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Abstract: This paper presents a comparative study on license plate detection and recognition al-
gorithms in unconstrained environments, which include varying illuminations, nonstandard plate
templates, and different English language fonts. A prime objective of this study is to assess how
well these models handle such challenges. These problems are common in developing countries
like Pakistan where diverse license plates, styles, and abrupt changes in illuminations make license
plates detection and recognition a challenging task. To analyze the license plate detection problem
Faster-RCNN and end-to-end (E2E) methods are implemented. For the license plate recognition task,
deep neural network and the CA-CenterNet-based methods are compared. Detailed simulations were
performed on authors’ own collected dataset of Pakistani license plates, which contains substantially
different multi-styled license plates. Our study concludes that, for the task of license plate detection,
Faster-RCNN yields a detection accuracy of 98.35%, while the E2E method delivers 98.48% accuracy.
Both detection algorithms yielded a mean detection accuracy of 98.41%. For license plate recognition
task, the DNN-based method yielded a recognition accuracy of 98.90%, while the CA-CenterNet-
based method delivered a high accuracy of 98.96%. In addition, a detailed computational complexity
comparison on various image resolutions revealed that E2E and the CA-CenterNet are more efficient
than their counterparts during detection and recognition tasks, respectively.

Keywords: big data; deep learning; object detection; object recognition

1. Introduction

Object detection and recognition is one of the important and challenging tasks in
computer vision and understanding of the image [1]. These fields have drawn signifi-
cant interest from researchers due to their diverse applications, which include parking
management, human–computer interaction, vehicle tracking, autonomous driving, and
industrial automation [2]. License plate (LP) detection and recognition is a more complex
than a simple image classification task due to the fact that many times, such images contain
multiple categories of these objects [3]. In real-world environments, the LPs can vary
in size, shape, color, and condition and, therefore, make detection and recognition tasks
time-consuming and intensive. High-speed vehicles, nonuniform plates, an environmental
factors—for instance, smoke—and varying illumination considerably affect the LP detection
and recognition. In countries like Pakistan, a huge percentage of on-road vehicles contain
nonuniform LPs with varying sizes, colors, and fonts. Figure 1 shows a few such samples
of the LPs that have different styles with different appearances and diverse language styles.
The LP detection and recognition of such nonstandard LPs become more challenging due to
various factors, such as shadows on the LP area, fancy LPs with embossed characters, and
broken or mud-contaminated plates. In recent times, numerous machine learning-based LP
detection and recognition algorithms have appeared in the literature [4].
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Figure 1. Nonuniform LP samples.

Many of these methods use conventional machine learning, CNNs, and DNNs to
effectively detect and recognize various object styles, for instance, vehicles and LPs with
remarkable accuracy [5]. In addition to the above-mentioned issues, there are several other
problems that significantly challenge the detection and recognition accuracy of state-of-
the-art algorithms, for instance, low resolution, image quality, and complex background.
Moreover, LP detection and recognition are an integral part of ITS and smart city planning.
Deploying an accurate and real-time LP detection and recognition method is very crucial as
it will add an extra layer to security and surveillance purposes by detecting and identifying
LPs in real time. It will also assist in maintaining a proper traffic flow and identifying
suspicious vehicles for law enforcement agencies to take timely action. An accurate LP
detection and recognition system is also handy for public safety if properly used at various
public gathering places, such as parking lots, borders, shopping malls, and toll plazas.

Existing LP detection and recognition methods use both traditional and deep learning-
based approaches. The traditional LP handling methods depend on limited features and
yield non-satisfactory performance for contour, color, and edge variations. On the other
hand, deep learning-based methods learn a large number of features and have produced
encouraging results. Therefore, inspired by the recent success in deep learning-based
methods, our main contributions outlined in this manuscript are highlighted below.

• We present a comparative study of four algorithms, out of which two algorithms
investigate LP detection, while the other two techniques analyze LP recognition
performance in unconstrained traffic environments.

• We report experiments on a challenging Pakistani traffic dataset with nonuniform ap-
pearances. Compared algorithms are applied to a variety of different vehicles that have
significant variations in the appearance of their LPs. In addition, the computational
complexity of these methods has also been investigated on varying image resolutions,
from 1550 × 900 and down to 30 × 20 pixels for vehicles and plates, respectively.

• Our LP detection and recognition study is beneficial for beginners and researchers
who aim to conduct research in machine learning to achieve various object detection
and recognition tasks for their desired applications.

The rest of this paper is organized as follows: Section 2 presents a literature review of
various LP detection and recognition methods. Section 3 briefly describes the four methods
that are investigated in this study. Section 4 presents detailed simulation results along with
a discussion. Finally, conclusions and future works are listed in Section 5. For the ease of
readers’ understanding, Table 1 lists the nomenclature that is used in this manuscript.
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Table 1. Nomenclature.

Acronym Meaning

ALPR Automatic License Plate Recognition
ALPDR Auto License Plate Detection and Recognition

CNN Convolutional Neural Networks
CRNet Character Recognition Network
(L c) Cross-Entropy Loss
DL Deep Learning

DNN Deep Neural Networks
DOE Design Of Experiment

DPOD-NET Deformation Planar Object Detection Network
EGSA Edge-Guided Sparse Attention

ITS Intelligent Transportation Systems
LPs License Plates
LPD License Plate Detection
LPR License Plate Recognition

LSV-LP Large-Scale Video-based License Plate
LSTM Long-Short-Term-Memory
OCR Optical Character Recognition
RNN Recurrent Neural Network
SAC Sparse Attention Component
ViBe Visual Background Extractor

YOLO You Only Look Once

2. Related Work

This section reviews current techniques to detect and recognize LPs. Both LP detection
and recognition are an integral part of an ITS. Normally, LP detection is followed by the
recognition module. Therefore, this section describes the recent methods to achieve both
LP detection and recognition tasks.

In [6], the proposed ALPR system uses CNNs, along with preprocessing and image
processing morphological operations to achieve LP detection and recognition in various
scenarios. It efficiently recognizes multi-line and multi-font license plates and yields good
performance in the night mode by achieving a 98.13% accuracy. In [7], the authors present
the VSNet-based ALPR method, which uses a resampling-based cascaded framework
integrated with a plain CNN that obtains improved LP detection and recognition accuracy.
The approach influences vertex information for better recognition and utilizes a weight-
sharing classifier to address data constraints. The VSNet combines two CNNs, which are
the VertexNet for detection and the SCR-Net for recognition using horizontal encoding
and vertex-estimation techniques. In [8], a multi-style license plate recognition method is
proposed by applying a feature pyramid network (FPN) with instance segmentation. This
method is specifically proposed for the Hong Kong Bridge where vehicles have substantial
variations in LP styles. This method simultaneously locates and classifies LP characters.
The experimental results demonstrate a 98.57% recognition accuracy on multi-style license
plates. To achieve robust ALPR, in [9], a novel concept of partial character reconstruction is
discussed. This method is developed based on the characteristics of the stroke width in the
Laplacian and gradient domain in a novel way. Meanwhile, the angular information of a
character is analyzed by applying the PCA. Ultimately, this method influences the stroke
width in the Laplacian and gradients to achieve final LP segmentation. In [10], the proposed
ALPDR method tackles layout dependence and reduction in accuracy under unpredictable
environmental conditions. This method uses lightweight, anchor-free detection networks
that are encouraged by CenterNet and attention-based recognition networks with residual
deformable blocks. Experiments on different datasets explain that the method outperforms
conventional techniques and proves efficient in different scenarios.

In [11], the developed method discusses ALPDR of various vehicles and cars in
natural scene images by using the DNN, which locates and recognizes various LPs in
a single forward pass and is trained end to end. This method solves LP detection and
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recognition tasks by a single network and avoids intermediate error accumulation. This
technique reduces error and boosts processing. Assessments on three different datasets
justify the efficiency of the proposed method. In [12], the proposed ALPR method uses
adjustable parameters for LP detection, character segmentation, and recognition. A major
development in this method is edge clustering for accurate plate detection, the utilization
of the maximally stable extreme region (MSER) detector to segment character, and an
improved bilayer classifier for improved recognition.

In [13], the proposed ALPR method utilizes extremal regions (ERs) along with hybrid
discriminative restricted Boltzmann machines (HDRBMs) to achieve robust LP recogni-
tion. The technique involves preliminary LP detection by utilizing top-hat transformation,
vertical edge detection, and morphological operations. Initially, character-specific ERs are
extracted, followed by character segmentation and fine-tuning of the LP detection method.
A preprocessed HDRBM classifier is used for character recognition. The method shows
durability to changes in illumination and weather conditions. In [14], the proposed model
combines a fully convolutional network, which extracts hierarchical features, handles pixel-
level classification, and detects multi-scale LP objects in an intelligent manner. Moreover,
the AdaBoost cascade classifier is used for character segmentation. This work also ad-
dresses character recognition by utilizing an extensive learning system that is stacked with
several auto-encoders for letters and digits. In [15], a two-stage ALPDR is proposed, which
applies an improved YOLO-v3 tiny for LP detection. This technique also uses a lightweight
MRNet for character recognition and data augmentation and RNNs that improve LP de-
tection and recognition speed. The authors report a high LP detection and recognition
accuracy, up to 99.8%, on the CCPD dataset. In [16], the proposed technique uses CNN and
kernel-based ELM (KELM) to extract and recognize Chinese LP characters. This approach
is also comparable to the traditional CNNs with Softmax and provides competitive results
with quicker training times. In [17], the proposed method uses generative adversarial
networks (GANs) for super-resolution in combination with the YOLO for LP detection
and recognition. This method is extensively tested on a 60 × 60-pixel-resolution LP and
achieves higher accuracy than a few other methods.

In [18], the CNN- and the MD-YOLO-based architecture is developed, which achieves
real-time LP detection and handles rotated LPs. The method also addresses LP angle
prediction and illustrates excellent accuracy on low-power devices. In [19], a robust edge-
guided sparse attention (EGSA) mechanism is developed for real-time LP detection. The
EGSA comprises two components: the edge-guided component (EGC), which enhances
the LP edge, and the sparse attention component (SAC), which integrates the relevant
features to portray long-range dependencies. Assessments on different datasets show
that this method achieves higher precision than several compared methods. In [20], a
new end-to-end algorithm is developed that uses a shared encoder to achieve robust LP
detection in unconstrained traffic scenes. This work also utilizes regression networks to
further refine localization. Experiments conducted on the LPST-110K dataset reveal the
superiority of the developed method. In [21], the authors present a detailed comparative
analysis of conventional and state-of-the-art shadow detection and removal algorithms.
Moreover, a hybrid approach is developed in this work that utilizes a combination of several
conventional and deep learning methods for shadow detection and removal for accurate
vehicle localization. In [22], the authors construct a dataset named the LSV-LP, which has
1402 videos with 401,347 frames and 364,607 annotated LPs. The researchers have also
designed a novel framework, which they refer to as the MFLPR-Net, that integrates features
from adjacent and examined frames.

In [23], an ALPRNet for nonuniform LPs is proposed, which employs two fully convo-
lutional one-stage object detectors. An assembly module is also deployed in the later stages.
By focusing on bounding boxes for LPs, it avoids the RNN branches of the OCR in existing
recognition techniques. In [24], the authors focus on optimizing the DOE for training
parameters in transferring the YOLOv3 model specifically for license plate detection. This
approach reduces DOE run requirements while providing insights into YOLOv3 parameter
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tuning, beyond simply enhancing training conditions. The results demonstrate that DOE
improves the YOLOv3 model for LP detection. In [25], the authors propose an ALPR
system for tilted and oblique LPs. This work introduces IWPOD-Net, which detects LP
corners under nonuniform conditions and allows for warping to a front-parallel view to
reduce perspective distortions. The results show that the proposed approach achieves top
scores on several datasets.

In [26], the proposed technique uses the LPDNet and the CRNet to achieve real-
time LP detection and recognition. In this work, the LPDNet utilizes an anchor-free
approach to detect both the bounding box and the four corners of LPs in unconstrained
environments. The Gaussian kernel and centrality loss enables the LPDNet to improve
performance in complex environments, while the CRNet, which is a fully convolutional
network, extracts features and combines them with the LP character classification module
to achieve high accuracy in complex environments. In [27], the proposed ALPR method
uses an enhanced visual background extractor (ViBe) algorithm along with fuzzy matching.
Experiments conducted on the authors’ own collected dataset report 98.3% and 97.8% LP
detection and recognition accuracy, respectively. In [28], a detailed review of recent trends
in LP detection, segmentation, and recognition is discussed, with special emphasis on
the DNN-based approaches, particularly the CNN, the RNN, and the LSTM for object
detection and recognition. In [29], a novel deformation planar object (DPOD-NET) method
is proposed that corrects deformed LPs by detecting corner points. This method also
reduces perspective distortions by adjusting the LP visibility to a frontal view. It also
proposes the LPWing loss function, which, unlike the standard L1 loss, is differentiable
at zero and has a larger gradient for smaller errors. Moreover, this work introduces a
stochastic multi-scale image detail-boosting strategy that enhances the dataset diversity.
In [30], the proposed LP detection method uses the aspect ratio and the GrabCut algorithm.
To further reduce the LP area noise, this method uses the Wiener filter combined with the
Bernsen algorithm. Experiments conducted on the CCPD dataset indicate that this method
yields a mean LP detection accuracy of 99.34%. In [31], an end-to-end CLPD method is
proposed, which separates the LP foregrounds and backgrounds. The proposed CLPD
robustly squeezes feature clusters and extracts useful discriminative features. The authors
report that this method achieves much higher LP detection accuracy than several detectors
on three different datasets.

It is important to note that the literature described above evaluates machine learning
algorithms on different vehicles and license plate datasets. Table 2 provides a summary
of some recent methods along with the vehicles/LP datasets used therein. Readers are
referred to the description of these papers to further investigate the nature and collection
of these datasets.

The above literature depicts the importance of LP detection and recognition in various
scenarios. In developing countries like Pakistan, there are several challenges before an LP
detection and recognition algorithm can be used, for instance, a lack of federal standard-
ization of LPs in the whole country. As shown in the last column in Figure 1, there are
province- and capital-based LP standard templates, which are often ignored. Similarly, due
to fancy LPs used as shown in the 3rd column in Figure 1, the same color of the vehicle
and that of LP and its characters also poses a significant challenge to any detection and
recognition algorithm. Similarly, occlusion, tilted plates, and low-resolution LP characters,
as shown in the 4th column in Figure 1, are also a challenge for any algorithm. Moreover, as
shown in the 2nd last column in Table 2, there have been several datasets gathered recently
to address these issues. Most of these datasets are also publicly available. Our study
indicates that most of these datasets have been captured by a single source in which most
of the images have been acquired by a single camera. Owing to these serious challenges,
this paper investigates the detection and recognition accuracy of four algorithms. Out of
them, two algorithms focus on LP detection, while the other two investigate recognition.
These algorithms have been investigated on the authors’ own collected dataset. To further
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create diversity in the dataset, the images collected have been acquired through several
cameras. Below, we briefly discuss the methods that are compared in this study.

Table 2. Summary of a few recent methods.

Ref Technique Year Merits Datasets Used Investigations

[6] CNN
architecture 2021 Real-time operation

Simple architecture

• The authors’
self-collected dataset

• Multi-line and multi-font
LP detection

• Applications to night
vision

[7] CNN+Cascaded 2022 Real-time and accurate
identification

• AOLP
• CCPD
• CLPD
• PKU

• Standard datasets
• Varying LP appearances
• Different day times

[8] RPN+Faster-
RCNN 2021 Slightly over 98.50%

accuracy
• PKU • China, Hong Kong, and

Macao multi-style LPs

[10]

CenterNet
and attention-

based
networks

2022

Simple and
lightweight backbone

network to extract
features

• AOLP
• CCPD
• VBLPD

• Standard datasets
• Varying LP appearances

[15] Yolov3-tiny 2023 Processes 751 FPS • PKU, MPDR, CCPD,
CLPD

• Scalable with the ability
to process vast data

[22] Large scale
video 2023 Scalable and fast • The authors’

self-collected dataset
• Video-based detection +

recognition

[24] End-to-End 2024 Contrast LP-based • ALPR, CCPD, and
UFPR

• Single category detection
tasks

3. Methodology

In this section, we will explore the LP detection and recognition methods. Our study
includes the detection and recognition performance of four algorithms. For readers’ under-
standing, we divide this section into LP detection and recognition segments with a brief
description of each algorithm therein.

3.1. LP Detection

We investigate the performance of two LP detection algorithms on challenging Pak-
istani plates. Below, we briefly describe these algorithms.

Faster-RCNN-Based LP Detection [32]: This method achieves LP detection in two
main phases, which are vehicle detection followed by LP localization. In this method,
the Faster R-CNN algorithm is fine-tuned to extract regions of interest (RoIs) from input
images to extract the region proposal network (RPN) that predicts potential vehicle regions.
The process involves applying convolutional layers to generate feature maps, which are
used to propose candidate regions. The feature map ψ is derived from the convolutional
layers, and multiple anchors are applied to ψ to predict potential vehicle regions. The
anchors are defined with various scales and aspect ratios, for example, with three scales
(1282, 2562, 5122 pixels) and three aspect ratios (1:1, 1:2, 2:1).

To refine the proposed regions, non-maximum suppression (NMS) is used. The NMS
process involves eliminating redundant proposals based on an intersection over union (IoU)
threshold. For example, an IoU threshold of IoU ≥ 0.5 ensures that overlapping regions
are reduced. Once vehicles are detected, the license plate localization module (LPLM) is
developed by the authors to locate LP position. The LPLM initially transforms the RGB
image to the hue saturation value (HSV) color space and uses the HSV notations as shown
in Equations (1)–(3).

H =


60 × G−B

max−min + 360 i f max = R and G ≥ B
60 × B−R

max−min + 120 i f max = G
60 × R−G

max−min + 240 i f max = B and G < B
(1)
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S =

{
0, i f max = 0

max−min
max , otherwise

(2)

V = max (3)

After the RGB to HSV transformation, the next step is a morphological operation in
which LP blobs are enhanced for this. Dilation is performed, followed by closing. Finally,
the spatial area (SA) and the aspect ratio (AR) of the connected regions (CRs) are analyzed
to determine if they match the expected dimensions of a license plate. The spatial area
is computed as the number of pixels within a bounding box, and the aspect ratio is the
height-to-width ratio. By using these techniques, the method effectively localizes the license
plates within vehicle images, ensuring reliable and accurate detection. This method was
developed by one of the authors of this manuscript and was previously tested on the
standard PKU dataset. To learn more about this technique, please see [32] for full details.

End-to-End (E2E)-Based LP Detection [33]: This is a novel, end-to-end, and anchor-
free network that simultaneously addresses the LP location and recognition. This approach
introduces a lightweight ResNet-18 backbone to extract features, along with channel reduc-
tion and feature pyramid networks (FPNs). The FPN combines feature maps from various
levels to create a comprehensive semantic visualization. The network architecture consists
of a location branch that employs a detection head for bounding box and corner regression.
The bounding box is represented by the center point ( xc, yc) and dimensions w and h, while
corners are regressed relative to this center. This setup avoids the use of the NMS by directly
predicting the coordinates of the bounding box and corners. Specifically, the bounding
box and corners are predicted through heatmaps, with the corners’ predictions providing
precise plate localization. The RoI align layer is used to crop and resize feature maps based
on bounding boxes, ensuring accurate feature extraction despite perspective distortions.
The rectification process uses projective transformation to map the distorted license plate
features into a rectified view, achieved by the transformation matrix as shown by (4). x́

ý
1

 =

a1 a2 b1
a3 a4 b2
c1 c2 1

 x
y
1

 (4)

The recognition branch employs a CNN network with 5 convolutional layers and 2
max-pooling layers and applies the connectionist temporal classification (CTC) using (5).

Lr = − ∑
(x,z)∈S

lnP(z|x) (5)

where P(z|x) is the probability of the output sequence z given the input x. The decoding
process uses beam search to balance search time and accuracy. For optimization, the
location loss Ld and recognition loss Lr are combined, with a weight factor k set to 10. The
location loss consists of several components, including focal losses for center and corner
predictions, and L1 losses for bounding box dimensions and corner offsets. The Gaussian
heatmaps for labeling are computed as:

Y = exp(− (x − xc)
2 + (y − yc)

2

2r2
c

) (6)

where rc is the standard deviation, proportional to the size of the license plate. Overall, the
method presents a real-time, end-to-end solution for LP detection that operates effectively
in unconstrained scenarios, combining accurate localization with efficient recognition.

We have selected this method in our comparative study because our literature review
indicates that it has a simpler and more effective pipeline compared with the two-step LP
detection and recognition solutions. Moreover, in this algorithm, an anchor-free method
is designed to efficiently predict both bounding boxes, which is handy for unconstrained
environments. Furthermore, this method is an efficient algorithm that works in real time
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and uses a lightweight backbone that enhances its efficiency. We also found that this method
is more efficient compared with several RNN-based methods. For the implementation task,
we followed the same settings as described in [33]. Readers are referred to [33] for complete
details of this LP detection method.

3.2. LP Recognition

We investigate the performance of two LP recognition algorithms on challenging
Pakistani plates. Below, we briefly describe these algorithms.

DNN-Based LP Recognition [34]: This method achieves LP recognition in three key
distinct steps, which are vehicle detection and LP localization followed by recognition.
The vehicle detection module utilizes a fine-tuned Faster R-CNN to accurately identify
vehicles within an image. The detected vehicle image is processed by the LPLM to detect
the LP within the vehicle’s bounding box by converting the RGB image to HSV components.
Meanwhile, several thresholds are applied to each HSV component to segment the colors
relevant to the LP area. Finally, morphological operations, including dilation (D) and
closing (E), are applied using Equations (7) and (8), which enhances the LP blobs.

D(x, y) = max
(i,j)∈K

{I(x + i, y + j)} (7)

C(x, y) = D(E(x, y )) (8)

where K is the kernel and I(x, y) is the input image pixel. This step smooths the contours
and fills holes in the segmented license plate. The LP recognition module focuses on
recognizing characters using a DNN. The LP region is extracted and preprocessed by
resizing the LP image to a fixed size. The DNN then predicts the characters present on the
LP features. Finally, post-processing that includes error correction is applied to refine the
LP area. This method was developed by one of the authors of this manuscript and was
previously tested on the standard PKU dataset and AOLP, CCPD, and the PKU datasets.
Complete details of this LP recognition method can be found in [34].

CA-CenterNet-Based LP Recognition [35]: This method uses a corner-aware Center-
Net (CA-CenterNet) architecture by resizing input image to 512 × 512 pixels propagated
through a ResNet50 backbone. The network outputs three components: a heatmap for
detecting the center of the license plate, an offset map for adjusting the center points due to
downscaling, and four vectors pointing to the corners of the license plate. The heatmap,
represented as P, is generated using a 2D Gaussian map (G m) using Equation (9).

Gm = exp (−
(p x − cx)

2 + (p y − cy

)2

σ2 ) (9)

where σ is the standard deviation related to the LP size. The focal loss (L h) is employed
to handle class imbalance, defined in (10). For offset correction, the smooth L0 and L1 are
used as defined by (11) and (12).

Lh = − 1
N ∑

i

{
(1 − p̂ i)

αlog( p̂i), pi = 1
(1 − pi)

β ( p̂ i)
αlog( p̂i), otherwise

(10)

Lo = − 1
N

N

∑
k=1

SmoothL1(ok − ôk) (11)

Smooth L1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

(12)

In the LP character recognition module, the detected LP image is resized to 128 × 32
pixels and processed through a series of convolutional blocks. A segmentation-free model



Big Data Cogn. Comput. 2024, 8, 155 9 of 20

with global average pooling and eight fully connected branches predicts each character’s
position on the LP. The categorical cross-entropy loss (L c) is applied using (13).

Lc = − 1
n

n

∑
i=1

8

∑
j=1

m

∑
k=1

yijklog(ŷijk) (13)

where yijk and ŷijk are the ground truth and predicted labels, respectively. The system
supports multiple types of license plates with up to eight characters and is designed to work
with varying LP formats, including those for vehicles using new energy. We selected this
algorithm in our comparative study because of its robustness to accurately locate the multi-
styled LPs and its suitability for unconstrained environments. Moreover, this is a simple
segmentation-free LP recognition network that works in real time. For the implementation
task, we followed the same settings as described in [35]. More details of this LP recognition
method can be found at [35]. Moreover, in [36], researchers explore several deep learning
techniques, such as MobileNet-V2 and YOLOx, for vehicle identification and YOLOv4-tiny,
Paddle OCR, and SVTR-tiny for LP number recognition. Their developed system was
rigorously tested at the Firat University’s entrance with a thousand images captured under
various conditions, for instance, fog, rain, and low light. Readers’ are encouraged to the
aforementioned manuscript for complete theoretical and implementation details.

4. Simulation Results

This section presents the experimental setup, a brief description of the used datasets,
LP detection and recognition results, a discussion, and observations in detail. Simulations
were executed in Python 3.11 with an HP Omen Intel, California, core-i7 14th genera-
tion machine with 32 GB of RAM. The dataset was divided into 80:20 for training and
testing, respectively.

4.1. Dataset Description

We performed experiments on our collected Pakistani vehicle dataset, which contained
a total of 16,521 images of multiple objects, such as cars, motorcycles, and pedestrians.
Example images of the few images are shown in Figure 2.
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The complete details of all collected objects in this dataset are shown in Table 3. In
our dataset, we consider the image to be high-density whenever it contains more than two
objects per image. The dataset, along with all details, will be made publicly available at
(http://research.cuiatd.edu.pk/admin/login.aspx, accessed on 6 September 2024). Our
collected dataset has a total of 16,521 objects that include a variety of objects, which range
from cars and vehicles to LTVs and motorcycles with visible LPs. For the low-density
category, there are a total of 8457 images of cars, vehicles, and LTVs whose resolution
varies from 85 × 50 to 66 × 36. For motorcycles and persons, image resolution varies from
80 × 50~60 × 40 to 50 × 80~20 × 40 pixels, respectively. For the high-density category,
there are a total of 655 images of cars, vehicles, and LTV whose resolution varies from
80 × 50 to 66 × 36; whereas for motorcycles and person, image resolution varies from
60 × 50~60 × 40 to 40 × 60~20 × 40 pixels, respectively. As shown in Figure 2, most
of these images have been captured in open and outdoor environments with different
cameras. A few of those images have also been acquired through smartphone cameras. Our
collected dataset has widely varying and complex backgrounds with randomly distributed
visible objects. Several of the images have been captured on main highways with a few
obstacles, such as sign boards and trees. Similarly, several images have been captured
from unorganized Pakistani parking lots of malls and shops. In such scenarios, vehicles
are parked in a random manner and, often, in open environments. All such factors make
our collected dataset entirely different from standard datasets in which a standard and
a high-resolution camera captures the images of vehicles and other objects. An image
labeling tool (https://github.com/heartexlabs/labelImg, accessed on 6 September 2024)
was used to label and annotate the images.

Table 3. Dataset statistics.

Objects Low Density Resolution High Density Resolution

Classes

Cars
8457

88 × 57~66 × 36
655

80 × 50~66 × 36
Vehicles 85 × 50~66 × 36 75 × 50~66 × 36

LTVs 85 × 50~66 × 36 45 × 50~66 × 36
Motorcycles 4136 80 × 50~60 × 40 136 60 × 50~60 × 40

Persons 3025 50 × 80~20 × 40 112 40 × 60~20 × 40

Total 15,618 903

4.2. Evaluation Measures and Settings

Normally, the LP detection and recognition are analyzed through false positives (fp)
and miss rates. Few researchers prefer to reduce the miss rate at the cost of more false
positives, which are discarded in later stages. Similarly, the LP recognition performance is
also measured by the false acceptance rate and the false rejection rate. This paper reports
LP detection and recognition accuracy comparison, as defined by (14).

Accuracy =
tp + tn

tp + f p + tn + f n
(14)

where tp, tn, and f n denote the true positive/negative and false negative, respectively.
Table 4 lists the experimental settings for the LP detection and recognition algorithms.

In the next section, we discuss in detail the performance of implemented methods
for LP detection and recognition. Moreover, a detailed discussion of our findings is also
presented. For a fair comparison, we also compare the computational complexity of the
four compared methods.

http://research.cuiatd.edu.pk/admin/login.aspx
https://github.com/heartexlabs/labelImg
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Table 4. Simulation environment settings.

Parameter Simulation Environment

Test image Varied from 1550 × 900 to 600 × 400 pixels

Optimizer SGDM

Learning rate 10−4

Validation frequency 50

Epochs 50

Batch size 32

L2 regularization 10−4

Gradient threshold L2 normalization

Shuffle Every epoch

Momentum 0.90

4.3. LP Detection Analysis

As described above, LP detection becomes hard for state-of-the-art algorithms in un-
constrained environments, such as nonstandard LPs, illumination variations, and varying
image resolutions. Figure 3 shows the LP detection results for the Faster-RCNN and the
E2E methods. Important observations from Figure 3 are listed below in order.
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Figure 3. LP detection, (a) Faster-RCNN, and (b) the end-to-end (E2E) method.

• Both the Faster-RCNN and E2E methods successfully detect one LP that appears in the
input image. However, as shown in the second image of the first row in Figure 3b, there
is false LP detection around the backlight of the car. Both these methods successfully
handle LP detection from the frontal to angle variation.
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• As shown in the second row in Figure 3, both the Faster-RCNN and the E2E methods
successfully detect whenever there are up to three LPs that appear in the input image.
In this case, the LP shooting angle does not affect the accuracy of these methods.

• Figure 3 also indicates that the background of either the vehicles or the LPs does not
affect the detection capabilities of these methods. Both these methods are robust to
successfully locate the blurry LP area, as shown in the first image in the second row in
Figure 3.

4.4. LP Recognition Analysis

As previously mentioned, LP recognition also presents significant challenges to state-
of-the-art algorithms, particularly in unconstrained environments. Figure 4 illustrates
some of the LP recognition results of both DNN- and CA-CenterNet-based methods. Key
observations from Figure 4 are listed below.
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• Both the DNN- and the CA-CenterNet-based methods successfully recognize a single
LP that appears in the input image. Therefore, both the DNN and the CA-CenterNet
methods successfully identified LPs on vehicles of different makes and orientations,
highlighting the system’s versatility in real-world scenarios.

• In Figure 4a, the LPs that display characters ICRC 7219 and AGC 43 were accurately
recognized in single-class LP recognition tasks by both of these methods. For multi-
class LP recognition, as shown in the second row in Figure 4a, the system effectively
handled nonstandard LP formats and additional text elements, such as the detection
of 111 on the rear window of the white car in the second to last image in Figure 4a
second row. We observed that images with embossed LP text were not recognized
by either of these methods. One such example is the last image in the second row
in Figure 4, which is the third car’s plate not processed by either the DNN or the
CenterNet methods.
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• Figure 4 also indicates that both DNN- and the CA-CenterNet-based methods are
barely affected by the LP shooting angle and perform well with multi-style and
different fonts.

4.5. Discussion

The above analysis sheds a detailed light on the performance of the detection and
recognition algorithms. However, the discussion below will give more insights into the
performance of the compared methods. Table 5 provides a summary of all detection and
recognition methods that are investigated in this study. Important observations from
Table 5 are listed below.

Table 5. LP detection and recognition summary.

Object
Type Method No. of

Objects
LP Resolution

(Pixels) Accuracy % Mean
Accuracy %

Overall Mean
Accuracy % Observations

LP
D

et
ec

ti
on

Faster-RCNN

1 66 × 36 100

98.35

98.41

Both LP detection
methods are robust.

When generally tested
in an outdoor

environment, they
yield a mean accuracy
of more than 98% for
up to 6 LPs that are

visible in an image. In
all these cases, the LP
resolution varies from

66 × 36 pixels to
30 × 20 pixels. Both
these LP algorithms

handle varying lighting
conditions along with
LP angle orientation.

2 60 × 35 100

3 56 × 35 100

4 55 × 30 100

5 40 × 25 96.10

6 30 × 20 94.00

E2E

1 66 × 36 100

98.48

2 60 × 35 100

3 56 × 35 100

4 55 × 30 98.90

5 40 × 25 96.00

6 30 × 20 96.00

LP
R

ec
og

ni
ti

on

DNN

1 66 × 36 100

98.90

98.93

When tested in open
environments, both the

DNN and the
CA-CenterNet methods

yield nearly 99%
accuracy. Up to 3 LPs,

the LP recognition
accuracy is 100%. Both

these methods
recognize the LP from

frontal to angular
orientations.

2 60 × 35 100

3 56 × 35 100

4 55 × 30 97.90

5 40 × 25 97.50

6 30 × 20 98

CA-CenterNet

1 66 × 36 100

98.96

2 60 × 35 100

3 56 × 35 100

4 55 × 30 98.40

5 40 × 25 97.70

6 30 × 20 97.68

• As shown in Table 5, when the LP resolution varies from 66 × 36 to 55 × 30 pixels,
100% LP detection accuracy is obtained for up to four LPs that appear in an image.
Especially, Faster-RCNN accurately handles the four LPs that appear in the input
image by yielding 100% detection accuracy. For low-resolution LP images that range
from 55 × 30 to 40 × 25 pixels, the DNN-based method performs better than the
Faster-RCNN by yielding up to 98.90% LP detection accuracy.

• Overall, both detection methods are robust and yield a mean LP detection accuracy
of 98.41%, with the E2E method performing slightly better than the Faster-RCNN by
yielding a mean detection accuracy of 98.48% across all image resolutions, as shown
in Table 5.

• For LP recognition and up to three LPs, both the DNN and the CA-CenterNet yield
100% accuracy for image resolution of 66 × 36 to 56 × 35 pixels. For low image
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resolution of up to 30 × 20 pixels, the CA-CenterNet performs slightly better than the
DNN-based method.

• Overall, the LP recognition pool delivers a mean accuracy of 98.93%, with both the
DNN and the CA-CenterNet methods yielding a mean accuracy of 98.90% and 98.96%,
respectively.

• Generally, both LP detection and recognition pools are robust and yield a combined
mean accuracy of 98.67%. These methods were tested in general and outdoor environ-
ments that varied from sunny days to rainy days, along with various image-capturing
timing from dawn to early sunset. Therefore, our study concludes that all four al-
gorithms that are used in the pools of LP detection and recognition are reliable as
they yield high detection and recognition accuracy. In addition, these algorithms
are also scalable as their performance does not drop when the number of LPs in the
image is increased along with the decreasing image resolutions. Furthermore, all four
methods used in the LP detection and recognition pool are consistent and yield over
98% accuracy for nonuniform and outdoor-captured LP images.

• Our study indicates that most of the LP detection and recognition systems are designed
based on vehicle detection that has the same LP standards. There are several other
methods that process multi-style LPs in different countries. Therefore, we recommend
that if an LP detection and recognition system is to be developed for unconstrained en-
vironments, the E2E method can be used to locate LPs, while the CA-CenterNet-based
method can be used for recognition purposes. If fine-tuned and used in a pipeline
for detection and recognition purposes, these methods will yield further encouraging
results. Moreover, their performance also indicates that these methods can be reliably
used in many real-time applications that require quick and accurate LP detection and
recognition. Moreover, Table 6 shows the complete breakdown of accuracies obtained
for various numbers of images that are collected in our dataset. As can be seen, for
each of the low- and high-density object collections, the compared algorithms perform
well and all instances yield over 98% detection and recognition accuracy.

Table 6. LP detection and recognition using high- and low-density datasets (NP denotes Not Processed).

Methods Low Density High Density

Objects Type Total
Objects Resolution Acc % Objects Type Total

Objects Resolution Acc %

Faster-
RCNN

Cars/Vehicles/LTVs 8457

A
s

in
di

ca
te

d
in

Ta
bl

e
3

98.70 Cars/Vehicles/LTVs 8457

A
s

in
di

ca
te

d
in

Ta
bl

e
3

98.36

Motorcycles 4136 98.00 Motorcycles 4136 98.35

Persons 3025 NP Persons 3025 NP

E2E

Cars/Vehicles/LTVs 8457 98.80 Cars/Vehicles/LTVs 8457 98.50

Motorcycles 4136 98.15 Motorcycles 4136 98.46

Persons 3025 NP Persons 3025 NP

DNN

Cars/Vehicles/LTVs 8457 99.20 Cars/Vehicles/LTVs 8457 98.90

Motorcycles 4136 98.60 Motorcycles 4136 98.90

Persons 3025 NP Persons 3025 NP

CA-
CenterNet

Cars/Vehicles/LTVs 8457 99.30 Cars/Vehicles/LTVs 8457 99

Motorcycles 4136 98.70 Motorcycles 4136 98.95

Persons 3025 NP Persons 3025 NP

4.6. Computational Complexity

We report the computational complexity in terms of the time required to yield the
output image. Figure 5 shows the times consumed by algorithms used in LP detection
and recognition pools on various image resolutions. A few important observations from
Figure 5a,b are highlighted below.
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• Figure 5a shows the detection time for five different image resolutions for both LP
detection and recognition methods. As shown in Figure 5a, the computational time for
both detection and recognition methods significantly decreases as the image resolution
is reduced. For instance, for the DNN method, the mean detection time decreases from
3.91 s at a resolution of 1550 × 900 to 1.78 s at 600 × 400. Similarly, the mean recognition
time for the E2E method drops from 3.25 s at 1550 × 900 to 1.5 s at 600 × 400-pixel
test image resolution. This indicates that lower image resolutions require substantially
less processing time, which can be crucial for real-time applications where speed
is essential.

• As shown in Figure 5a, the CA-CenterNet consistently shows the fastest processing
times across all resolutions. For instance, it takes 2.5 s to process a 1550 × 900-pixel
resolution image, while Faster-RCNN, the slowest, takes 4.8 s. Even at the lowest
resolution of 600 × 400, CA-CenterNet processes the image in 1 s compared with
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Faster-RCNN’s 2.29 s. This makes CA-CenterNet a more efficient choice for tasks
where quick detection and recognition are required, particularly at varying image
resolutions. Out of the four methods shown in Figure 5a, we observed that the E2E
method ranks second, while the DNN method ranks third, respectively, during LP
detection and recognition tasks.

• As shown in Figure 5b, the LP detection pool takes 4 s to nearly 2 s to process image
resolutions that vary from 15,550 × 900 to 600 × 400 pixels. At the same time, the
LP recognition pool consumes from 3 s to slightly over 1 s for the aforementioned
test image resolutions. This trend highlights the efficiency gained by working with
lower-resolution images, which can significantly reduce the computational burden,
particularly in scenarios where processing time is critical. The mean LP detection and
recognition time varies from 3.5 s to 1.5 s.

• The execution time statistics presented above highlight the importance of selecting
the appropriate algorithm and resolution based on the specific computational require-
ments and constraints of the task at hand. Therefore, we suggest that if real-time LP
detection is desired, then E2E LP detection method is feasible. Similarly, for the task of
real-time LP recognition, the CA-CenterNet-based method is recommended.

4.7. Further Analysis

As can be seen in Figure 6, all four methods have high mean performance, which is
generally over 92% for all four methods. In this case, the CA-CenterNet-based method has
the highest mean of 97%, followed by the E2E method, which has 96%. The mean values for
the DNN and Faster-RCNN are found to be 95.83% and 91.91%, respectively. In Figure 6,
we also observe the variability in all four methods in terms of the standard deviation
(SD). For the Faster-RCNN and the E2E method, the SD values are found to be 58.90 and
57.87, respectively. Moreover, for the DNN- and the CA-CenterNet-based methods, the
SD values are 52.77 and 50.81, respectively. A lower SD values imply that the results are
thoroughly clustered around the mean and indicate that the method performs reliably
under dataset variations. On the other hand, a high SD suggests greater variability in the
results, implying that the method’s performance varies more across different scenarios.
This inconsistency could be problematic for applications where stable and predictable
outcomes are important. Since our collected dataset is gathered through multiple sources, it
has substantial variations in illuminations. Figure 6 also indicates that. for the LP detection
scenario, the E2E method is better, while for the LP recognition, the CA-CenterNet performs
slightly better than its counterparts.
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4.8. Limitations

In a Pakistani traffic environment, we found several cases where both LP detection
and recognition pools algorithms failed to deliver reliable results. Figure 7 shows four
categories where the algorithms used in LP detection and recognition pools failed to deliver
results. Moreover, the images shown in Figure 7 are extracted from 1550 × 900-pixel input
images, which have LP resolution of at least 30 × 20 pixels and are zoomed for better
visualization. A few important observations from Figure 7 are listed below.
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• As can be seen in Figure 7a, whenever the LP was broken, the detection algorithms
failed to locate the LP area. Ultimately, when this LP was fed to the recognition pool,
it could not recognize the license number. Such broken LP cases are often found on
common highways in a typical Pakistani environment.

• We also observed that the algorithms employed in the LP detection and recognition
pools also failed to yield satisfactory results whenever the LP area was partially or
fully occluded. A severe case of LP occlusion is shown in the second image of the top
row in Figure 7b.

• Surprisingly, we also found many vehicles that contained LPs with embossed char-
acters on the LP area. A few such samples are shown in the top row in Figure 7c. In
such cases, both LP detection and recognition algorithms could not yield encourag-
ing results. The top image in Figure 7c is particularly challenging due to the visible
shadow, which ultimately induces nonuniform illumination and makes it hard for any
algorithm to detect and recognize the LP.

• In a Pakistani environment, we also observed many LPs that had faded letters and
digits, as shown in Figure 7d. In such cases, a few digits were blurred. In some cases,
the LP coating paint was eroded along with screws embedded therein. Since the
resolution of these LPs was also very low, this case also posed a significant challenge
for the detection and recognition algorithms. In some cases, we also observed the
semi-circle typed LPs on heavy transport vehicles along with colored painted bound-
aries with different fonts that highlighted the vehicle license number. On a few of
such tested images, both the LP detection and recognition algorithms struggled to
yield accurate results. These are some of the unique cases and, unfortunately, no LP
database exists to train the algorithms. Therefore, future studies could also collect
such datasets and develop more robust algorithms that can handle the aforementioned
issues. Furthermore, future studies could also focus to gather mixed-style LPs to train
and improve these compared methods along with more exploration of machine and
deep learning algorithms.
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4.9. Final Remarks

The detailed analysis presented above gives a fair insight into the performance of
LP detection and recognition algorithms investigated in this study. We also observe that
recently developed or fine-tuned deep learning algorithms achieve acceptable accuracy
on standard datasets. For instance, Faster-RCNN investigated in this study reports over
99% LP detection accuracy on the PKU dataset. Similarly, the E2E method investigates
different publicly available standard datasets, such as the CCPD, the AOLP, and the PKU,
and reports up to 99.3% LP detection accuracy. However, when trained and tested in
unconstrained environments, both these LP detection methods yield slightly over 98%
accuracy. When both the detection and recognition algorithms were tested simultaneously,
the CA-CenterNet-based method ranked 1st by yielding the recognition.

The DNN-based method, in the original study, investigated three standard datasets,
which were the PKU, the AOLP, and the CCPD, and reported up to 99.81% LP recognition
accuracy on one of the categories in the PKU dataset. The CA-CenterNet-based LP recog-
nition method investigated the CLPD, the CCPD, the AOLO, and the PKU datasets and
reported up to 99.8% LP recognition accuracy. In contrast, when tested on open door and
nonuniform LP images, the DNN- and the CA-CenterNet-based methods yielded less than
99% recognition accuracy.

The LP detection and recognition in the context of big data will involve processing
vast amount of information in the form of different-style vehicles and LPs. It is also more
desirable for organized traffic management and surveillance, along with law enforcement.
With millions of vehicles on highways, big data technologies can be helpful in collecting,
storing, and analyzing very large datasets of multi-variety LP images. Moreover, distributed
and cloud frameworks can also be used to process big and complex data from several
sources in large cities in real time. With the growing amount of data every day, there
is a huge variety of LPs, their styles, and fonts. Therefore, a universal LP detection and
recognition algorithm to tackle the aforesaid issues is yet to be developed.

During this big data era, the analysis of object detection and recognition, such as
license plates, is particularly important in several real-life applications, few of which
include automatic traffic monitoring and autonomous toll collections. It is also very
important to track criminal pursuits and keep a record of vehicle entrances and exits at
various malls and public markets. An accurate LP detection and recognition is a crucial
part in intelligent transportation systems (ITS). Therefore, a reliable system that can work in
all weather and natural conditions has great importance for road safety, monitoring, vehicle
congestion, and reducing environmental pollution. Since LP detection is achieved in prior
steps, its accurate localization is very important while developing these systems. If LPs are
misclassified during the detection phase, it will lead to serious errors in the recognition
stage. With the availability of huge training data these days, deep learning-based methods,
such as those investigated in this study, demonstrate a high efficiency compared with the
traditional methods that extract limited features manually.

5. Conclusions

In this study, we presented a comparative analysis of license plate detection and recog-
nition algorithms in unconstrained environments. To analyze the license plate detection
problem in open door environments, the performance of two algorithms was compared,
which are Faster-RCNN and the end-to-end method. Detailed experiments were conducted
on the authors’ gathered dataset, which contained multi-styled Pakistani license plates. The
study on license plate detection concludes that Faster-RCNN yields a detection accuracy
of 98.35%, while the end-to-end method delivers 98.48% correct license plate detection.
Both the detection algorithms yielded a mean detection accuracy of 98.41%. Moreover, an
investigation of license plate recognition reveals that the DNN-based method yields an
LP recognition accuracy of 98.90%, while the CA-CenterNet-based method delivers a high
accuracy of 98.96% on challenging Pakistani vehicle license plates. Both the recognition
algorithms yielded a mean accuracy of 98.93%. During the task of license plate detection,
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the end-to-end method outperforms the Faster-RCNN by consuming the least detection
time, while during the task of license plate recognition, the CA-CenterNet-based method
beats the DNN-based method by identifying the plate characters in less time.

Both the license plate detection and recognition algorithms struggled to process the
scenarios when the license plate was either broken or faced occlusion. Similarly, the cases
where embossed or faded characters were found on the plate area also posed a significant
challenge to these algorithms. Therefore, for all these cases, additional studies are required
to design a feasible license plate detection and recognition algorithm.
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