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Abstract: To address the challenge of rapid geometric model development in the digital twin indus-
try, this paper presents a comprehensive pipeline for constructing 3D models from images using
monocular vision imaging principles. Firstly, a structure-from-motion (SFM) algorithm generates a
3D point cloud from photographs. The feature detection methods scale-invariant feature transform
(SIFT), speeded-up robust features (SURF), and KAZE are compared across six datasets, with SIFT
proving the most effective (matching rate higher than 0.12). Using K-nearest-neighbor matching and
random sample consensus (RANSAC), refined feature point matching and 3D spatial representation
are achieved via antipodal geometry. Then, the Poisson surface reconstruction algorithm converts the
point cloud into a mesh model. Additionally, texture images are enhanced by leveraging a visual
geometry group (VGG) network-based deep learning approach. Content images from a dataset pro-
vide geometric contours via higher-level VGG layers, while textures from style images are extracted
using the lower-level layers. These are fused to create texture-transferred images, where the image
quality assessment (IQA) metrics SSIM and PSNR are used to evaluate texture-enhanced images.
Finally, texture mapping integrates the enhanced textures with the mesh model, improving the scene
representation with enhanced texture. The method presented in this paper surpassed a LiDAR-based
reconstruction approach by 20% in terms of point cloud density and number of model facets, while
the hardware cost was only 1% of that associated with LiDAR.

Keywords: 3D reconstruction; Poisson surface reconstruction; style transfer; deep learning; image
quality assessment; texture mapping; computer vision; computer graphics

1. Introduction

A digital twin is an accurate virtual replica of a physical asset or system, capable
of simulating and predicting various scenarios, encompassing the geometric structure,
behavior, and performance of the entity [1]. The rapid advancement of the digital twin
concept has led to its application in diverse industrial fields, such as manufacturing,
construction, and energy. A critical requirement for digital twins is accurate real-time
representation of the target entity through high-quality 3D models. However, the current
geometrical model development approaches exhibit the following limitations: the modeling
of specialized equipment is expensive, the modeling process is complex, the costs associated
with modeling are high [2], and the accuracy of the models still falls short of the required
standards [3], creating significant barriers to widespread adoption. Developing a cost-
effective and fast modeling method is essential for the progress of the digital twin industry,
facilitating broader application and yielding substantial industrial benefits.

To achieve a model development method that is low-cost and efficient for rapid de-
velopment in digital twin scenarios, while accurately preserving the geometric feature
information and texture details of the reconstructed objects and improving the display of
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textures on the model surface, a pipeline of methods is proposed in this paper that com-
bines SFM-based point cloud data acquisition, surface reconstruction, style-transfer-based
texture enhancement, and texture mapping. In Section 3, the methodology is explained.
Experimental results and discussions are given in Section 4. Finally, an analysis of the
results and future improvements are provided in Section 5.

2. Related Work
2.1. There-Dimensional Reconstruction

Current methodologies for geometric model development rely on a variety of costly
hardware to acquire point cloud data for the purpose of the three-dimensional reconstruc-
tion of objects. Point cloud data are a widely used 3D representation, typically containing
six dimensions, 3D coordinates (x, y, z), and RGB values or other information for each point,
which represent geometric relationships within complex 3D objects. The main point cloud
acquisition methods available are laser-scanner-based, time-of-flight (ToF)-camera-based,
structured-light-camera-based, stereo-vision-camera-based, and photogrammetry methods,
whose equipment is shown in Table 1.

Table 1. Comparison of point cloud data acquisition equipment 1.

Hardware Cost (GBP) Accuracy (mm) Measurement Range (m) Outdoor Work

Lidar scanner 600+ 1–3 [4] 200+ Unaffected
Structured light camera 200–4000 0.01–0.32 [5] 0.3–10 [5] Highly affected

ToF camera 400–30,000 0.5–2.2 [6] 0.5–6.0 [6] Minimally affected
Stereo vision camera 200+ 0.05–1 [7] 10–100 [7] Unaffected

Photogrammetry methods N/A 1–10 10–100 Unaffected
1 The data presented in the table without references are derived from the operational experiences of the authors.

LiDAR systems perceive depth information by emitting laser pulses and measuring
their round-trip time, while simultaneously recording the angle of the reflected light, which
relies on the speed of light and precise temporal measurements to generate high-precision
three-dimensional point clouds. Pose graph clustering [8] and NeRF [9] were introduced to
precisely map large-scale environments. The LiDAR-based method is ideal for large-scale
reconstruction due to its high efficiency, and independence from ambient light. However, it
is costly and unable to reconstruct surface color and texture, and it struggles with geometric
interference and environmental occlusion.

Depth cameras are categorized into ToF cameras, structured light cameras, and stereo
vision cameras. ToF cameras use an active emitter to project light onto a target and an
optical sensor to collect the reflected light. The 3D information is obtained by calculating
the time delay between the emission and collection of the signal. Unlike structured light
and binocular vision technologies, the ToF-camera-based method does not require trian-
gulation to compute 3D information [10]. The compact hardware system of ToF cameras
facilitates their deployment in the execution of scanning tasks. Structured light camera
technology employs optical encoding methods, such as projecting laser stripes, Gray codes,
or sinusoidal patterns onto the object’s surface. Other patterns include point maps [11],
line maps [12], and crossed line maps [13]. However, structured light cameras using opti-
cal coding methods typically employ statistical rather than precise mathematical models,
limiting their accuracy to within a few millimeters. With a stereo vision camera, depth
information is obtained by determining the angle between the projected rays and their
baselines. To achieve robust matching of the two camera views, various stereo-matching
methods have been proposed [14–16]. The measurement accuracy of stereo vision is com-
parable to structured light techniques, achieving 0.05 mm to 0.1 mm, and even 0.001 mm in
microscopic applications [17].

Representative algorithms for photogrammetry methods include structure-from-motion
(SfM) and multi-view stereo (MVS) [18]. Current SfM algorithms can be categorized into
incremental SfM, global SfM, SfM integrated with deep learning, and combined SfM



Big Data Cogn. Comput. 2024, 8, 164 3 of 27

with MVS reconstruction methods. Gao et al. [19] developed a multi-view 3D reconstruc-
tion system fusing SIFT and SURF features for enhanced point detection, applying scale
constraints for robust matching and using RANSAC for error removal. These enhance-
ments significantly outperformed bundle adjustment [20] in robustness and completeness.
With continuous algorithmic advancements, global SFM offers enhanced reconstruction
accuracy and efficiency compared to incremental SFM, due to the simultaneous consid-
eration of all image factors [21]. The main framework of global SFM includes global
similarity estimation, feature extraction and matching, and camera pose estimation [22].
To enhance algorithm efficiency, the visual bag-of-words model is used in global similarity
estimation [23]. Recent algorithms such as NAPSAC, PROSAC, and P-NAPSAC have been
developed to expedite robust feature point estimation. PROSAC starts by sampling from
points with the highest probability based on global prior ranking [24], NAPSAC utilizes
spatial coherence by sampling from points with high inner line ratios [25], and P-NAPSAC
combines local and global sampling methods for improved accuracy [22].

With advancements in deep learning, key aspects of the SFM algorithm are being
enhanced by using neural networks for improved efficiency. CNN-based global descriptors
are used for efficient feature matching of unordered image sequences [26]. Scholars [27]
from Fudan University integrated deep learning into the bundle adjustment (BA) process,
enhancing the 3D reconstruction robustness for untextured or non-Lambertian surfaces.

SFM combined with MVS can create denser point cloud data, computing the depth
of each pixel in a 2D image by identifying corresponding points in multiple images and
generating dense 3D point clouds based on these depth maps. Some open-source algo-
rithms integrate SfM and MVS, such as COLMAP [28], OpenMVS [29], MVE [30] and
VisualSFM [31].

2.2. Surface Reconstruction

A mesh model with a continuous surface can be generated using surface reconstruc-
tion technology. Due to optical reflections, environmental noise, and other factors, point
cloud data often contain outliers and noise [32], necessitating denoising before surface re-
construction. Additionally, to effectively address the issue of point cloud data discreteness
and provide normal information for the reconstructed surface, surface reconstruction of the
point cloud is required [33–35]. Wu et al. [36] proposed a skip-attention-based correspon-
dence filtering network (SACF-Net) for point cloud filtering and point cloud registration,
Lu et al. [37] achieved automatic prediction for filtering by training a classification network
model based on patch samples, and Zhang et al. [38] used graph-based denoising to capture
geometric details by treating the point cloud as a graph signal. Deep learning effectively
filters point clouds through supervised methods like PointNet [39], which uses MLPs for
feature learning, and PointNet++ [40], which captures geometric relationships using a
hierarchical network. Unsupervised methods like TotalDenoising [41] use Monte Carlo
convolution-based encoder–decoders to reduce noise by leveraging spatial locality and
bilateral appearance, without needing ground truth samples. Liu et al. [42] used partial
differential equations and IMQ radial basis functions for 3D surface reconstruction and
repair of scattered data. Dai et al. [43] introduced a novel point-based representation
termed Gaussian surfels, which integrates the flexible optimization of 3D Gaussian points
with the surface alignment properties of surfels, enhancing the optimization stability and
surface alignment. Researchers have accelerated surface solving with deep learning, ex-
emplified by Comi et al. [44], who improved DeepSDF, a neural network representing
shapes with a continuous signed distance function for high-quality shape representation
and interpolation.

2.3. Style Transfer

A mesh model exhibits a uniform coloration, lacking a reproduction of the surface
textures characteristic of the target object. Style transfer is a technical way of extracting
the texture of a style image and combining it with core features from the content image
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to change the texture of the content image, which can be applied to enhance the texture
of mesh models. With the increasing influence of convolutional neural networks in image
processing, it has become the consensus that shallow convolutional layers extract texture
and deep convolutional layers extract image features [45]. Zhang et al. [46] proposed an
inversion-based style transfer method (InST) that efficiently and accurately extracted the
pivotal information from images, thereby capturing and transferring the artistic style of a
painting. Lin et al. [47] used a generative adversarial neural network (GAN) and added a
convolutional layer to extract the features of the content image for image-to-image style con-
version, as shown below. Feedforward networks allow for fast synthesis, but these methods
often lack diversity and quality. To improve the diversity of the texture features learned
by network models, Gatys et al. [48] introduced control over the spatial location, color
information, and cross-spatial scaling, to achieve high-resolution controlled stylization.
In recent research [49–51], network models with complex and large model architectures
have been replaced by efficient encoder–decoder architectures. Zhang et al. [52] introduced
an edge loss function within the transformer model, which enhances the content details and
prevents the generation of blurred results due to the excessive rendering of style features,
while simultaneously mitigating the issue of content leakage. To improve the architecture,
Zhu et al. [53] proposed a novel all-to-key attention mechanism that integrates distributed
attention and progressive attention, matching each position in content features to stable key
positions in style features, demonstrating exceptional performance in preserving semantic
structures and rendering consistent style patterns.

2.4. Texture Mapping

Through texture mapping technology, texture images can be combined with mesh
models to create realistic 3D models, which can provide visual details like texture and
material. Texture mapping, which uses a 2D image to represent surface appearance,
is widely used. Neural scene representations, such as NeRF [54] and deep reflectance
volumes [55], use volume rendering but fail to separate geometry from appearance, limiting
surface editing. Thies et al. [56] addressed this by optimizing neural textures on 3D mesh
proxies. Xiang et al. [57] further improved on this with the neutex model, which uses
volumetric representation for geometry and 2D texture maps for surface appearance,
enabling scene reconstruction and traditional texture editing from multi-view images.

3. Methodology
3.1. Dataset

A public dataset (hereinafter referred to as Dataset 1) was used to evaluate the applica-
tion of the reconstruction algorithm in large-scale scenes, such as the external environment
of factories, and contains 200 images of building structures in eight categories, with cor-
responding internal camera parameter files. In addition, a private dataset (hereinafter
referred to as Dataset 2) was established, which contains 48 high-definition images of
two kinds of robotic arms and two types of CNC machining centers, as representatives of
common factory equipment. Examples of the two kinds of datasets are shown in Figure 1.

Figure 2 shows the dataset (hereinafter referred to as Dataset 3) collected for the
style transformation task in deep learning, containing six different style images and the
corresponding data sources.

Photogrammetry algorithms require a camera’s intrinsic parameter matrix for calcula-
tions. The calibration process, results, and intrinsic parameters for the images in Dataset 2
are detailed in Appendix A.
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(a) Samples of Dataset 1 (b) Samples of Dataset 2

Figure 1. Samples from Dataset 1 (Source: https://github.com/Abhishek-Aditya-bs/MultiView-3D-
Reconstruction/tree/main/Datasets accessed on 18 November 2024) and samples from Dataset 2.

（1）Bronze Pattern （2）Brickyard （3）White Brick

（5）Carbon Fibre（4）Stainless Steel 1 （6）Stainless Steel 2

Source of Images
(1) https://soso.huitu.com/?kw=
(2) https://699pic.com/tupian-500694521.html
(3) https://www.jjkjnet.com/tietu/g/36126.html
(4) https://616pic.com/sucai/13gimqll8.html
(5) https://www.16sucai.com/2014/11/50850.html
(6) https://cn.dreamstime.com/

Accessed on 18 July 2024

Figure 2. Demonstration of Dataset 3.

3.2. Point Cloud Data Acquisition

The SFM algorithm is realized through feature point extraction and matching, camera
pose estimation, triangulation, and global optimization, as illustrated in Figure 3.

Image of Objects

Global 
Optimizatio

Triangulation

n

Point cloud data

Figure 3. Diagram of SFM algorithm.

The feature points, uniquely identifying the scene, are extracted from the image by
calculating feature descriptors.

D(x, y, σ) = [G(x, y, kσ)− G(x, y, σ)] ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ). (1)

Equation (1) is the computational formula for the image pyramid before SIFT feature
detection, where the Gaussian scale space L is first constructed by continuously varying
the scale by Gaussian kernel function convolving with the image I, L(x, y, σ) denotes the
Gaussian scale space, and D(x, y, σ) is the differential Gaussian image. The differential
Gaussian (DoG) response image is obtained by subtracting the images of two neighboring
Gaussian spaces, and the location of feature points is detected by the DoG. A gradient

https://github.com/Abhishek-Aditya-bs/MultiView-3D-Reconstruction/tree/main/Datasets
https://github.com/Abhishek-Aditya-bs/MultiView-3D-Reconstruction/tree/main/Datasets
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histogram of the image is used to find the stable orientation of the feature points. Then, the
SIFT feature point location, scale, and orientation information can be obtained. Speed-up
robust features (SURF) [58] and KAZE [59] feature extraction are also used to compare
with SIFT.

Feature points are first matched by KNN matching [60], then refined by RANSAC [19]
to enhance the accuracy.

The camera pose estimation is realized by estimating rotation and translation matrices,
which is based on the camera imaging model and coplanarity condition in photogrammetry.

As shown in Figure 4, the coordinate system transformation is described in the follow-
ing equation,

ZPuv = Z

 u
v
1

 = K(RPw + t) = KTPw, (2)

where the matrix consisting of 3 × 3 vectors is named the camera intrinsic matrix K, with
the camera coordinate system rotation matrix R and translation matrix t being called the
extrinsic matrix of the camera.

� �

v

u

��

��

Y

X

P

�’

�� ��

��

World

Object Plane
Image PlaneCameraPixel Plane

Figure 4. Camera imaging model.

Figure 5 describes the geometric correspondence relationship of a point-in-world
coordinates when using two cameras. The mathematical expression of the coplanarity
condition in photogrammetry is described in Equation (3).

�1

�2

�2
�1

�

�1

�1 �1

�2

�2

�2

Figure 5. Coplanarity condition of photogrammetry.
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pT
2 K−Tt∧RK−1 p1 = 0, (3)

where p1 and p2 are pixel locations of point P in the pixel planes of two cameras. Given
the intrinsic parameters of the camera, the concept of an essential matrix is introduced
here [61], simplifying the equation as

pT
2 Ep1 = 0. (4)

Thus, the problem of solving the camera position involves calculating the camera
essential matrix E. By expanding the essential matrix E and writing it in the form of a vector
and selecting eight pairs of feature points, Equation (5) can be obtained:


u1

1u1
2 u1

1v1
2 u1

1 v1
1u1

2 v1
1v1

2 v1
1 u1

2 v1
2 1

u2
1u2

2 u2
1v2

2 u2
1 v2

1u2
2 v2

1v2
2 v2

1 u2
2 v2

2 1
...

...
...

...
...

...
...

...
u8

1u8
2 u8

1v8
2 u8

1 v8
1u8

2 v8
1v8

2 v8
1 u8

2 v8
2 1





e1
e2
e3
e4
e5
e6
e7
e8
e9


= 0. (5)

The R, t matrix can be obtained by decomposing the essential matrix E using singular
value decomposition (SVD), and finally determined according to the orientation of the
camera positive depth.

The point-in-world coordinate is computed based on the coordinate transformation
matrix P, as follows:

P = K[R | t]. (6)

Decomposing P into three vectors,

Pi =

 Pi1
Pi2
Pi3

 (7)

The relationship between the world coordinates and the pixel coordinates of a point
can be expressed as follows,  Pi1 X̃

Pi2 X̃
Pi3 X̃

 =

 xi
yi
1

, (8)

where X̃ is the location of the point-in-world coordinate, and xi and yi are the locations
in pixel coordinates. Since x1, x2, P1, and P2 are known, a transformation of the above
equation yields Equations (9)–(11).

A =

[
A1
A2

]
,

AX̃ = 0.
(9)

A1 =

[
x1P13 − P11
y1P13 − P12

]
, (10)

A2 =

[
x2P23 − P21
y2P23 − P22

]
. (11)

Using the least squares method to solve the system of equations, the spatial coordinates
of point X̃ can be obtained, while solving the coordinates of the point cloud.
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Finally, bundle adjustment [28] is used as a global optimization method to improve the
accuracy of the triangulation process by iterative refinement of the camera position parameters.

3.3. Surface Reconstruction

Poisson surface reconstruction is realized by a process involving constructing and
solving Poisson’s equation and generating an equivalent surface, as shown in Figure 6.

Input Point Cloud Building an Octree
Compute the 
normal vector

Solving Poisson's 
equation

Solving for 
Isosurfaces

Export mesh 
models

Figure 6. Process of surface reconstruction.

First constructing the indicator function X, setting the target M inside to 1 and the
target M outside to 0, and its exponential function χM, where the point cloud normal vector
with χM is shown in Figure 7.

0

0

0
0

0 0

0

0

0

Original Points Indicator Gradient

0
0

0

0

0
0

0

0

0
00

0

1
1

1

1
1

1

1

Indicator Function Mesh Surface

�� �

VVV

�

Figure 7. Demonstration of isosurface.

The indicator function is smoothed using a smoothing function F̃. For any point p ∈
∂M, define N∂M(p) as the inward surface normal vector and F̃p(q0) as a smoothing filter.

∇
(
χM ∗ F̃

)
(q0) =

∫
∂M

F̃p(q0)N⃗∂M(p)dp. (12)

According to Gauss’s divergence theorem, the vector space and the indicator function
satisfy the constraints, ∇χ̃ = Ṽ. Since vector fields cannot be integrated, the derivation of
both sides of the above equation yields the Laplace equation. Morphing the equation yields

∆χ ≡ ∇ · ∇χ = ∇ · V⃗. (13)

By solving this Poisson equation, the indicator function can be solved. The function
F0(q) corresponding to a node o in the octree is

F0(q) ≡ F
(

q − o.c
o.w

)
1

(o.w)3 , (14)

where o.c is the center of o and o.w is the width of o. The vector space V⃗(q) can be
approximated as

V⃗(q) ≡ ∑
s∈S

∑
o∈Ngb0(s)

αo,sFo(q)s.N⃗. (15)
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Defining χ̃ = ∑0 x0F0, then solving for χ is the same as solving for xo. Let the number
of nodes in the octree be N , and the mesh can be built by calculating value of the N × N
matrix L at the position (0, O′)

Lo,0′ ≡
〈

∂2Fo

∂x2 , Fo′

〉
+

〈
∂2Fo

∂y2 , Fo′

〉
+

〈
∂2Fo

∂z2 , Fo′

〉
. (16)

3.4. Style-Transfer-Based Texture Enhancement

Style transfer is achieved by combining the VGG-19 network and the Gram matrix.
The VGG19 network (Figure 8) is capable of advanced image feature extraction, synthesis,
and manipulation. It can extract content features from images. The network comprises 16
convolutional layers, 5 pooling layers, 3 fully connected layers, and a final softmax layer.

 No.1
Conv1_1：224×224×64;
Conv1_2：224×224×64.

No.2
Max Pooling: 112×112×64.

No.3
Conv2_1：112×112×128;
Conv2_2：112×112×128.

No.4
Max Pooling: 56×56×128.

No.5
Conv3_1：56×56×256;
Conv3_2：56×56×256;
Conv3_3：56×56×256;
Conv3_4：56×56×256.

No.6
Max Pooling: 28×28×256.

No.7
Conv4_1：28×28×512;
Conv4_2：28×28×512;
Conv4_3：28×28×512;
Conv4_4：28×28×512.

No.8
Max Pooling: 14×14×512.

No.9
Conv5_1：14×14×512;
Conv5_2：14×14×512;
Conv5_3：14×14×512;
Conv5_4：14×14×512.

No.10
Max Pooling: 7×7×512.

No.11
Full Connection 1: 25,088.

No.12
Full Connection 2: 1000.

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

No.11 No.12

Figure 8. Demonstration of VGG network.

The VGG model is divided into two parts: features (containing convolutional and
pooling layers) and a classifier (containing fully connected layers). The output of each
convolutional layer from the features model is used to compute the content and style
loss. To ensure consistency, the .eval() function sets the network to evaluation mode.
Additionally, before feeding an image into the VGG network, it must be normalized using
mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] for each channel.

Define the input content image as p⃗, the final generated image as x⃗, and the convolu-
tional layer used in the style migration process as l. Fl

ij denotes the activation value of the
image generated l on the ith convolutional kernel of the first layer located at j, and similarly
Pl

ij denotes the activation value of the content image on the No. i convolutional kernel of
the first layer located at j. Therefore, the loss function of the content of a single layer is

Lcontent(−→p , x⃗, l) =
1
2 ∑

i,j

(
Fl

ij − Pl
ij

)2
. (17)

The derivative of the content loss function concerning the activation of layer l is equal to

∂Lcontent

∂Fl
ij

=


(

Fl − Pl
)

ij
if Fl

ij > 0

0 if Fl
ij < 0

. (18)

The style of an image is represented by a style matrix. To capture the texture repre-
sentation of the input image, a Gram matrix [62], as shown in Figure 9, uses a symmetric
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matrix formed by the pairwise inner products of k vectors in an n-dimensional Euclidean
space, representing these vectors’ texture features.

�� × ��

��

��

�
�

×
�

�× =

Gram Matrix

Correlation between filters

⋯
⋯
⋯
⋯
⋯

⋯ ⋯ ⋯ ⋯ ⋯

Figure 9. Demonstration of Gram matrix.

The feature space of the Gram matrix consists of the correlations between the different
filter responses, where the expectation accounts for the spatial extent of the feature mapping.
Defined as the activation value of an image Fij located at j on the ith convolution kernel of
the first layer, the corresponding Gram matrix is

Gl
ij = ∑

k
Fl

ikFl
jk. (19)

Let the height and width of the convolutional layer l be Nl and Ml , respectively,
with the Gram matrix Al

ij corresponding to the stylized image p⃗, and the Gram matrix

corresponding to the generated image a⃗, Gl
ij. So the stylized loss function for a single

layer is

El =
1

4N2
l M2

l
∑
i,j

(
Gl

ij − Al
ij

)2
. (20)

The derivative of the style loss function El concerning the layer l activation can be
computed analytically, as follows:

∂El

∂Fl
ij
=


1

N2
l M2

l

((
Fl
)T(

Gl − Al
))

ji
if Fl

ij > 0

0 if Fl
ij < 0

. (21)

The total style loss can be calculated as follows:

Lstyle(⃗a, x⃗) =
L

∑
l=0

wlEl . (22)

The loss function Ltotal for style migration consists of the content loss function and
the style loss function described above, with the weighting factors α and β controlling the
balance between content and style reconstruction, as shown in the following equation:

Ltotal ( p⃗, a⃗, x) = αLcontent ( p⃗, x⃗) + βLstyle (⃗a, x⃗). (23)

The Figure 10 illustrates the architecture of style transfer. The style image a⃗ is processed
to compute and store its style representation AL across all layers. The content image p⃗ is
processed to store its content representation PL in one layer. A random noise image x⃗ is
then passed through the network, computing its style feature GL and content feature FL.
The style loss Lstyle is calculated as the mean squared difference between GL and AL for
each layer. The content loss Lcontent is the mean squared difference between FL and PL.
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The total loss Ltotal is a linear combination of these losses. Using error backpropagation,
the gradient updates the image x⃗ iteratively to match both the style features of the style
image and the content features of the content image.

Conv1_1

Input

Conv2_1

Pool1

Conv3_1

Pool2

Conv4_1

Pool3

Conv5_1

Pool4

Conv1_2

Input

Conv2_2

Pool1

Conv3_2

Pool2

Conv4_2

Pool3

Conv5_2

Pool4

�� �� ��

��−1

������ = ��������� + ��������� = (�� − ��)2

�������� = (�� − ��)2
���
���

������ = 
�

����

���
���−1

Figure 10. Style transformation architecture.

The hyperparameters for style transfer deep learning training based on VGG networks
are shown in Table 2.

Table 2. Hyperparameters for style transfer training.

Content
Weight

Style
Weight Content Layer Style Layer Optimizer Learning Rate Ephochs Iteration

1 1000
′block4 − conv2′ : 0.5,
′block5 − conv2′ : 0.5

′block1 − conv1′ : 0.2,
′block2 − conv1′ : 0.2,
′block3 − conv1′ : 0.2,
′block4 − conv1′ : 0.2,
′block5 − conv1′ : 0.2

Adam 0.03 20 100

3.5. Texture Mapping

Mathematically, a projector function is applied to spatial points to obtain parameter
space values, which are then converted to texture space using corresponding functions.
The algorithm’s flow is illustrated in Figure 11.

Projector
Function

Corresponder
Function(s)

Obtain
Value

Value
Transform
Function

Object
Space

Location

Parameter
Space

Coordinates

Texture
Space

Location
Texture
Value

Transformaed
Texture
Value

Figure 11. Texture mapping process.
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• Step one. A set of parameter space values are obtained by applying the projector
function to points in space, transforming 3D points into texture coordinates. The re-
lationship between the points in the world coordinate system and the points in the
pixel coordinate system are shown as follows:

[
Puv

1

]
=

 u
v
1

 =
1
z

 fx 0 cx
0 fy cy
0 0 1

 x
y
z

 =
1
z

KPc. (24)

• Step two. Before accessing the texture with these new values, corresponding functions
convert the parameter space values to the texture space. The image appears at position
(u, v) on the object’s surface with uv values in the normal range of [0,1). Textures
outside this range are displayed according to the corresponder function.

• Step Three. These texture space locations are used to obtain the corresponding color
values from the texture. The built-in functions bilinear and trilinear interpolation
sampling are used to map spatial points between the UV space points.

• Step Four. The value transform function is used to transform the retrieved results,
and finally the new values Ld are used to change the surface properties kd, such as
material or coloring normals, and so on.

Ld = kd ×
I
2
× max(0, l⃗ · n⃗), (25)

where the vector n represents the normals at the coloring points. Changes in vertex
normals alter the coloring results, creating different shades that provide a sense of
depth and texture. With the vertices’ original positions unchanged, altered vertex
normals are used to generate artificial shading effects, enhancing the model’s realism.

4. Result and Discussion

In this section, Section 4.1 encompasses feature point detection, feature point matching,
feature point triangulation, and point cloud generation, using the structure-from-motion
algorithm to obtain the point cloud. Section 4.2 presents the surface reconstruction results
based on the point cloud data, producing a mesh model composed of triangular facets.
Section 4.3 demonstrates the results of the deep-learning-based texture mapping enhance-
ment method. In Section 4.4, the experimental results of the reconstruction model, which
integrated texture-enhanced mapping with the mesh model, are exhibited and compared
with models generated using the LiDAR-based method. The experiments were conducted
in a 64-bit Windows environment , using the Pycharm compilation environment and the
Computer Vision toolbox in MATLAB2024a.

4.1. SFM-Based Point Cloud Data Acquisition
4.1.1. Feature Point Detection

The positional distribution of feature points obtained using SIFT, SURF, and KAZE
descriptors is shown in Figure 12. It is evident that the KAZE feature descriptor detected
significantly more feature points compared to SIFT and SURF. The dense distribution
of KAZE feature points across all datasets suggests that KAZE was heavily influenced
by environmental geometric features rather than the target object. Conversely, the SIFT
feature points effectively detected the geometric edges of the target object across all six
dataset types, with fewer points, reducing the likelihood of duality in the geometric
information representation.
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SIFT 
Feature 
Points

SURF 
Feature 
Points

KAZE 
Feature 
Points

CNC1 CNC2ROBOTS STATUE CASTLEFOUNTAIN

Figure 12. Demonstration of the three kinds of feature descriptors used on Dataset 1 and Dataset 2.

4.1.2. Feature Point Matching

The feature points obtained from the three image descriptors were coarsely matched
through a K-nearest neighbor search (KNN), and the number of matched pairs and the
matching rate were counted according to the spatial distance of the feature points as the
filtering condition, as shown in Tables 3–5.

Tables 3–5 illustrate that, as the threshold increased, both the matching rate and the
number of matched point pairs rose. However, the above tables show that for the same
target object, there was no direct connection between the number of feature points and
the point matching rate, which also means that more feature points will not have a direct
positive impact on 3D reconstruction. Among the three feature point detection methods,
as shown in Figure 13, the SIFT descriptor detected the smallest number of feature points,
but its point-matching rate was the highest. Notably, the SIFT-detected feature points were
more sensitive to matching threshold variation.

Table 3. Statistics of SIFT feature point matching.

Threshold 0.65 0.70 0.75 0.80 0.85

Rate Quantity Rate Quantity Rate Quantity Rate Quantity Rate Quantity

CNC1 0.0596 95 0.0734 117 0.0891 142 0.1350 215 0.1965 313
CNC2 0.0519 93 0.0664 119 0.0859 154 0.1233 221 0.2015 361

ROBOTS 0.0109 16 0.0157 23 0.0321 47 0.0560 82 0.1051 154
STATUE 0.0548 91 0.0759 126 0.1048 174 0.1452 241 0.2133 325

FOUNTAIN 0.1247 328 0.1433 377 0.1699 447 0.1984 522 0.2535 667
CASTLE 0.1777 513 0.2040 589 0.2442 705 0.2910 841 0.3543 1023

Table 4. Statistics of SURF feature point matching.

Threshold 0.65 0.70 0.75 0.80 0.85

Rate Quantity Rate Quantity Rate Quantity Rate Quantity Rate Quantity

CNC1 0.0902 326 0.0999 361 0.1151 416 0.1300 470 0.1494 540
CNC2 0.0506 347 0.0573 393 0.0642 440 0.0713 489 0.0791 542

ROBOTS 0.0288 93 0.0349 113 0.0470 152 0.0591 191 0.0724 234
STATUE 0.0617 103 0.0707 118 0.0779 130 0.0845 141 0.0911 152

FOUNTAIN 0.1173 160 0.1254 171 0.1334 182 0.1400 191 0.1481 202
CASTLE 0.1696 573 0.1835 620 0.1995 674 0.2175 735 0.2362 798
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Table 5. Statistics of KAZE feature point matching.

Threshold 0.65 0.70 0.75 0.80 0.85

Rate Quantity Rate Quantity Rate Quantity Rate Quantity Rate Quantity

CNC1 0.0552 2470 0.0652 2918 0.0764 3418 0.0890 3981 0.1030 4609
CNC2 0.0367 2151 0.0432 2543 0.0510 2993 0.0595 3492 0.0697 4090

ROBOTS 0.0225 1185 0.0298 1566 0.0380 1996 0.0485 2549 0.0604 3177
STATUE 0.0533 738 0.0599 800 0.0652 870 0.0710 947 0.0767 1024

FOUNTAIN 0.1685 5716 0.1712 5806 0.1736 5889 0.1759 5967 0.1784 6051
CASTLE 0.1866 5174 0.1947 5379 0.2020 5601 0.2100 5823 0.2170 6017

Figure 13. Matching rate fitting of three kinds of image descriptors.

As shown in the above figure, the feature points obtained by the SIFT descriptor
achieved a higher matching rate compared to the SURF and KAZE descriptors across all
datasets. This suggests that matching the feature points obtained by KAZE and SURF was
more challenging, and these points did not cluster well around key geometric elements.
Thus, SIFT proved to be the best feature detection and extraction method for the datasets in
this paper. The results of feature point extraction using SIFT and matching with KNN are
shown in Figures 14 and 15 as examples.

In Figures 14 and 15, the shooting angles of the two images used for matching are
similar, so, ideally, each pair of feature point lines should be nearly parallel. However, as the
matching threshold decreased, the cross confusion of the feature point connecting lines
improved, proving that increasing the matching threshold can help reduce the occurrence
of false matches. It is evident that Dataset 1 (building class), shown in Figure 15, had
significantly fewer point-matching line crossings under the same matching threshold
conditions compared to Dataset 2 (industrial equipment class), shown in Figure 14. This
difference can be attributed to the fact that the building class dataset has more surface
texture features, whereas the industrial equipment class dataset lacks surface texture.

In Figure 16b, the blue box represents the projection of the left image plane onto the
right image plane, visualizing the homography matrix between the camera planes. It can
be observed that false matches were corrected by RANSAC, and each pair of feature points
is correctly positioned in the images.
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Threshold=0.85Threshold=0.75

Threshold=0.65 Threshold=0.70

Threshold=0.80

Original Image

Figure 14. SIFT point matching for CNC1 object under different thresholds.

Threshold=0.85

Threshold=0.75

Threshold=0.65

Threshold=0.70

Threshold=0.80

Original Image

Figure 15. SIFT point matching for Fountain object under different thresholds.

(a) Feature Points roughly matched by KNN

(b) Feature Points precisely matched by RANSAC

Figure 16. Matching result of Dataset 2 using RANSAC method.
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4.1.3. Triangulation of Feature Points

The results of the matching points triangulation, from solving the homography matrix
to obtain a camera pose matrix, are shown in Figures 17 and 18.

(a) Triangulation of 
Single RANSAC

(b) Triangulation of 
Multiple RANSAC

Statue Object Fountain Object Castle  Object

Figure 17. Triangulation presentation of feature points obtained from objects in Dataset 1.

(a) Triangulation of 
Single RANSAC

(b) Triangulation of 
Multiple RANSAC

CNC1 Object CNC2 Object Robot  Object

Figure 18. Triangulation presentation of feature points obtained from objects in Dataset 2.

The points in Figures 17b and 18b are denser than those in Figures 17a and 18a
suggesting that the spatial points obtained through multiple RANSAC matches were
significantly more than those from a single RANSAC match. The inherent randomness of
the RANSAC algorithm means that multiple iterations increased the matching range of
feature points.

4.1.4. Point Cloud Data

A comparison of Figures 19 and 20 shows that the reconstruction result of Dataset 1
was superior to that of Dataset 2. This difference is attributed to Dataset 1’s composition
of large buildings, which offer richer surface textures, more detectable feature points,
and more extractable geometric information. In contrast, the objects in Dataset 2 have
simple geometric contours and larger untextured planes, making it difficult to detect feature
points at the center of these planes.
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(a) Sparse point cloud data

(b) Dense point cloud data

Figure 19. Point cloud data of objects in Dataset 1.

(a) Sparse point cloud data

(b) Dense point cloud data

Figure 20. Point cloud data of objects in Dataset 2.

4.2. Surface Reconstruction

The results of the normal vector solution for Poisson surface reconstruction are
shown below.

The results in Figures 21 and 22 indicate that the normal vectors were uniformly dis-
tributed across the entire point cloud, with no significant outliers or anomalies. In Dataset 2,
which primarily consists of flat surfaces, the normal vectors were consistent in the smooth
regions. In Dataset 1, composed of complex geometric elements, the normal vectors exhib-
ited smooth transitions in areas with more edges and curvature. The lengths of all normal
vectors were consistent across all distribution plots for each point cloud set. The com-
puted normal vectors were accurate in terms of directional consistency, distribution pattern,
and length uniformity.

As shown in Figures 23 and 24, the visual reconstruction effect of Dataset 1 (architec-
ture) was superior to Dataset 2 (workshop equipment). In Figure 23a, the statue’s head has
an extraneous tubular extension due to an upward acquisition angle, resulting in a lack of
top data and an incomplete reconstructed surface. In Figure 24b, the surface transition of
the small pool in the fountain’s center is uneven, failing to restore the real water surface.
This is due to the acquisition angle causing the water surface to almost overlap from the
proximal to distal ends, making it difficult to extract geometric profile information, leading
to significant reconstruction errors.
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 (b) Fountai(a) Statue n (c) Castle

Figure 21. Normal vector presentation of the points set obtained from objects in Dataset 1.

(a) CNC1 (b) CNC2 (c) Robot

Figure 22. Normal vector of the points set obtained from objects in Dataset 2.

 (b) Fountai(a) Statue n (c) Castle

Figure 23. Poisson surface reconstruction results of objects in Dataset 1.

(a) CNC1 (b) CNC2 (c) Robot

Figure 24. Poisson surface reconstruction results of objects in Dataset 2.
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4.3. Texture Enhancement

The style transfer results are shown in Figures 25–30.

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=12 Epoch=14 Epoch=16 Epoch=18 Epoch=20

Content Image Style Image

Figure 25. Style transfer result of Statue object.

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=12 Epoch=14 Epoch=16 Epoch=18 Epoch=20
Content Image Style Image

Figure 26. Style transfer result of Fountain object.

Content Image Style Image

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=12 Epoch=14 Epoch=16 Epoch=18 Epoch=20

Figure 27. Style transfer result of Castle object.

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=12 Epoch=14 Epoch=16 Epoch=18 Epoch=20

Content Image Style Image

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=16 Epoch=18 Epoch=20

Figure 28. Style transfer result of CNC1 object.
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Epoch=12 Epoch=14

Content Image Style Image

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=16 Epoch=18 Epoch=20

Figure 29. Style transfer result of CNC2 object.

Epoch=12 Epoch=14

Content Image Style Image

Epoch=2 Epoch=4 Epoch=6 Epoch=8 Epoch=10

Epoch=16 Epoch=18 Epoch=20

Figure 30. Style transfer result of Robot object.

In the figures above, the number of training epochs increased from 0 to 20 (iterations
from 0 to 2000), causing the edges in the generated image to gradually disintegrate and form
local contours consistent with the style image. This indicates a deepening fusion of content
and style with more training epochs. Comparing Figures 25–30, when the texture features
in stylized images exhibit recurring complex structures and these structures are relatively
large in scale, the stylization process is more perceptible to the human eye. In contrast,
the scale ratios of the stainless steel texture and carbon fiber texture in Figures 29 and 30
are relatively small, resulting in minimal visual differences in the stylization results from
epochs 6 to 20. Additionally, the stainless steel texture in Figure 29 mainly varies in the
lateral direction, leading to blurred lateral features and an unclear preservation of contours
in the content images.

The loss function during the training process exhibited a consistent pattern of variation
across the six categories of objects. The training loss of the experiment carried on the CNC1
object, as an example, is shown in Figure 31.

40,000

35,000

30,000

25,000

20,000

15,000

10,000

×10^6

Figure 31. Training loss in style transfer for CNC1 object.
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The subfigure on the left in Figure 31 depicts the style and content loss over the itera-
tions, with the red line representing style loss and the green line content loss. The content
loss did not increase with more training rounds, indicating that the geometric contours of
objects in the generated images and content images remained similar as perceived by the
convolutional neural network, preserving the details of the content image. The style loss
decreased rapidly within the first five training rounds, indicating a significant reduction in
texture disparity between the generated and style images, suggesting the model quickly
learned and integrated the style image’s texture.

The subfigure on the right in Figure 31 demonstrates the total loss over the iterative
process, where total loss is a weighted sum of style and content loss. As detailed in Table 2,
the style loss weight was substantially higher than that of the content loss. Consequently,
the total loss primarily followed the trend of style loss, gradually decreasing with additional
training epochs.

The image quality assessments for these six datasets exhibit a uniform pattern, with
CNC1 serving as an example, as shown in Figure 32 The result for each epoch was evaluated
using both PSNR and SSIM methods, with the content image as the reference image.

Figure 32. IQA assessment for CNC1 images after style transfer.

The SSIM and PSNR indices generally decreased with increasing training epochs,
as these indices evaluate the similarity between the images generated by style migration
and the content images. The image quality evaluation of the six objects exhibited an
interesting phenomenon at the 12th training epoch, where both indices first increased
and then rapidly decreased. However, this change is not perceptible to the human eye,
as the results from the 12th epoch are almost indistinguishable from those of the 10th
and 14th epochs in Figures 25–30. Because of the poor interpretability of CNN models,
this interesting change is hard to convincingly explain and avoid. Nonetheless, as style
transfer experiments prioritize the visualization of results, this phenomenon did not affect
the application of the style transfer.

4.4. Texture Mapping

The results of texture mapping are shown in Figures 33 and 34, whose upper parts
show the surface reconstruction results, with the lower part displaying the effect after
texture mapping.
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(a) Statue (b) Fountain (c) Castle

Figure 33. Results of texture mapping for Dataset 1.

(a) CNC1 (b) CNC2 (c) Robot

Figure 34. Results of texture mapping for Dataset 2.

As shown in Figure 33, the enhanced texture mapping exhibited a precise alignment
with the reconstructed surface, markedly improving the outcomes, such as covering the
highlights on the Statue model and enhancing the metal texture. The Fountain object’s
water surface holes are obscured by the red brick texture, while the integration of the white
brick texture with the Castle model offers a novel visual impact. The application of texture
mapping to Dataset 1 was deemed successful, with an accurate spatial alignment and an
improvement in model defects, thus enhancing the overall visual effect.
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Figure 34 shows that the CNC1 in Dataset 2 has optimal mapping. Its geometric
edges align closely with the model’s contours, respecting CNC1’s geometric constraints,
without offset or contour loss. For the Robot objects, the complex spatial contours, with the
main lines on various planes, resulted in texture maps that struggle to perfectly match the
device’s edges to the model’s contours.

The comparisons in the Table 6 and 7 show that the method proposed in this paper
outperformed the LiDAR solution by 20% in terms of both point cloud quantity and the
number of generated mesh models, while the hardware cost was only 1% of that of the
LiDAR solution. However, the modeling time consumption of the proposed method was
slightly higher than that of the LiDAR solution.

Table 6. Statistics of surface reconstruction on Dataset 2 using LiDAR-based method 1.

Vertices Faces Time Consumption Equipment Equipment Cost

Robot 95,556 115,736 29 min Leica RTC 360 92,800 GBP
CNC1 175,175 204,458 40 min Leica RTC 360 92,800 GBP
CNC2 195,788 210,396 34 min Leica RTC 360 92,800 GBP

1 The solution based on LiDAR involved the use of LiDAR for point cloud acquisition, point cloud filtering,
and Poisson reconstruction.

Table 7. Statistics of surface reconstruction on Dataset 2 using proposed method.

Vertices Faces Time Consumption Equipment Equipment Cost

Robot 172,875 145,702 33 min Iphone 13 pro 949 GBP
CNC1 216,893 234,135 37 min Iphone 13 pro 949 GBP
CNC2 221,040 200,205 38 min Iphone 13 pro 949 GBP

5. Conclusions and Future Work
5.1. Conclusions

The paper has presented a cost-effective and rapid 3D modeling technique that lever-
ages point cloud acquisition, surface reconstruction, and texture processing to create
visually striking models from mobile or DSLR images, with a demonstrated high visual-
ization performance on architectural datasets, accurately capturing geometric details and
constraints without requiring specialized hardware.

This study advances 3D reconstruction by indicating SIFT as a superior feature descrip-
tor for enhancing feature point matching and SfM efficiency. Furthermore, the application
of deep learning for texture enhancement in model mapping is identified as a promising
area for future research, with the provided data offering guidance on selecting optimal
textures for style image enhancement.

5.2. Future Work

Although this study yielded promising outcomes, it was not without limitations.
Notably, the initial phase of the systematic modeling approach, particularly the point cloud
3D reconstruction, could benefit from optimization to reduce environmental clutter and
enhance geometric details, as observed in Dataset 2. Additionally, the final texture mapping
stage, which involves direct application of images to the model’s surface, may lead to
alignment issues that are challenging to rectify manually.

Future research should aim to refine the point cloud reconstruction and the visual
fidelity of the proposed modeling system. This could be accomplished by leveraging
deep learning to confine feature points to an object’s geometric contours and to optimize
their distribution for uniformity, thereby improving the reconstruction quality. Moreover,
integrating depth information from the dataset and aligning specific geometric features to
precise spatial locations on the model could effectively address mapping discrepancies.



Big Data Cogn. Comput. 2024, 8, 164 24 of 27

Author Contributions: Conceptualization, B.Y. and B.H.S.A.; methodology, B.Y. and B.H.S.A.; re-
sources, B.Y.; writing—original draft preparation, B.H.S.A. and B.Y.; writing—review and editing,
B.H.S.A. and B.Y.; supervision, B.H.S.A.; visualization, B.H.S.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We extend our sincere gratitude to the group led by Haihua Zhu at Nanjing
University of Aeronautics and Astronautics for their support in constructing the dataset. We also
wish to thank Yongjie Xu at Cranfield University, for his assistance in acquiring images for the
private dataset.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this paper:

LiDAR Laser Scanning/Light Detection and Ranging
TOF Time of Flight
ALS Airborne Laser Scanning
MLS Mobile Laser Scanning
TLS Terrestrial Laser Scanning
SFM Structure from Motion
MVS Multi-View Stereo Vision
BA Bundle Adjustment
CNN Convolutional Neural Network
D-CV Depth-based Cost Volume
P-CV Pose-based Cost Volume
CVP-DC Cost Voxel Pyramid Depth Completion
SDF Signed Distance Function
MLP Multi-Layer Perceptrons
EC-Net Edge-aware Network
ICP Iterative Closest Point
IMQ Inverse Multiquadric
SDF Signed Distance Function
GAN Generative Adversarial Neural Network
NeRF Neural Radiance Fields
SIFT Scale-Invariant Feature Transform
DoG Difference of Gaussians
KAZE KAZE Features
SURF Speeded-Up Robust Features
KNN K-Nearest Neighbor search
NPSAC NAdjacent Points Sample Consensus
PROSAC Progressive Sample Consensus
RANSAC Random Sample Consensus
VGG Visual Geometry Group
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure

Appendix A. Camera Calibration

The SFM algorithm relies on the intrinsic parameters of the camera, and Dataset 2 is
obtained from the iPhone 13 Pro. The camera’s intrinsic parameter matrix is calibrated
by ZhangZhengyou calibration method [63]. From the calibration results in the following
Figure A1, it can be seen that the average reprojection error is less than 0.5, indicating that
the camera intrinsic matrix obtained from the solution has a high confidence level.
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Figure A1. Results of Camera calibration.
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