
Citation: Wan, L.; Li, Z.; Zhang, C.;

Chen, G.; Zhao, P.; Wu, K. Algorithm

Improvement for Mobile Event

Detection with Intelligent Tunnel

Robots. Big Data Cogn. Comput. 2024,

8, 147. https://doi.org/10.3390/

bdcc8110147

Academic Editor: Moulay A. Akhloufi

Received: 30 July 2024

Revised: 9 September 2024

Accepted: 24 September 2024

Published: 28 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Algorithm Improvement for Mobile Event Detection with
Intelligent Tunnel Robots
Li Wan 1, Zhenjiang Li 1, Changan Zhang 1, Guangyong Chen 1, Panming Zhao 2,* and Kewei Wu 2

1 Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, China;
13583121175@126.com (L.W.); jnlzj@163.com (Z.L.); sdjxzca@163.com (C.Z.); 51338031@sohu.com (G.C.)

2 Beijing Zhuoshi Zhitong Technology Co., Ltd., Beijing 100080, China; 13810497654@139.com
* Correspondence: zhaopanming_2023@163.com; Tel.: +86-150-5189-2101

Abstract: Mobile inspections conducted by intelligent tunnel robots are instrumental in broadening
the inspection reach, economizing on inspection expenditures, and augmenting the operational effi-
ciency of inspections. Despite differences from fixed surveillance, mobile-captured traffic videos have
complex backgrounds and device conditions that interfere with accurate traffic event identification,
warranting more research. This paper proposes an improved algorithm based on YOLOv9 and
DeepSORT for intelligent event detection in an edge computing mobile device using an intelligent
tunnel robot. The enhancements comprise the integration of the Temporal Shift Module to boost
temporal feature recognition and the establishment of logical rules for identifying diverse traffic
incidents in mobile video imagery. Experimental results show that our fused algorithm achieves a
93.25% accuracy rate, an improvement of 1.75% over the baseline. The algorithm is also applicable to
inspection vehicles, drones, and autonomous vehicles, effectively enhancing the detection of traffic
events and improving traffic safety.

Keywords: YOLOv9+DeepSORT; edge computing; mobile event detection; smart tunnels

1. Introduction

China leads globally in the number and scale of highway tunnels, with 21,316 in
total, featuring 1394 extra-long tunnels over 10 km and 5541 long tunnels from 3 to 10 km.
Tunnels have higher accident rates due to their enclosed, narrow design and lack of
emergency lanes. Specifically, the enclosed structure of tunnels results in significant internal
humidity and poor ventilation for exhaust fumes from vehicles. The leakage of coolants
and lubricating oils from vehicles, which mix and accumulate on the road surface, further
contribute to a reduction in the road’s coefficient of friction within the tunnel. This,
combined with the suboptimal braking performance of freight vehicles, makes rear-end
collisions and other traffic accidents more likely to occur inside tunnels. Moreover, the only
points connecting the tunnel interior to the outside are the entrance and exit at each end.
If a traffic accident occurs, it can impact the entire stretch of the road. In the event of an
accident, if the detection of incident information within the tunnel is not prompt, the risk
of secondary accidents increases, which can lead to severe consequences.

Current manual inspection and reactive management lead to issues like poor safety
awareness, delayed repairs, inefficient rescues, and lack of real-time traffic monitoring [1–3].
Traditional tunnel monitoring methods primarily consist of three approaches: inspection
vehicles, fixed detectors, and manual inspections. Inspection vehicles are associated with
high costs, fixed detectors suffer from incomplete coverage, and manual inspections are
characterized by low efficiency and a propensity for oversight. This struggles to keep up
with increasing operational demands. Thus, integrating AI into mobile inspection robots is
crucial to smarten up tunnel inspections effectively.
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Additionally, common deep learning techniques like CNNs, R-CNN, Fast R-CNN,
Faster R-CNN, and YOLO effectively extract image features [4–7]. In [8], the vehicle de-
tection and tracking model employs the YOLOv5 object detector in conjunction with the
DeepSORT tracker to identify and monitor vehicle movements, assigning a unique identifi-
cation number to each vehicle for tracking purposes. In [9], YOLOv8 has been enhanced
for highway anomaly detection using the CBAM attention mechanism, MobileNetV3
architecture, and Focal-EIoU Loss.

Target recognition and tracking algorithms for tunnel robots, essential for traffic
safety and incident inspection, have been researched and implemented globally in re-
cent years [10–12]. Among them, the method based on deep learning is more advanta-
geous [13,14]; Papageorgiou C. P. et al. proposed a general trainable framework suitable
for complex scenarios, in which the system performs feature learning from examples, and
does not rely on prior (artificial labeling) models [15]. Yang B et al. proposed an improved
convolutional neural network based on Faster RCNN [16], which enhances the detection
performance of small vehicles by fine-tuning the model using vehicle samples specifically
for vehicle detection. Lee W. J. et al. developed a selective multi-stage feature detection
framework based on a convolutional neural network, which fully extracts the feature infor-
mation of vehicle images and exhibits strong robustness to noise [17]. Li L. et al. considered
the underbody shadow as the candidate area and designed edge enhancement and adap-
tive feature segmentation algorithms for vehicle detection, which effectively distinguish
between underbody shadow and non-underbody shadow interferences, thereby improving
the accuracy and reliability of vehicle detection [18,19].

In summary, the current application of tunnel robots primarily focuses on firefighting,
rescue operations, and crack detection [20–22]. However, there are limitations in event
detection for tunnel robots [23], as well as insufficient consideration of event characteristics
from the perspective of mobile devices. The video background and target pixel position
change during robot movement, increasing the computational complexity of the detection
process, and if the fixed detection equipment algorithms are still employed [24,25], it
would be challenging to ensure the accuracy and real-time nature of event analysis [26–28].
This research aims to enable smart event detection in mobile devices by integrating target
tracking and temporal feature extraction. The YOLOv9+DeepSORT algorithm is used
for this purpose, along with revised abnormal event detection rules tailored for mobile
scenarios. The aim is to improve real-time detection and response to events like tunnel fires,
accidents, and pedestrian incursions, thus boosting the intelligence of smart tunnel systems.

2. Materials and Methods

The system’s workflow includes the following steps for mobile sensing: high-definition
cameras, infrared cameras, and gas sensors mounted on tunnel inspection robots transmit
data to the robots’ edge computing devices. Algorithms deployed on these devices use
AI to identify traffic events and send the event information to an AI-based event warning
platform. For fixed surveillance equipment, fixed edge computing devices recognize traffic
events in the video feeds and relay the output to the AI event warning platform. The AI
event warning platform then assesses the events and responds by either using the tunnel
robot to issue on-site announcements or dispatching rescue personnel for on-site handling.
As shown in Figure 1.

2.1. Intelligent Tunnel Robot

The intelligent tunnel robot has two main parts: the robot itself and the carrying
system. The carrying system includes cameras, sensors, and an AI edge computing device.
The robot has a 5G antenna, wheels, radar, and other features. Its main jobs are smart
monitoring, inspection, control, and emergency communication, as shown in Figure 2.
Edge Computing specifications: the processor used is an ARM Cortex-A53 8-core, with an
AI computing power of 17.6 TOPS INT8. It is equipped with 12G DDR4X memory and has
a power consumption within 20 W.
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Figure 2. Intelligent tunnel robot module composition.

Intelligent monitoring uses AI for real-time detection and surveillance of issues like
abnormal parking, pedestrians, and flames. It gathers data on brightness and environmental
conditions, including temperature, humidity, gases, and smoke levels. The system provides
360-degree coverage to eliminate blind spots and improve awareness of the tunnel’s status.

Intelligent inspection offers daily and emergency modes. In daily mode, the robot
autonomously patrols at 1–1.5 m/s, identifying issues like abnormal vehicles and unautho-
rized entries. In emergency mode, it can quickly reach incidents by speeding up to 7 m/s.
It uses a light projector to identify and alert fire and deploys a sound and light warning
system for effective communication, which aids in preventing additional accidents.
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2.2. Designing Algorithms

To achieve high accuracy and efficiency in traffic event detection for mobile device
states, considering the limited computing power of edge devices, a lightweight model
is required. This paper employs YOLOv9 for object detection in extracted video frames.
Detected objects undergo convolution, self-attention mechanisms, and temporal sequence
movement to enhance the extraction of channel, spatial, and temporal features, resulting in
feature maps. DeepSORT is then used for tracking targets in the feature maps, employing a
Kalman filter prediction model and association metrics that use Mahalanobis distance and
a Deep Appearance Descriptor with Hungarian Assignment to track trajectories of different
objects. Logical rules are applied to determine the occurrence of traffic events, including
the identification of four types of traffic events: abnormal parking, pedestrians, wrong-
way driving, and flames. The event detection results are then outputted. Comprehensive
algorithm framework diagram is shown in Figure 3.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 4 of 15 
 

provides 360-degree coverage to eliminate blind spots and improve awareness of the tun-

nel’s status. 

Intelligent inspection offers daily and emergency modes. In daily mode, the robot 

autonomously patrols at 1–1.5 m/s, identifying issues like abnormal vehicles and unau-

thorized entries. In emergency mode, it can quickly reach incidents by speeding up to 7 

m/s. It uses a light projector to identify and alert fire and deploys a sound and light warn-

ing system for effective communication, which aids in preventing additional accidents. 

2.2. Designing Algorithms 

To achieve high accuracy and efficiency in traffic event detection for mobile device 

states, considering the limited computing power of edge devices, a lightweight model is 

required. This paper employs YOLOv9 for object detection in extracted video frames. De-

tected objects undergo convolution, self-a�ention mechanisms, and temporal sequence 

movement to enhance the extraction of channel, spatial, and temporal features, resulting 

in feature maps. DeepSORT is then used for tracking targets in the feature maps, employ-

ing a Kalman filter prediction model and association metrics that use Mahalanobis dis-

tance and a Deep Appearance Descriptor with Hungarian Assignment to track trajectories 

of different objects. Logical rules are applied to determine the occurrence of traffic events, 

including the identification of four types of traffic events: abnormal parking, pedestrians, 

wrong-way driving, and flames. The event detection results are then outpu�ed. Compre-

hensive algorithm framework diagram is shown in Figure 3. 

 

Figure 3. Comprehensive algorithm framework diagram. 

2.2.1. Object Detection Algorithms 

Traditional deep learning methods often suffer from significant information loss dur-

ing the feature extraction and spatial transformation processes as the input data propa-

gates through the layers of deep networks. To address the issue of information loss during 

data transmission, YOLOv9 proposes two solutions: (1) It introduces the concept of Pro-

grammable Gradient Information (PGI) to cope with the various transformations required 

for a deep network to achieve multiple objectives. (2) It designs a novel lightweight net-

work structure based on gradient path planning—Generalized Efficient Layer Aggrega-

Figure 3. Comprehensive algorithm framework diagram.

2.2.1. Object Detection Algorithms

Traditional deep learning methods often suffer from significant information loss dur-
ing the feature extraction and spatial transformation processes as the input data propagates
through the layers of deep networks. To address the issue of information loss during
data transmission, YOLOv9 proposes two solutions: (1) It introduces the concept of Pro-
grammable Gradient Information (PGI) to cope with the various transformations required
for a deep network to achieve multiple objectives. (2) It designs a novel lightweight net-
work structure based on gradient path planning—Generalized Efficient Layer Aggregation
Network (GELAN). Validation on the MS COCO dataset for object detection demonstrates
that GELAN can achieve better parameter utilization using only conventional convolu-
tional operators, and PGI can be applied to models of various sizes, from lightweight to
large-scale. Moreover, it can be used to obtain comprehensive information, enabling models
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trained from scratch to achieve better results than state-of-the-art models pre-trained on
large datasets [29].

2.2.2. Temporal Shift Module

This paper further enhances the algorithm’s sensitivity to timing features in traffic
videos by introducing weighted time-shifted operations on video frame features. By
partially shifting the feature map along the time dimension, information exchange and
fusion between adjacent video frames are facilitated. This improves the expression capacity
of features in capturing temporal relationships within the time series. As shown in Figure 4,
the cells of different colors represent the features of different video frames, and the cells of
the same color represent the features of the channels of a certain video frame. The features of
the video frame are divided into 4 parts (c1, c2, c3, c4) in the channel dimension. The features
of each channel c1 are then shifted one time block backward along the time dimension,
while keeping the characteristics of the c2, c3 channels unchanged. Additionally, the features
of the c4 channel are shifted one time block forward along the time dimension, and the
weights (w1, w2, w3, w4) are assigned to the movement of each channel. The relationship
between the time-shifted feature c′i(i = 1, 2, 3, 4) and the initial feature ci(i = 1, 2, 3, 4) is
expressed as shown in the formula. Among them, T−1, T0, T+1 are the previous moment,
the current moment, and the next moment, respectively. The formula is as follows:

c′1 = w1cT−1

1 , c
′
2 = w2cT0

2 ,
c
′
3 = w3cT0

3 , c
′
4 = w4cT+1

4
(1)
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2.2.3. DeepSORT Multi-Object Tracking Algorithm

The DeepSORT algorithm builds upon the SORT algorithm by introducing a Matching
Cascade and confirmation of new trajectories. It integrates the Kalman filter to estimate the
mean and covariance of the track. By utilizing a gate matrix, it constrains the cost matrix to
limit the distance between the state distribution of the Kalman filter and the measured value,
thereby reducing matching errors. Additionally, the algorithm incorporates the image depth
feature within the detection frame range of the YOLOv9 target detection algorithm. To
extract features, it leverages the ReID domain model, reducing the occurrence of tracking
target ID switches and enhancing target matching accuracy.

It is evident that the overall process unfolds as follows:
(1) Use the Kalman filter to predict where objects will move;
(2) Apply the Hungarian algorithm to match these predictions with actual objects seen

in the current frame, leverage Mahalanobis distance for measuring the similarity between
detected and tracked objects;

(3) Utilize the Deep Appearance Descriptor for the extraction of target appearance
features, re-identification of targets, and association of targets, thereby optimizing the
matching performance.
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2.3. Logic Rules for Event Determination in Mobile Device

This paper focuses on the development of traffic event detection logic for four specific
scenarios within tunnel environments, utilizing the unique characteristics of mobile device
surveillance footage. The scenarios addressed are Abnormal parking, Pedestrian intrusion,
Wrong-way driving, and Flame detection.

The detection process is primarily object recognition-based, aimed at mitigating the
impact of the dynamic and complex environment encountered during the movement of the
monitoring devices. Additionally, the paper discusses the conversion of pixel coordinates
within the video to real-world coordinates, while also accounting for the movement of
the device itself. This is crucial to avoid misclassifications, such as incorrectly identifying
stationary vehicles as wrong-way drivers due to relative motion between the vehicle and
the moving device.

The standard duration for event detection is set at 15 s. For flame detection, to enhance
the reliability of the recognition, a threshold for identifying high-temperature areas is
proposed, with the stipulation that the area must be at least 0.4 m by 0.4 m.

Here are the definitions for the listed traffic events: (1) Abnormal parking: the event
where a vehicle comes to a stop within a tunnel and remains stationary for more than 15 s
is classified as abnormal parking in the tunnel. (2) Pedestrian intrusion: the detection of a
pedestrian within a tunnel, with the presence of the pedestrian being continuously detected
for over 15 s, is classified as pedestrian intrusion into the tunnel. (3) Wrong-way driving:
the event where a vehicle’s trajectory within a tunnel is in the opposite direction of the
normal driving direction, and this condition persists for 15 s, is classified as wrong-way
driving in the tunnel. (4) Flame detection: within a tunnel, the detection of an object’s
surface temperature exceeding a threshold for a continuous period of 15 s is classified as
a fire in the tunnel (this event is identified by the infrared thermal imaging camera of the
tunnel robot).

The detailed process for event determination is outlined below, using abnormal park-
ing as an illustrative example: the position coordinates of events in different video frame
states are deduced from the real-time position of camera motion and pixel coordinates in
camera lenses. Furthermore, whether a vehicle is moving or stationary within a certain
period of time is determined by calculating the distance between positions in consecutive N
frames (representing a specific time interval), as shown in Figure 5a. As for flame detection,
considering the high accuracy of infrared cameras in detecting object temperatures, it
integrates the results of infrared cameras and AI algorithms on the basis of visible light
cameras. By fusing detection data in two ways and calibrating each of them, the overall
accuracy of fire detection is improved, as shown in Figure 5b.
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3. Results
3.1. Datasets

This algorithm uses a proprietary training set consisting of 210,000 images, which in-
cludes: 55,000 images for abnormal parking detection, 50,000 images for wrong-way driving
detection, 50,000 images for pedestrian detection, and 55,000 images for flame detection.

To validate the experiment’s reliability, the intelligent tunnel robot’s mobile state
algorithm underwent testing in two environments: simulated tunnels and mobile video
capture. With a priority on replicating real tunnel conditions, the majority of tests were
conducted in the simulated tunnel setup, with each event class-tested 80 times. In contrast,
mobile video testing was performed 20 times per event class. The test event pictures
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are shown in Figure 6a; the simulated environment and real environment are shown in
Figure 6b.
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In the paper, the simulation of the tunnel scenario is primarily achieved by deploying
a tunnel robot to patrol along a track indoors at the same height and angle, simulating
the moving video angle of the robot in the tunnel. At the same time, by simulating the
occurrence of events such as reverse wrong-way driving, abnormal parking, flames, and
pedestrians, the real traffic events in the tunnel are simulated.

3.2. Ablation Study

This paper conducts ablation studies on YOLOv9, YOLOv9+SORT, YOLOv9+DeepSORT,
and YOLOv9+DeepSORT+TSM. The ablation study comprises the following key points:

A preliminary evaluation of the YOLO algorithm suite was performed, encompassing
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, YOLOv8, and YOLOv9, prior to the com-
mencement of ablation studies on the integrated algorithmic framework.
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In the course of the ablation study, a module incorporating logical rules for event
judgment was added to the YOLOv9+DeepSORT+TSM configuration.

The experimental design involved segmenting the testing area based on distance,
with multiple independent sampling tests conducted within each segment to ensure the
reliability of the findings; as depicted in Figure 7, the test area is divided into three effective
regions: the proximal region (T1), the middle region (T2–T4), and the distal region (T5).
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The evaluation criteria for the experimental outcomes are delineated by the following
metrics: Accuracy, Precision, Recall, MAP (Mean Average Precision), and FPS (Frames Per
Second). As shown in Equations (2)–(4) and (6).

For a given sample, there are four possible outcomes of classification predictions:
True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN). By
aggregating these outcomes across all test samples, one can derive evaluation metrics such
as Accuracy, Precision, and Recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP = ∑N
n=1 Pn·ωn (5)

In the formula, Pn is the precision at the n-th recall level, ωn is the weight correspond-
ing to the recall level (usually the recall rate itself), and N is the number of recall levels.
In the formula, N represents the total number of classes, and APi denotes the Average
Precision for the i-th class.

MAP =
1
N ∑N

i=1 APi (6)

3.3. Results Analysis

This article compares the performance of YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x,
YOLOv8, and YOLOv9. The outcomes of this comparison are detailed in Table 1 below.
Based on Table 1, the YOLOv5s, YOLOv5l, and YOLOv5m algorithms exhibit higher
computational efficiency compared to YOLOv8 and YOLOv9. In terms of Recall, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv8 slightly outperform YOLOv9. However, YOLOv9
surpasses other YOLO algorithms in both MAP and Precision. Considering the high
complexity of the tunnel inspection scenario and the limited computing power of edge
devices, this study selects YOLOv9 for object detection.
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Table 1. Comparison table of YOLO algorithm.

Model
Name Epoch/Iteration Batch Size MAP

Processing
Frame

Rate (fps)
Precision Recall

YOLOv5s 300 epoch 512 57.1 142 84.77% 76.44%
YOLOv5m 300 epoch 512 58.7 105 85.71% 75.98%
YOLOv5l 300 epoch 512 61.6 68 85.93% 77.29%
YOLOv5x 300 epoch 512 61.7 55 89.17% 77.54%
YOLOv8 300 epoch 512 61.9 45 89.23% 77.32%
YOLOv9 300 epoch 512 62.1 60 90.08% 76.59%

Based on the results of the ablation study in Table 2, the YOLOv9+DeepSORT+TSM
algorithm proposed in this paper achieves higher Accuracy, Precision, and MAP, outper-
forming YOLOv9, YOLOv9+SORT, and YOLOv9+DeepSORT. Specifically, the Accuracy is
3.5% higher than the baseline algorithm YOLOv9, the Precision is 1.75% higher, and the
MAP is 6.75% higher. However, in terms of Recall and FPS, YOLOv9+DeepSORT+TSM
is slightly inferior to the baseline algorithm, with a 4% lower Recall and 4.75 frames per
second (FPS) less, which is not significantly noticeable in practical applications.

Table 2. The ablation study results.

Algorithms Traffic Events Accuracy Precision Recall MAP FPS

YOLOv9

Abnormal
parking 0.92 0.90 0.82 0.66 66

Pedestrians 0.92 0.88 0.80 0.65 64
Wrong-way

driving 0.85 0.92 0.84 0.58 65

Flames 0.90 0.90 0.83 0.60 60
Average 0.8975 0.9000 0.8225 0.6225 64

YOLOv9+SORT

Abnormal
parking 0.89 0.92 0.86 0.68 66

Pedestrians 0.90 0.87 0.74 0.60 64
Wrong-way

driving 0.84 0.85 0.84 0.64 58

Flames 0.88 0.88 0.72 0.60 58
Average 0.8775 0.8800 0.7900 0.6300 62

YOLOv9+DeepSORT

Abnormal
parking 0.92 0.90 0.80 0.70 65

Pedestrians 0.93 0.94 0.78 0.66 60
Wrong-way

driving 0.94 0.92 0.82 0.68 55

Flames 0.90 0.90 0.82 0.69 58
Average 0.9225 0.9150 0.8050 0.6825 60

YOLOv9+DeepSORT+TSM

Abnormal
parking 0.94 0.92 0.85 0.72 60

Pedestrians 0.95 0.94 0.76 0.70 58
Wrong-way

driving 0.92 0.90 0.78 0.66 60

Flames 0.92 0.91 0.74 0.68 58
Average 0.9325 0.9175 0.7825 0.6900 59

The experimental results are analyzed and displayed through bar charts and line
charts. As shown in Figure 8a, it can be observed that the recognition effect achieved
by integrating object recognition algorithms with multiple object tracking algorithms
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is superior to that obtained by using only object recognition algorithms. Furthermore,
the addition of a Time Shift Module (TSM) to the fusion algorithm further enhances the
recognition effect compared to the simple integration of object recognition and multiple
object tracking algorithms. In Figure 8b, it is evident that all four algorithm structures
based on YOLOv9 achieved an Accuracy of 90% or higher, indicating that the YOLOv9
algorithm has demonstrated applicable performance in the experiments. Additionally, with
the addition of fusion algorithm modules, there is a slight decrease in frames per second
(FPS). However, the YOLOv9+DeepSORT+TSM shows a negligible decrease in processing
speed compared to YOLOv9+DeepSORT, suggesting that the incorporation of the TSM
module has a minimal impact on computational power.
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Figure 9 demonstrates the event recognition effects of the fusion algorithm YOLO9+
DeepSORT+TSM. Specifically, Figure 9a presents a captured image of a vehicle driving in
the opposite direction in a tunnel, Figure 9b presents an event recognition image of a vehicle
abnormally parked in the tunnel, Figure 9c shows a captured image of a pedestrian intrusion
event in the tunnel, and Figure 9d displays the recognition effect image of a simulated fire
event in the tunnel (using a brazier inside a vehicle to mimic the fire incident).
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4. Conclusions

This research paper aims to meet the demands of daily inspection, emergency handling,
and intelligent operation by focusing on event detection in the mobile state. Specifically, it
focuses on event detection based on intelligent tunnel robots in smart tunnels operating in
a mobile state. The core contributions and conclusions of this study are as follows:

Design an event detection algorithm in a moving state. To effectively detect events in
the dynamic state of an intelligent tunnel robot, this paper utilizes YOLOv9 for object detec-
tion and identification within tunnels. Through comprehensive improvements in detection
speed and recognition accuracy, real-time and accurate detection of tunnel traffic events is
achieved. The DeepSORT algorithm is employed to detect image depth features within a
specific frame range, while leveraging the ReID domain model for feature extraction. This
helps reduce target ID jumps and enhance target matching accuracy. Time Shift Module
(TSM) is utilized to model temporal information from video frame features, capturing time
series characteristics and enhancing the algorithm’s ability to detect time-related features.

Redesign of event analysis rules, such as abnormal parking in mobile device states.
By employing the real-time position of camera motion and pixel coordinates, the position
coordinates of events in different video frame states are calibrated and derived. Based on
the distance in the position of continuous N-frame pictures over a period of time, calcu-
lations determine whether the vehicle is moving or stationary. If the vehicle’s coordinate
position does not change within the detection frame and time frame, it is considered
abnormal parking.

The training and testing of algorithms for mobile inspection equipment provide a
significant reference value for practical applications. The research constructs tracks for
tunnel robots in both indoor simulated and real tunnel environments, and the appropriate
AI edge computing equipment for the tunnel robot was selected, thereby enabling the
inspection robots to detect four types of events—wrong-way driving, abnormal parking,
pedestrians, and flames, while the inspection robot is in motion. The research holds
significant practical implications for mobile inspection within actual tunnel environments.
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Furthermore, the algorithm could be considered for application in intelligent driving
vehicles, thereby enhancing the perception of traffic events in tunnels and along the entire
road section, effectively improving the level of road safety.

Although the proposed improved method for event detection algorithms in the mobile
detection state based on intelligent tunnel robots demonstrates superior performance in
recognizing mobile device states, there remains scope for further enhancement. Future
studies can explore the implementation of transformer algorithms in the moving state,
optimize data acquisition and algorithm training based on actual tunnel scene events,
and further improve the real-time accuracy of event detection. These advancements will
contribute to enhanced intelligent operation and traffic safety management of key road
sections such as tunnels, thereby elevating the construction and operational standards of
smart tunnels.
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