting issues.

For the loss function, we used the cross-entropy sequence classification tasks. The
cross-entropy loss increases as the predicted probability diverges from the actual label, thus
penalizing incorrect predictions more heavily and driving the model to produce accurate
classifications by minimizing this loss during training. This characteristic makes cross-
entropy loss particularly effective and popular in training deep learning models for various
classification tasks.

Regarding the optimizer, we experimented with various optimizers and the optimizer
that assisted the models to report their best performance was the AdamW optimizer. It is
an extension of the Adam optimizer with weight decay, which helps prevent overfitting
by penalizing large weights. It is efficient and effective in training deep neural networks
and combines the benefits of adaptive learning rates with weight decay regularization.
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The AdamW optimizer helped our fine-tuned transformer models to face overfitting by
penalizing large weights, leading to better generalization on unseen data. The optimizer
retains the benefits of Adam, such as adaptive learning rates and momentum, and is a
quite effective choice for fine-tuning pre-trained transformer models in natural language
processing tasks.

In summary, through our experiments, we specified proper values for the hyperpa-
rameters as follows: using dynamic learning rates and specifying the best performance
of the models to be a learning rate of 2 × 10−5 and a batch size in the range 8–128, and
reporting the best batch size of each transformer model, 15 epochs, using cross-entropy
loss and the AdamW method as an optimizer. These settings yielded the best performance
and efficiency for our fine-tuning process for the aspect-based sentiment analysis task and
below we present the performance results of the fine-tuned transformer models.

Regarding the GPT-4 and GPT 3.5-turbo, in our experiments, we used them through
the OpenAI API. We utilized GPT-4′s and GPT-3.5-turbo’s general pre-trained capabilities
to predict the sentiment of aspects within the given text. By sending prompts to GPT-4 and
GPT-3.5-turbo via the API, we evaluated their performance on various datasets, including
the Naver and MAMS Semeval datasets.

3.4. Performance Results
3.4.1. Results on MAMS and SEMEVAL Datasets

In the following, we present the main results obtained from the various experiments
performed on the pre-trained models on the MAMS and the SemEval. Also, for further
explanation, in the training set, there are 21,599 aspects of which 10,111 are positive, 6503
are negative, and 4985 are neutral. In the validation set, there are 4610 aspects of which
2145 are positive, 1373 are negative, and 1092 are neutral. Finally, in the test set, there are
4604 aspects of which 2199 are positive, 1385 are negative, and 1020 are neutral. More
specifically, for each base pre-trained model, we experimented with a variety of learning
rate and batch size options while keeping the epoch fixed at 15 based on the results we
collected during the training phase. Thus, for each such model that we fine-tuned with
various choices in hyperparameters, we chose from each class of pre-trained models the
one that had the best metrics: the accuracy, precision, recall, and F1 score. Specifically,
to evaluate the performance of the models used in our study, we employed several well-
established metrics that are commonly used in sentiment analysis and machine learning
tasks. Specifically, we measured accuracy, precision, recall, and the F1 score. Accuracy
provides an overall measure of how often the model correctly predicts the sentiment for
a given aspect, while precision indicates the proportion of positive predictions that were
correct. Recall measures the model’s ability to correctly identify all relevant positive cases,
and the F1 score provides a harmonic mean of precision and recall, offering a balanced
view of performance, especially in cases with imbalanced data. In addition, we conducted
cross-validation to ensure the robustness of our results and reported the performance on
test data to reflect the model’s generalizability. These metrics are detailed in the manuscript,
along with comparative performance tables for each of the transformer models we tested,
enabling readers to clearly understand and assess the effectiveness of each model. The
performance results of the transformer models are presented in Table 1.

Based on the fine-tuning results, roberta-base achieved the highest performance among
all models with an accuracy of 89.16%, precision of 87.94, recall of 88.23, and an F1 score
of 88.08. In contrast, distilbert-base-uncased had the lowest accuracy at 85.95%. When
comparing roberta-base to roberta-large where they fine-tuned with exactly the same hy-
perparameters, the base model outperformed the large model across all metrics, suggesting
that the base model was more effective for this task despite the large model’s increased ca-
pacity. For the ALBERT models where they also fine-tuned with the same hyperparameters,
albert-large-v1 outperformed albert-base-v1 in the accuracy (86.38% vs. 85.49%), precision
(85.73 vs. 85.10), recall (84.31 vs. 83.31), and F1 score (84.80 vs. 84.00), indicating that the
increased capacity of the large model provided better performance. Overall, the results
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highlight the significance of both model architecture and size, with roberta-base emerging
as the top performer, and the importance of appropriately tuning hyperparameters and
considering model complexity relative to the specific task and dataset.

Table 1. The performance results of the best fine-tuned models on MAMS and SEMEVAL datasets.
The best model is highlighted in bold.

Model Accuracy Precision Recall F1 Score

bert-base-uncased 86.64% 85.64 85.06 85.30
bert-large-uncased 87.14% 86.31 84.62 85.32

distilbert-base-uncased 85.95% 84.94 84.21 84.55
albert-base-v1 85.49% 85.10 83.31 84.00
albert-large-v1 86.38% 85.73 84.31 84.80
roberta-base 89.16% 87.94 88.23 88.08
roberta-large 88.86% 87.65 87.63 87.63

xlnet-base-cased 88.68% 87.31 87.72 87.51
Bi-LSTM 73.18% 71.65 69.83 70.55

LSTM 71.92% 70.04 70.81 70.37
RNN 60.38% 58.54 58.69 57.92
GPT-4 78.70% 74.73 73.47 73.52

GPT-3.5-turbo 73.89% 67.45 64.69 61.39

In addition to the transformer models, we implemented traditional deep learning
models such as Long Short-Term Memory (LSTM), bidirectional Long Short-Term Memory
(bi-LSTM), and RNN models. The Bi-LSTM is a type of Recurrent Neural Network (RNN)
that processes input sequences in both forward and backward directions, allowing it to
capture context from both preceding and following words in a sentence. This makes it
particularly effective for tasks like a sentiment analysis, where understanding the full
context is crucial. For our baseline, we used the same dataset and preprocessing steps
as those used for the transformer models. In addition, the Bi-LSTM model was trained
using a custom tokenization process where both the input sentence and the aspect were
concatenated, separated by a special [SEP] token, and then tokenized. The architecture of
the Bi-LSTM included an embedding layer, followed by a two-layer bidirectional LSTM,
and a fully connected layer for classification into positive, neutral, and negative sentiment
classes. We used cross-entropy loss as the objective function and the Adam optimizer. In
our experiments, we explored different combinations of hyperparameters, such as learning
rates, batch sizes, and the number of epochs, to identify the optimal configuration. The
model was trained and validated on a split dataset (70% training, 15% validation, and 15%
test) to fine-tune these hyperparameters. We observed that, with a learning rate of 1 × 10−3,
a batch size of 8, and training for 10 epochs, the Bi-LSTM achieved its best performance on
the test set, with an accuracy of 73.18%, a macro-precision of 71.65, recall of 69.83, and an
F1 score of 70.55. This configuration was chosen as the final model for comparison against
the transformer models.

When comparing the traditional Bi-LSTM model to the transformer-based models,
there is a notable difference in performance. The Bi-LSTM achieved an accuracy of 72.55%,
with a macro-precision of 71.16, recall of 69.98, and F1 score of 70.43, making it the lowest-
performing model in this comparison. The gap between the Bi-LSTM and the transformer
models is substantial, with the transformer models consistently outperforming the Bi-LSTM
by significant margins across all metrics. This difference can be attributed to the trans-
formers’ ability to leverage pre-trained language understanding and capture long-range
dependencies more effectively, whereas the Bi-LSTM, while capable of handling sequence
data, lacks the pre-training and sophisticated attention mechanisms of transformers. This
underscores the advantage of using transformer-based architectures for tasks like an aspect-
based sentiment analysis, where the context and relationships between words play a critical
role in model performance.
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The results also indicate that GPT-4 outperforms GPT-3.5-turbo across all metrics,
achieving an accuracy of 78.70% and an F1 score of 73.52, compared to GPT-3.5-turbo,
which has an accuracy of 73.89% and an F1 score of 61.39. While GPT-4 demonstrates
stronger performance overall, both LLMs perform significantly lower than the fine-tuned
transformer models. The relatively lower F1 scores for both LLMs can be attributed to the
fact that they were not fine-tuned on this dataset and were instead tested on the entire
dataset using their general-purpose capabilities, whereas the transformer models were
fine-tuned and tested on a 15% split, optimizing them for this specific task. This lack of
fine-tuning likely impacted the LLMs’ ability to handle the nuances of an aspect-based
sentiment analysis (ABSA), resulting in lower recall and F1 scores. When compared to the
fine-tuned transformer models like RoBERTa-base (which achieved the highest F1 score
of 88.08), BERT, and XLNet, GPT-3.5 and GPT-4.0 report lower performance. Fine-tuned
models like RoBERTa and BERT-large consistently outperform the LLMs, with accuracy
scores close to or above 87% and F1 scores over 85%, showcasing the critical advantage
of task-specific fine-tuning. When comparing the non-transformer models like Bi-LSTM,
LSTM, and RNN with GPT-4 and GPT-3.5-turbo, we observe that the non-transformer
models, particularly Bi-LSTM (F1 score: 70.55), perform surprisingly close to GPT-3.5-turbo,
and in some cases, even surpass it in certain metrics like recall. However, GPT-4 still
outperforms these non-transformer models, with an F1 score of 73.52%. The key difference
here is that the non-transformer models were fine-tuned and trained on a portion of the
dataset, allowing them to adapt better to the specific task, while the LLMs were tested
in a zero-shot setting without fine-tuning. Despite this, the non-transformer models lack
the overall versatility and adaptability of LLMs, which, with fine-tuning, would likely
far surpass their performance. The results highlight that while non-transformer models
can perform decently when properly trained, LLMs like GPT-4 have the potential for
much greater performance, especially when fine-tuned for task-specific datasets like ABSA.
However, both non-transformer models and GPT-3.5-turbo fall well below the performance
of the fine-tuned transformers. This highlights that while LLMs like GPT-4 and GPT-
3.5-turbo are powerful general models, they still struggle to match the performance of
fine-tuned transformers in specialized tasks like ABSA without further fine-tuning.

3.4.2. Results on Naver Labs Europe Dataset

In addition to evaluating our models on the MAMS and SemEval datasets that we
created, we further tested their performance on the Naver Labs Europe dataset to assess
the models’ ability to generalize to unseen data from a different source. In Table 2, the
performance of the models on the Naver Labs dataset is illustrated.

Table 2. The performance results of the best fine-tuned models on the Naver Labs Europe Dataset.
The best model is highlighted in bold.

Model Accuracy Precision Recall F1 Score

bert-base-uncased 96.03% 89.72 91.98 90.80
bert-large-uncased 95.24% 88.65 88.65 88.65

distilbert-base-uncased 96.83% 94.83 89.55 91.96
albert-base-v1 92.86% 84.87 78.65 81.33
albert-large-v1 95.24% 97.44 80.00 86.18

roberta-base 97.62% 93.30 95.77 94.48
roberta-large 97.62% 91.67 98.65 94.77

xlnet-base-cased 94.44% 89.47 82.43 85.48
Bi-LSTM 87.30% 67.52 61.08 63.16

LSTM 87.30% 48.46 46.49 47.45
RNN 88.10% 70.00 58.65 61.04
GPT-4 86.95% 64.07 73.81 63.94

GPT-3.5-turbo 94.21% 63.42 66.53 64.76
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The results from the Naver dataset demonstrate the clear superiority of transformer-
based models over traditional RNN, LSTM, and Bi-LSTM models, further solidifying the
impact of recent advancements in natural language processing. Among the transformer
models, RoBERTa (both base and large) stands out, achieving the highest accuracy of 97.62%.
The large variant not only excels in accuracy but also demonstrates exceptional performance
in the recall (98.65%) and F1 score (94.77%), indicating its ability to correctly identify and
classify sentiments in a wide variety of contexts. This performance shows the robustness
of RoBERTa’s architecture in handling diverse datasets and reinforces its effectiveness in
aspect-based sentiment analysis (ABSA) tasks, even when dealing with real-world reviews
that contain multiple sentiment aspects. DistilBERT also performs remarkably well with an
accuracy of 96.83%, proving that even lighter, distilled versions of transformer models can
outperform larger models like BERT and ALBERT in certain contexts. DistilBERT’s high
precision (94.83%) and balanced F1 score (91.96%) show that, despite its reduced size, it
effectively balances resource efficiency with performance, making it a valuable option for
scenarios where computational efficiency is critical without sacrificing much accuracy.

On the other hand, ALBERT-base and XLNet-base-cased showed weaker performance
across all metrics. ALBERT-base achieved 92.86% accuracy, but with noticeably lower
precision (84.87%) and recall (78.65%), suggesting that its architecture might struggle with
the specific characteristics of the Naver dataset, which includes varied review structures and
nuanced sentiments. Similarly, XLNet-base-cased achieved 94.44% accuracy, but its lower
F1 score (85.48%) points to potential difficulties in handling an aspect-specific sentiment, a
task where RoBERTa excels due to its architecture’s robust contextual understanding.

In contrast, traditional models such as Bi-LSTM, LSTM, and RNN lag significantly
behind. Among them, Bi-LSTM showed the best performance, but still only reached
87.30% accuracy, coupled with much lower precision, recall, and F1 scores (63.16% F1
score). This performance gap underscores the limitations of older neural network models,
particularly in capturing the contextual dependencies and nuanced sentiments found in
more complex language tasks. LSTM and RNN performed even worse, further highlighting
how traditional architectures struggle to match the capabilities of modern transformers
when applied to tasks like ABSA.

These results not only highlight the effectiveness of transformer architectures in han-
dling a complex, multi-aspect sentiment analysis but also demonstrate their generalization
capabilities across different datasets. While most models performed reasonably well,
RoBERTa continues to lead the way, showing that it is particularly well suited for cross-
domain applications and tasks that require deep contextual understanding. The results
reaffirm the value of transformer models in sentiment analyses, suggesting that they are
better equipped to handle the nuances of the language and aspect-level sentiment in real-
world applications. Moreover, the fact that even DistilBERT performs exceptionally well
reinforces the practical benefits of transformer models, offering high performance without
the resource-heavy requirements of larger models.

Finally, GPT-4 achieves an accuracy of 86.95% with a precision of 64.07, recall of
73.81, and F1 score of 63.94, while GPT-3.5-turbo performs slightly better in accuracy
(94.21%), but with lower precision (63.42) and recall (66.53), and a marginally higher F1
score (64.76). Similar to the MAMS Semeval results, both LLMs underperform compared
to fine-tuned transformer models, largely due to the fact that GPT-4 and GPT-3.5-turbo
were not fine-tuned on the Naver dataset and were instead evaluated on the entire dataset
using their general-purpose capabilities. This lack of fine-tuning impacts the models’
performance in the sentiment analysis task, where task-specific training is crucial for higher
performance. In comparison, fine-tuned transformer models such as RoBERTa-base and
RoBERTa-large dominate, achieving the highest accuracy (97.62%) and F1 scores (94.48 and
94.77, respectively). Fine-tuned models like BERT and DistilBERT also perform significantly
better than the LLMs, further highlighting the advantage of fine-tuning for task-specific
datasets like this one. When comparing LLMs to non-transformer models, such as Bi-LSTM
and RNN, the results are mixed. Bi-LSTM, with an F1 score of 63.16, performs similarly to
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both GPT-4 and GPT-3.5-turbo, while LSTM and RNN underperform with F1 scores of 47.45
and 61.04, respectively. Despite this, LLMs still generally outperform the non-transformer
models, but fall short of the fine-tuned transformer models, underscoring the importance
of fine-tuning for these specific tasks.

4. Explainability Techniques on the Transformer Models

Transformer-based models such as RoBERTa are highly effective due to their sophis-
ticated architectures and ability to capture intricate dependencies in text. However, their
complexity makes it challenging to interpret their decision-making processes. As models
become more powerful, they often sacrifice transparency, making it difficult for users to
fully understand how predictions are made. This presents a significant challenge when
deploying these models in real-world applications where trust, fairness, and transparency
are crucial. So, explainability techniques such as LIME, SHAP, and integrated gradients
can help to shed light on the models’ internal operations. While these techniques enhance
the interpretability of complex models, they can introduce approximations, highlighting
the trade-off between achieving state-of-the-art performance and maintaining a clear un-
derstanding of the model’s decisions. Explainability techniques can shed light on the
decision-making processes of these models, making their outputs more transparent and
understandable. So, we implemented and used five explainability techniques, which are
the LIME (Local Interpretable Model-agnostic Explanation) [35], SHAP (SHapley Addi-
tive exPlanation) [36], Grad-CAM (Gradient-weighted Class Activation Mapping) [37],
integrated gradients [38], and Attention Visualization [39].

LIME (Local Interpretable Model-agnostic Explanation) is a model-agnostic technique
that approximates the predictions of a complex model with an interpretable model, such
as a linear regression or decision tree, for a specific instance. By perturbing the input
and observing the changes in the output, LIME identifies the most important features
contributing to the prediction. This helps us in understanding which words or phrases
in a text are driving the model’s sentiment classification, providing insights into how the
model reaches its decisions. This technique is particularly useful as it clarifies the impact of
individual textual components on the overall sentiment prediction.

The SHAP (SHapley Additive exPlanation) technique aims to explain the output of a
model by distributing the prediction among the input features based on their contribution.
It can highlight which words or aspects of a sentence are influencing the sentiment pre-
diction, offering us a deeper understanding of the transformer model’s behavior and the
rationale behind its predictions. This technique helps us to ensure the transformer model’s
transparency and accountability by illustrating the contribution of each feature.

The Attention Visualization technique highlights which words in a text are attending
to which other words, revealing patterns and relationships that the model is leveraging
to make predictions. This can be particularly useful in understanding the context and
dependencies considered by the model in aspect-based sentiment analysis tasks. By vi-
sualizing the attention weights in our transformer models, we can see how the model
prioritizes certain words or phrases, providing a deeper understanding of the model’s
interpretive process.

The integrated gradient technique attributes the prediction of a model to its input
features by integrating the gradients of the model’s output with respect to the input along a
path from a baseline to the actual input. This technique provides us with a way to quantify
the contribution of each word or phrase to the transformer model’s prediction, offering us
insights into how the transformer arrives at its particular decision. Since transformers rely
heavily on self-attention mechanisms, visualizing attention weights through integrated
gradients can greatly help us and reveal to us how the model prioritizes different parts of
the input text, enhancing the interpretability of complex transformer models.

The Grad-CAM (Gradient-weighted Class Activation Mapping) technique is a visu-
alization approach that uses the gradients of the target output with respect to the input
embeddings and produces a coarse localization map, highlighting important regions in the
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input text. This technique helps in visualizing which parts of the text are most influential
for the model’s prediction. By applying Grad-CAM to NLP models, we can gain a better
understanding of the areas within the text that significantly impact the model’s outputs,
thereby enhancing the transformer model’s transparency and interpretability.

The implementation of these explainability techniques and their use on the trans-
former models we fine-tuned on an aspect-based sentiment analysis can greatly assist us
in understanding how exactly the models perform their decision-making procedure. In
addition, it can help to understand which specific words one model utilizes and to which
degree, and also how the model pays attention to specific words and features and provides
us useful insights that can also assist us in further improving the performance of the models,
addressing possible biases and ensuring that the models are efficient. Below, we present in
detail the way that each explainability method operates, and how they shed light on the
functionality of the transformer models. All results, including the screenshot images, were
obtained from our Google Collab environment.

4.1. LIME Technique

The LIME aims to fit a surrogate glass-box model around the decision space of the
transformer model’s prediction. LIME has been designed to be applied locally and we
utilized it on the best-performing fine-tuned model, which was the roberta-base transformer,
to see how the model operates, and which words or phrases were the most influential in
the decision making. We illustrate the functionality of the LIME technique (as well as of all
the explainability techniques) on the sentence “The food at the restaurant was amazing,
but the service was terrible.”, which has many aspects and different polarities. Initially, for
the aspect “food”, the LIME analysis is illustrated in Figure 2.
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Figure 2. The LIME analysis on the aspect “food”.

As we can see in this example sentence, our transformer model has correctly predicted
the target aspect polarity as positive for the aspect “food”. The prediction probabilities show
a 100% confidence in the positive sentiment, with no probabilities assigned to negative
or neutral sentiments. The LIME explanation highlights the word “amazing” with the
highest weight (0.40), which strongly influences the positive sentiment prediction. Other
words of the sentences such as “service” (0.09), “restaurant” (0.06), “but” (0.05), and “was”
(0.05) also contribute but to a lower extent. Our model has inferred this positive polarity
due to the significant influence of the word “amazing”, correctly identifying it as the key
indicator of the positive sentiment. The highlighted weights show that the model considers
the context and the impactful words to make its prediction, ensuring that the positive
sentiment associated with “food” is accurately captured. After that, for the aspect “service”,
the LIME analysis is illustrated in Figure 3.

Our transformer has correctly predicted the target aspect polarity as negative for the
aspect “service”. The prediction probabilities show a 100% confidence in the negative
sentiment, with no probabilities assigned to neutral or positive sentiments. The LIME
explanation highlights the word “service” with the highest weight (0.31), which strongly
influences the negative sentiment prediction. Other significant contributing words include
“but” (0.29), “terrible” (0.22), and “food” (0.11). The model has inferred this negative
polarity due to the strong influence of the word “service” particularly in the negative
context provided by the word “terrible”. The highlighted weights show that the model
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accurately captures the negative sentiment associated with the aspect “service” with “but”
also playing a key role in emphasizing the contrast between the positive and negative parts
of the sentence. The presence of “amazing” has a minimal impact on this aspect, reinforcing
the model’s focus on the relevant context. Finally, for the aspect “restaurant”, the LIME
analysis is illustrated in Figure 4.
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Once again, our fine-tuned transformer model has indeed correctly predicted the target
aspect polarity as neutral for the aspect “restaurant”. The prediction probabilities show
a 100% confidence in the neutral sentiment, with no probabilities assigned to negative or
positive sentiments. The LIME explanation highlights the word “terrible” with the highest
weight (0.35), which influences the sentiment prediction. Other significant contributing
words include “was” (0.27), “at” (0.22), “food” (0.13), and “amazing” (0.12). The model has
inferred this neutral polarity due to the balanced influence of both positive and negative
words in the context of the aspect “restaurant”. The word “terrible” has a high weight,
indicating its strong negative sentiment, but it is counterbalanced by words like “amazing”
and “food” that contribute positively. This balance results in an overall neutral sentiment
for the aspect “restaurant”, demonstrating the model’s capability to capture the mixed
sentiments present in the sentence.

4.2. SHAP Technique

The SHAP technique aims to illustrate the output of our transformer model using
Shapley values. Similarly, here, we used the same transformer model and we examine once
again the sentence “The food at the restaurant was amazing, but the service was terrible.”,
to see how the model can infer the polarity of the target aspects. Initially, for the aspect
“food”, the SHAP analysis is illustrated in Figure 5.
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SHAP results on the sentence “The food at the restaurant was amazing, but the service
was terrible” indicate that our fine-tuned transformer model has correctly predicted the
target aspect polarity for “food” as positive (Output 2). This inference is supported by
the SHAP values, which show the weights assigned to different words in the sentence.
The word “amazing” has a significant positive weight (0.503), strongly influencing the
positive sentiment prediction. Although the word “terrible” has a value of 0.06, it does
not significantly impact the sentiment prediction for the aspect “food”. The model has
effectively focused on the relevant parts of the sentence related to the food aspect, leading
to an accurate sentiment prediction. After that, for the aspect “service”, the SHAP analysis
is depicted in Figure 6.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 19 of 31 
 

 
Figure 6. The SHAP analysis on the aspect “service”. 

We can see that our fine-tuned transformer model has correctly predicted the target 
aspect polarity for “service” as negative (Output 0). This inference is supported by the 
SHAP values, which show the weights assigned to different words in the sentence. The 
words “but” (0.3620) and “terrible” (0.325) have significant positive weights, strongly in-
fluencing the negative sentiment prediction. The word “service” (0.222) also contributes 
to the overall sentiment analysis, indicating a contrast in the sentence structure. The model 
has effectively focused on the relevant parts of the sentence related to the service aspect, 
leading to an accurate sentiment prediction. Finally, for the aspect “restaurant”, the SHAP 
analysis is illustrated in Figure 7. 

 
Figure 7. The SHAP analysis on the aspect “restaurant”. 

It can be observed that our fine-tuned transformer model has correctly predicted the 
target aspect polarity for “restaurant” as neutral (Output 1). This inference is supported 
by the SHAP values, which show the weights assigned to different words in the sentence. 
For the aspect “restaurant”, the word “at” has a significant positive weight of 0.377, con-
tributing positively towards the prediction of a neutral sentiment. Similarly, “food” has a 
positive weight of 0.127, and “service” has a positive weight of 0.165. These words posi-
tively influence the sentiment prediction towards neutrality. The word “amazing” has a 
negative weight, which would typically pull the prediction towards a positive sentiment. 
Conversely, the word “terrible” also has a negative weight, pulling towards a negative 
sentiment. However, the model balances these influences, with the contributions from 
“at”, “food”, and “service” leading to a neutral overall sentiment for the aspect “restau-
rant”. This balanced interpretation by the model results in the correct neutral prediction 
for the aspect “restaurant”. 

4.3. Attention Weight Visualization 
The attention weight visualization technique we implemented and used in our model 

highlights the parts of the input text that our model focuses on when making a prediction. 
So, in this way, the attention technique can provide insights on which words or phrases 
are most influential in determining the sentiment of a particular aspect. The attention 
weight visualization technique was applied on our fine-tuned RoBerta model for the same 
sentence, “The food at the restaurant was amazing, but the service was terrible.”, and ini-
tially, for the aspect “food”, the attention weights are illustrated in Figure 8. 

Figure 6. The SHAP analysis on the aspect “service”.

We can see that our fine-tuned transformer model has correctly predicted the target
aspect polarity for “service” as negative (Output 0). This inference is supported by the
SHAP values, which show the weights assigned to different words in the sentence. The
words “but” (0.3620) and “terrible” (0.325) have significant positive weights, strongly
influencing the negative sentiment prediction. The word “service” (0.222) also contributes
to the overall sentiment analysis, indicating a contrast in the sentence structure. The model
has effectively focused on the relevant parts of the sentence related to the service aspect,
leading to an accurate sentiment prediction. Finally, for the aspect “restaurant”, the SHAP
analysis is illustrated in Figure 7.
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It can be observed that our fine-tuned transformer model has correctly predicted the
target aspect polarity for “restaurant” as neutral (Output 1). This inference is supported
by the SHAP values, which show the weights assigned to different words in the sentence.
For the aspect “restaurant”, the word “at” has a significant positive weight of 0.377, con-
tributing positively towards the prediction of a neutral sentiment. Similarly, “food” has
a positive weight of 0.127, and “service” has a positive weight of 0.165. These words
positively influence the sentiment prediction towards neutrality. The word “amazing” has
a negative weight, which would typically pull the prediction towards a positive sentiment.
Conversely, the word “terrible” also has a negative weight, pulling towards a negative
sentiment. However, the model balances these influences, with the contributions from “at”,
“food”, and “service” leading to a neutral overall sentiment for the aspect “restaurant”.
This balanced interpretation by the model results in the correct neutral prediction for the
aspect “restaurant”.



Big Data Cogn. Comput. 2024, 8, 141 19 of 30

4.3. Attention Weight Visualization

The attention weight visualization technique we implemented and used in our model
highlights the parts of the input text that our model focuses on when making a prediction.
So, in this way, the attention technique can provide insights on which words or phrases are
most influential in determining the sentiment of a particular aspect. The attention weight
visualization technique was applied on our fine-tuned RoBerta model for the same sentence,
“The food at the restaurant was amazing, but the service was terrible.”, and initially, for the
aspect “food”, the attention weights are illustrated in Figure 8.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 20 of 31 
 

 
Figure 8. The visualization of the attention weights for the aspect “food”. 

The attention weights that our fine-tuned transformer created by focusing on the as-
pect word “food” become clear. The attention weights indicate how much attention the 
model is assigning from each source token to each target token. Based on the plot, it is 
noted that the same word in the source has a high attention weight with the same word 
in the target, which indicates that the model is paying close attention to the self-referential 
information within the text. Furthermore, there are high attention weights between tokens 
such as “.” and “<s>” and the target tokens, which indicates that the model focuses on 
understanding the structure and boundaries of the input sequence, crucial for the accurate 
processing and generation of text. Specifically, here, the word “food” in the source has a 
high attention weight with the word “amazing” (0.07) in the target, as well as the word 
“amazing” in the source having a high attention weight with the word “food” (0.10) in the 
target, which shows that the model is focusing on the relationship between these two 
words. In addition, “food” has a relatively low attention weight with the word “terrible” 
(0.01) in the target as well as the word “terrible” in the source having zero attention weight 
with the word “food” (0.00) in the target. This indicates that the model has correctly fo-
cused on the contextual content of the aspect word “food” (the words that are related to 
the aspect word) and ignores the rest of the words related to other aspects. In Figure 9, the 
attention weights for the aspect “service” are illustrated.  

In this figure, we can observe the attention weights that our fine-tuned transformer 
created by focusing on the aspect word “service”. Specifically, in this case, the word “ser-
vice” has a high attention weight with the word “terrible” (0.17) in the target, as well as 
the word “terrible” in the source having a high attention weight with the word “service” 
(0.19) in the target, which shows that the model is focusing on the relationship between 
these two words. Additionally, “service” has a significantly low attention weight with the 
word “amazing” (0.01) in the target, and “amazing” in the source has zero attention 
weight with “service” (0.00) in the target. This indicates that the model has correctly fo-
cused on the contextual content of the aspect word “service” and ignores the rest of the 
words related to other aspects. In Figure 10, the attention weights for the aspect “restau-
rant” are illustrated. 

Figure 8. The visualization of the attention weights for the aspect “food”.

The attention weights that our fine-tuned transformer created by focusing on the
aspect word “food” become clear. The attention weights indicate how much attention the
model is assigning from each source token to each target token. Based on the plot, it is
noted that the same word in the source has a high attention weight with the same word in
the target, which indicates that the model is paying close attention to the self-referential
information within the text. Furthermore, there are high attention weights between tokens
such as “.” and “<s>” and the target tokens, which indicates that the model focuses on
understanding the structure and boundaries of the input sequence, crucial for the accurate
processing and generation of text. Specifically, here, the word “food” in the source has a
high attention weight with the word “amazing” (0.07) in the target, as well as the word
“amazing” in the source having a high attention weight with the word “food” (0.10) in the
target, which shows that the model is focusing on the relationship between these two words.
In addition, “food” has a relatively low attention weight with the word “terrible” (0.01) in
the target as well as the word “terrible” in the source having zero attention weight with
the word “food” (0.00) in the target. This indicates that the model has correctly focused on
the contextual content of the aspect word “food” (the words that are related to the aspect
word) and ignores the rest of the words related to other aspects. In Figure 9, the attention
weights for the aspect “service” are illustrated.

In this figure, we can observe the attention weights that our fine-tuned transformer
created by focusing on the aspect word “service”. Specifically, in this case, the word
“service” has a high attention weight with the word “terrible” (0.17) in the target, as well as
the word “terrible” in the source having a high attention weight with the word “service”
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(0.19) in the target, which shows that the model is focusing on the relationship between
these two words. Additionally, “service” has a significantly low attention weight with the
word “amazing” (0.01) in the target, and “amazing” in the source has zero attention weight
with “service” (0.00) in the target. This indicates that the model has correctly focused on the
contextual content of the aspect word “service” and ignores the rest of the words related to
other aspects. In Figure 10, the attention weights for the aspect “restaurant” are illustrated.
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In this figure, we can examine the attention weights that our fine-tuned transformer
created by focusing on the aspect word “restaurant”. In this case, the word “restaurant” in
the source has a 0.02 attention weight with the word “amazing” in the target, as well as the
word “amazing” in the source having a weight of 0.01 with the word “restaurant” in the
target. Additionally, “restaurant” has a 0.02 attention weight with the word “terrible” in
the target, and “terrible” in the source has a 0.02 attention weight with “restaurant” in the
target. It is obvious that our model, focusing on the aspect word “restaurant”, has given the
same attention weight, 0.02, for the words “amazing” and “terrible”, implying that both
words participate equally in the prediction of polarity.

4.4. Integrated Gradients

The integrated gradient technique was applied on our transformer model and aims to
attribute an importance value to each input feature of the model based on the gradients
of the model output with respect to the input. The technique can provide quite valuable
insights into how each word in the input text contributes to the final prediction. By
integrating the gradients along the path from a baseline input (typically a neutral or zero
input) to the actual input, this method effectively highlights the contribution of each feature.
This assists in understanding which aspects of the input text are the most influential in
determining the model’s sentiment classification.

Similarly, we used our RoBERTa fine-tuned model and we examined the sentence “The
food at the restaurant was amazing, but the service was terrible”. For the aspect “food”,
the integrated gradients are illustrated in Figure 11.
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It is noted that our model has correctly predicted the target aspect polarity as positive
for the aspect “food” and has inferred, e.g., the weights assigned to specific words. The
word “amazing” has the highest positive weight (0.8488), strongly contributing to the
positive sentiment. Despite some negative weights, such as for “food” (−0.3490) and
“service” (−0.0551), the overall positive sentiment is primarily driven by the highly positive
weight for “amazing”. This indicates that the model effectively focuses on the most relevant
words that convey the sentiment for the aspect “food”. Thereafter, the integrated gradients
for the aspect “service” are illustrated in Figure 12.
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The model has correctly predicted the target aspect polarity as negative. It has inferred
this by focusing on the word “service”, which has high attribution scores (0.4892 and
0.6365), indicating its crucial role in the model’s prediction. These scores do not suggest
that “service” itself contributes positively to a negative sentiment but rather highlight its
importance in the context of the sentence. The model considers the negative connotation of
“terrible” (0.1095) directly associated with “service” to make the prediction. Additionally,
the conjunction “but” (0.2731) signals a contrast, emphasizing the negative sentiment
towards “service” despite the positive sentiment for “food”. The high attribution for
“amazing” (0.3271) further underscores this contrast. Thus, the model captures the context
and the relationships between words to accurately predict a negative sentiment for the
aspect “service”. Finally, for the aspect “restaurant”, the integrated gradients are illustrated
in Figure 13.
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Our model has predicted correctly the target aspect polarity as neutral. The model has
inferred this by focusing on the word “restaurant”, which has positive attribution scores
(0.1544 and 0.1821), indicating its crucial role in the model’s prediction. These scores do not
suggest that “restaurant” itself contributes positively or negatively to the sentiment but
rather highlight its importance in the context of the sentence. The word “food” has a high
positive attribution score (0.6724), suggesting it strongly influences the sentiment about the
“restaurant”. Similarly, “service” (0.4333) and “terrible” (0.1570) have positive attribution
scores, indicating their significant influence on the sentiment. The word “amazing” has
a negative score (−0.1673), which could be due to its contribution to a mixed sentiment
context rather than directly influencing the restaurant’s sentiment negatively. Moreover,
the conjunction “but” (−0.1995) indicates a contrast, helping the model understand the
nuanced sentiment. Thus, the model captures the context and the relationships between
words to accurately predict a neutral sentiment for the aspect “restaurant”.

4.5. Grad-CAM Technique

We also implemented and used the Grad-CAM (Gradient-weighted Class Activation
Mapping) on our fine-tuned model. Grad-CAM identifies and visualizes the relevance of
each word in the text to the sentiment prediction for a given aspect. First, a forward pass
obtains the transformer model’s predictions and activations from a selected layer. Follow-
ing this, during the backward pass, gradients of the target sentiment score with respect
to these activations are computed. These gradients, averaged and weighted, highlight
the importance of each token in the input text. The resulting relevance scores are then
visualized, often as a heatmap, showing which parts of the text the model considers most
influential in determining the sentiment towards the specified aspect. This process helps us
in interpreting and understanding the model’s decision making for specific aspects in the
text. Similarly, we used our RoBERTa fine-tuned model and we examined the sentence “The
food at the restaurant was amazing, but the service was terrible”. For the aspect “food”,
the results of the Grad-CAM are illustrated in Figure 14.
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The Grad-CAM relevance scores indicate that the model has heavily weighted certain
words when making its prediction. For instance, the word “food” has the highest relevance
score of 1.0000, indicating that it had the most significant impact on the model’s decision.
This makes sense, as “food” is the main aspect being evaluated. Other words like “The”
(0.9981), “was” (0.9951), and “amazing” (0.9905) and punctuation marks like “.” (0.9969) also
have high relevance scores, showing their influence on the model’s decision. Interestingly,
words related to the negative part of the sentence, such as “service” (0.6991), “was” (0.6707),
and “terrible” (0.7544), have relatively lower relevance scores compared to positive words.
This suggests that while the model considered the entire sentence, it weighed the positive



Big Data Cogn. Comput. 2024, 8, 141 24 of 30

sentiment associated with “food” more heavily. Overall, the model’s prediction aligns
well with the expected sentiment for the aspect “food”, correctly focusing on the relevant
positive indicators in the text. After that, for the aspect “service”, the Grad-CAM analysis
is illustrated in Figure 15.
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Figure 15. Grad-CAM for the aspect “service”.

The model has correctly predicted the target aspect polarity as negative for the aspect
“service”. The Grad-CAM relevance scores indicate that the model has heavily weighted
certain words when making its prediction. For instance, the word “service” has the highest
relevance score of 1.0000, indicating that it had the most significant impact on the model’s
decision. This makes sense, as “service” is the main aspect being evaluated. Other words
like “terrible” (0.8792) and “was” (0.9152) and punctuation marks like “.” (0.9605) also
have high relevance scores, showing their influence on the model’s decision. The words
related to the positive part of the sentence, such as “food” (0.5906), “amazing” (0.0901),
and “was” (0.0830), have relatively lower relevance scores compared to the negative words.
This suggests that while the model considered the entire sentence, it weighed the negative
sentiment associated with “service” more heavily. Additionally, words that signal a contrast,
such as “but” (0.9150), also have high relevance scores, indicating that the model correctly
identified the shift in the sentiment within the sentence. Overall, the model’s prediction
aligns well with the expected sentiment for the aspect “service”, correctly focusing on the
relevant negative indicators in the text. Finally, for the restaurant aspect, the analysis of the
Grad-CAM is illustrated in Figure 16.
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The Grad-CAM relevance scores indicate that the model has heavily weighted certain
words when making its prediction. For instance, the word “at” has the highest relevance
score of 1.0000, indicating that it had a significant impact on the model’s decision. Other
highly relevant words include “restaurant” (0.9704), “The” (0.8617), and “food” (0.8970),
showing their influence on the model’s decision. These words together help to frame the
aspect “restaurant” within the context of the sentence. Interestingly, the words that express
a strong sentiment, both positive and negative, such as “amazing” (0.6158), “service”
(0.2040), and “terrible” (0.2298), have relatively lower relevance scores. This suggests
that while the model considered the entire sentence, it weighed the contextual words
around “restaurant” more heavily, which are more neutral in the sentiment. The model
also gave lower relevance scores to the contrasting conjunction “but” (0.3617) and other
less significant words like “was” (0.1932), and “the” (0.2173), which further indicates its
focus on the main aspect-related words to determine the sentiment. Overall, the model’s
prediction aligns well with the expected sentiment for the aspect “restaurant”, correctly
focusing on the neutral context around the aspect “restaurant” in the text.

5. Discussion

The model predicted a positive sentiment for the aspect “food” in the sentence “The
food at the restaurant was amazing, but the service was terrible.”. Comparing the results
from each explainability method provides a comprehensive understanding of how the
model arrived at this conclusion. LIME shows a 100% confidence in the positive sentiment,
with “amazing” having the highest weight (0.40), indicating its strong influence on the
positive sentiment prediction. Other words like “service” (0.09) and “restaurant” (0.06)
contribute to a lesser extent. SHAP also highlights “amazing” with a significant positive
weight (0.503), reinforcing its influence on the positive sentiment prediction, while “terrible”
has a minimal impact (0.06). The visualization of attention weights shows a high focus on
the relationship between “food” and “amazing” (source “food”–target ”amazing”: 0.07
and source “amazing”–target “food”: 0.10), with minimal attention to “terrible” (“food”–
“terrible”: 0.01 and “terrible”–“food”: 0.00), confirming the model’s emphasis on the
positive relationship. Integrated gradients assign the highest positive weight to “amazing”
(0.8488), which is significantly higher than LIME and SHAP, despite some negative weights
for “food” (−0.3490) and “service” (−0.0551), indicating a strong influence of “amazing”
on the positive sentiment. Grad-CAM relevance scores show “food” with the highest
score (1.0000), followed by “amazing” (0.9905), and lower scores for negative words like
“service” (0.6991) and “terrible” (0.7544), indicating a strong focus on the positive sentiment
associated with “food”. Comparing LIME and SHAP, both methods highlight “amazing”
as the key driver of the positive sentiment, with SHAP assigning a slightly higher weight
to “amazing”. The visualization of attention weights and Grad-CAM both emphasize the
relationship and relevance of “food” and “amazing”, confirming the positive sentiment.
Integrated gradients show the highest influence of “amazing”, aligning with the findings of
LIME and SHAP. In conclusion, all methods agree that “amazing” is the primary driver of
the positive sentiment for “food” with LIME and SHAP emphasizing its importance, and
the visualization of attention weights, integrated gradients, and Grad-CAM confirming its
strong influence and relevance in the prediction.

The model predicted a negative sentiment for the aspect “service” in the sentence “The
food at the restaurant was amazing, but the service was terrible.”. Comparing the results
from each explainability method provides a detailed understanding of how the model
arrived at this conclusion. LIME shows a 100% confidence in the negative sentiment, with
“service” having the highest weight (0.31), followed by “but” (0.29) and “terrible” (0.22).
This indicates that “service” and the conjunction “but” play significant roles in the negative
sentiment prediction. SHAP values also highlight “but” (0.3620) and “terrible” (0.325) as
having significant positive weights, with “service” (0.222) contributing to the negative
sentiment. Compared to LIME, SHAP assigns higher weights to “but” and “terrible”,
indicating a broader context and emphasizing the contrast in the sentence. The visualization



Big Data Cogn. Comput. 2024, 8, 141 26 of 30

of attention weights shows a high focus on the relationship between “service” and “terrible”
(source “service”–target “terrible”: 0.17 and source “terrible”–target “service”: 0.19), with
minimal attention to “amazing” (source “service”–target “amazing”: 0.01 and source
“amazing”–target “service”: 0.00). This method highlights the direct relationship between
“service” and “terrible”, confirming the model’s focus on the negative context. Integrated
gradients assign high attribution scores to “service” (0.4892 and 0.6365), with contributions
from “terrible” (0.1095) and “but” (0.2731). Although the conjunction “but” has a lower
score compared to LIME and SHAP, integrated gradients emphasize the importance of
“service” and the negative connotation of “terrible”. Grad-CAM relevance scores show
“service” with the highest score (1.0000), followed by “terrible” (0.8792) and “but” (0.9150).
Compared to LIME and SHAP, Grad-CAM assigns the highest relevance to “service”,
confirming its central role in the negative sentiment prediction. In summary, all methods
agree that “service” and “terrible” are key drivers of the negative sentiment, with LIME
and SHAP highlighting the conjunction “but” more strongly than integrated gradients.
The visualization of attention weights and Grad-CAM emphasize the relationship and
relevance of “service” and “terrible”, confirming the negative sentiment prediction.

The model predicted a neutral sentiment for the aspect “restaurant” in the sentence
“The food at the restaurant was amazing, but the service was terrible.”. Comparing the
results from each explainability method provides a nuanced view of how the model reached
this conclusion. LIME shows a 100% confidence in the neutral sentiment, highlighting
“terrible” with the highest weight (0.35), followed by “was” (0.27), “at” (0.22), “food” (0.13),
and “amazing” (0.12). This indicates that the balance of positive and negative words
around “restaurant” leads to a neutral sentiment. SHAP supports this by showing mixed
contributions, with “at” (0.377) not directly affecting the sentiment of “restaurant” while
“food” (0.127) and “service” (0.165) add positive weights and “amazing” and “terrible”
contribute negatively. SHAP shows a more detailed balance of influences compared to
LIME, emphasizing the mixed sentiment context. The visualization of attention weights
reveals that the word “restaurant” has equal attention weights with “amazing” (0.02)
and “terrible” (0.02), indicating that both positive and negative sentiments are considered
equally. This method highlights the equal contribution of positive and negative words more
clearly than LIME and SHAP. Integrated gradients assign positive scores to “restaurant”
(0.1544 and 0.1821), with significant contributions from “food” (0.6724), “service” (0.4333),
and “terrible” (0.1570), while “amazing” has a negative score (−0.1673). This suggests a
mixed sentiment context rather than a clear positive or negative influence. Grad-CAM
relevance scores show “at” (1.0000) and “restaurant” (0.9704) with high relevance, while
“amazing” (0.6158), “service” (0.2040), and “terrible” (0.2298) have lower relevance. This
indicates that the model focuses more on contextual words around “restaurant” rather
than strong sentiment words. Comparing LIME and SHAP, both methods highlight a mix
of positive and negative contributions, with SHAP providing a more detailed balance.
The visualization of attention weights and integrated gradients emphasize the equal con-
tributions of positive and negative words, while Grad-CAM focuses on the contextual
words around “restaurant”. In conclusion, all methods agree on a balanced influence of
positive and negative words for the neutral sentiment of “restaurant” with LIME and
SHAP showing mixed contributions, the visualization of attention weights and integrated
gradients highlighting equal contributions, and Grad-CAM emphasizing contextual words.
All in all, summing up the application of the explainability techniques, we can consider
a sentence with mixed sentiments such as “The food was excellent, but the service was
slow”, where the transformer model predicted a positive sentiment for the aspect “food”
and a negative sentiment for the aspect “service”. LIME highlighted the words “excellent”
and “slow” as the most influential for their respective aspect predictions, providing a clear
explanation of how the model arrived at its decision. Similarly, SHAP values emphasized
the contributions of keywords like “excellent” (positive) and “slow” (negative) in driving
the sentiment predictions. Integrated gradients further reinforced this by showing a strong
attribution of the word “excellent” to the positive prediction for “food” and “slow” to the
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negative prediction for “service”. These techniques not only confirmed the correctness of
the predictions but also shed light on the internal decision-making process of the model,
ensuring transparency and trustworthiness. By applying these explainability methods, we
gained valuable insights into how the model interprets and processes the sentiment at the
aspect level, providing users with a clearer understanding of the model’s behavior.

6. Conclusions

In this study, we explored the application of transformer models to an aspect-based
sentiment analysis, focusing on their performance and interpretability. We fine-tuned
several pre-trained transformers, including BERT, ALBERT, RoBERTa, DistilBERT, and
XLNet, on a challenging dataset we formulated based on MAMS and SemEval datasets.
Each instance in the dataset consists of at least two aspects and corresponding polarities.
Among the transformers, RoBERTa achieved the highest accuracy of 89.16%, showcasing
its suitability in handling the complexities of an aspect-based sentiment analysis.

To enhance the transparency and understanding of these fine-tuned models, we
implemented five explainability techniques: LIME, SHAP, attention weight visualization,
integrated gradients, and Grad-CAM. These techniques provided valuable insights into
the decision-making processes of the transformers, highlighting the influential words
and phrases that significantly impact their predictions. The application of explainability
techniques such as LIME, SHAP, and integrated gradients provided valuable insights
into how these models make predictions by highlighting the most influential words and
phrases. This not only enhances the interpretability of the models but also allows for more
informed adjustments to improve their performance and mitigate potential biases. LIME
and SHAP helped to decompose the model’s decisions by approximating and distributing
contributions among input features, thereby elucidating which parts of the text were the
most influential in the sentiment prediction. Attention weight visualization offered a visual
representation of which words the model focused on, revealing patterns and relationships
that are crucial for the model’s understanding of context. Integrated gradients quantified
the contribution of each word to the model’s prediction by integrating gradients from a
baseline to the actual input, showing how the model attributed importance across different
parts of the text. Grad-CAM provided a coarse localization map of the important regions in
the text, highlighting areas that significantly impacted the model’s decisions.

The insights gained from these explainability techniques not only improve our under-
standing of how transformer models operate but also guide us in refining these models for
better performance. By addressing potential biases and ensuring the models’ efficiency and
reliability, we can develop more accurate and trustworthy ABSA systems. Furthermore,
the detailed analysis offered by explainability techniques can help in identifying specific
strengths and weaknesses of the models, providing actionable insights for model improve-
ment and adaptation and ensuring that the models are robust and reliable. The findings
indicate that combining state-of-the-art transformers with explainability methods can lead
to more robust and transparent sentiment analyses, which is essential for real-world appli-
cations like customer feedback analyses and market research. These results underscore the
importance of explainability in ensuring that sentiment models are not only accurate but
also trustworthy and transparent in their decision-making processes.

While our study demonstrates the strengths of fine-tuned transformer-based models,
particularly RoBERTa, in handling an aspect-based sentiment analysis (ABSA), it is impor-
tant to acknowledge some limitations. One potential issue is the bias within the datasets
used, which may not capture the full range of sentiment expressions across different do-
mains, languages, or cultural contexts. This could limit the generalizability of our models
when applied to new, unseen data. Additionally, while the models performed well in our
experiments, their effectiveness may vary when used in more complex or niche domains
that require further fine-tuning or domain-specific adjustments. In this context, future work
will focus on addressing these limitations by experimenting with more diverse datasets,
conducting domain adaptation studies, and applying additional techniques to mitigate
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dataset biases. This will ensure that the models are not only accurate but also adaptable
and fair across different real-world applications. In addition, we plan to investigate the
integration of additional and more advanced transformer architectures, such as GPT or T5,
which could provide improvements in aspect identification and sentiment classification.
Additionally, we aim to explore hybrid explainability techniques that combine gradient-
based methods with perturbation-based approaches to offer more comprehensive and
robust explanations. Incorporating domain-specific knowledge into the model training
and explainability process may also improve model accuracy and interpretability. Another
interesting direction for future work would be to focus on developing methods to handle
implicit aspects and sentiments, which are currently challenging for most ABSA models.
Finally, future research will aim at further analyzing bias in combination with explainabil-
ity methods, ensuring that explainability highlights any potential biases in predictions
and enhancing the overall fairness and transparency of sentiment analysis models. This
constitutes the main direction that future work could focus on.
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