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Abstract: Speech recognition technology is an important branch in the field of artificial intelligence,
aiming to transform human speech into computer-readable text information. However, speech
recognition technology still faces many challenges, such as noise interference, and accent and speech
rate differences. An aim of this paper is to explore a deep learning-based speech recognition method
to improve the accuracy and robustness of speech recognition. Firstly, this paper introduces the
basic principles of speech recognition and existing mainstream technologies, and then focuses on
the deep learning-based speech recognition method. Through comparative experiments, it is found
that the self-attention mechanism performs best in speech recognition tasks. In order to further
improve speech recognition performance, this paper proposes a deep learning model based on the
self-attention mechanism with DCNN-GRU. The model realizes the dynamic attention to an input
speech by introducing the self-attention mechanism in a neural network model instead of an RNN
and with a deep convolutional neural network, which improves the robustness and recognition
accuracy of this model. This experiment uses 170 h of Chinese dataset AISHELL-1. Compared
with the deep convolutional neural network, the deep learning model based on the self-attention
mechanism with DCNN-GRU accomplishes a reduction of at least 6% in CER. Compared with a
bidirectional gated recurrent neural network, the deep learning model based on the self-attention
mechanism with DCNN-GRU accomplishes a reduction of 0.7% in CER. And finally, this experiment
is performed on a test set analyzed the influencing factors affecting the CER. The experimental results
show that this model exhibits good performance in various noise environments and accent conditions.

Keywords: self-attention mechanism; CTC; gated circulation units

1. Introduction

Since humans first started creating and using machines, they have held to an ideal: to
develop machines that can understand human language [1,2], follow commands, and thus
enable seamless human–machine communication. With the continuous advancement of
science and technology, the emergence of speech recognition technology has brought this
dream closer to reality [3,4]. Speech recognition technology allows machines to recognize
and understand speech signals, converting them into corresponding text or actionable
commands [5,6].

Speech recognition is an interdisciplinary field that is gradually evolving into a key
technology for human–computer interaction in the realm of information technology [3]. The
combination of speech recognition and speech synthesis technologies allows people to move
away from traditional keyboard input, enabling control through voice commands [7–10].
As a result, the application of speech technology has become a competitive and rapidly
growing high-tech industry [2,6].
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Large-scale research in speech recognition began in the 1970s, with substantial progress
made in recognizing individual words [1,6,11]. However, since the 1990s, progress in speech
recognition research has slowed. Despite this, significant advances have been made in
the application and commercialization of speech recognition technology [12–14]. Since
2009, breakthroughs in deep learning research [15,16], combined with the accumulation of
vast amounts of speech data, have propelled speech recognition technology forward [4,17].
Deep learning leverages pre-trained multi-layer neural networks to significantly improve
the accuracy of acoustic models [6,12,18].

The main contribution of this paper is the proposal of an innovative deep learning
algorithm, the composite deep neural network (DCNN-GRU-Self-Attention), designed to
improve the accuracy and efficiency of speech recognition. This algorithm combines gated
recurrent units, deep convolutional neural networks [19,20], and a self-attention mechanism.
Composite deep neural networks optimize the processing power of traditional acoustic
models in several ways, particularly by efficiently processing complex speech sequence
data, effectively capturing long-term dependencies, and enhancing multi-scale feature
recognition. This network framework not only improves the model’s ability to handle
complex speech sequences and capture long-term dependencies but also significantly
enhances the quality of speech recognition through the self-attention mechanism.

In summary, our research makes the following major contributions.
First, the DCNN-GRU-Self-Attention model proposed in this paper innovatively

addresses the limitations of traditional deep neural networks in processing complex speech
sequence data by combining gated recurrent units, deep convolutional neural networks [21],
and the self-attention mechanism. This combination not only demonstrates excellent multi-
scale analysis capabilities but also significantly improves the accuracy and quality of
speech recognition through precise feature extraction and the efficient utilization of key
information points [11,22].

Second, DCNN-GRU-Self-Attention optimizes the extraction of speech data features
in a simulated speech recognition environment by incorporating a replicated Google
SpecAugment data enhancement algorithm [15]. The adoption of this augmented feature
algorithm effectively increases the diversity of the training data through operations such
as time masking, frequency masking, and time warping, enabling the model to perform
exceptionally well in processing the speech data in Aishell-1 and significantly improving
the accuracy and efficiency of speech recognition.

Third, beyond basic speech feature extraction, our DCNN-GRU-Self-Attention model
also incorporates the Connectionist Temporal Classification algorithm [23,24]. CTC offers
the advantage of eliminating the need for aligned labels, handling variable-length inputs
and outputs, and supporting end-to-end training, which simplifies data processing and
annotation while further optimizing speech recognition performance and enhancing the
accuracy and robustness of recognition. Finally, this study compares the traditional con-
volutional neural network model and bidirectional gated recurrent unit model using the
Aishell-1 dataset, fully demonstrating the superior performance of the DCNN-GRU-Self-
Attention model.

In this paper, we first introduce the research background and the limitations of existing
methods, followed by a detailed description of our proposed DCNN-GRU-Self-Attention
model and its innovations, particularly in combination with the Connectionist Temporal
Classification algorithm. Next, we present the experimental setup and analyze the results
to verify the superiority of our model by comparing it with deep convolutional neural
networks and bidirectional gated recurrent unit neural networks. Finally, we summarize
the research contributions and propose directions for future research.

2. Model Structure and Algorithms

This section proposes an innovative deep learning model, the DCNN-GRU-Self-
Attention model, which combines the Connectionist Temporal Classification algorithm,
the self-attention mechanism, and DCNN-GRU to improve the accuracy and robustness
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of speech recognition [25]. The components of the model and their respective roles are
described in detail, and the superiority of the model is verified through experiments.

2.1. Connection Timing Classification Algorithm

Connectionist Temporal Classification is an unsupervised learning method for pro-
cessing sequence data [23]. It is an end-to-end algorithm that maps an input sequence
to an output sequence. A core idea of CTC is to treat mapping an input sequence to an
output sequence as an alignment process, establishing a correspondence between the input
and output sequences. However, in practice, input and output sequence lengths are often
inconsistent, requiring specific processing by CTC.

In the CTC algorithm, an input sequence and an output sequence do not need to be in
one-to-one correspondence [23]; a CTC algorithm introduces a BLANK character as a blank
character to be added to a set of characters such that L∗ = L

⋃{B}.
Suppose an input sequence X = {x1, x2, . . . . . .xT} has length T, and a label sequence

L = {ψ1, ψ2, . . . . . .ψN} has length N and N < T. Insert a blank character B such that
L∗ = L

⋃{B} = {ψ1, ψ2, . . . . . .ψN}
⋃{B1, B2, . . . . . .BM}. The length is N∗ and N∗ = T.

Then, an infinite number of labeled sequential probabilistic paths can be obtained according
to an arithmetic mechanism of the CTC algorithm [5].

CTC LOSS is defined as the sum of probabilities of all paths. Assuming T moments,
outputs of each moment are independent from each other, and a probability between single
paths is P(π|X):

P(π|X) = ΠT
t=1 φ, ∀φεL∗T (1)

L∗T is a character set, and φ is a probability of a single character predicted by a single
path at moment t. Then, a sum of all path probabilities is P(Z|X):

P(Z|X) = ∑
πεB(Z)−1

P(π|X) (2)

B−1 is a mapping function of all paths of Z. Then, the CTC LOSS function is as follows:

Ln(s) = −Ln ∏
(X,Z)ϵS

P(Z|X) (3)

Ln(s) = −Σ(X,Z)ϵSLnP(Z|X) (4)

Ln(s) = −Σ(X,Z)ϵSLnΣπϵB(Z)−1 P(π|X) (5)

Ln(s) = −Σ(X,Z)ϵSLnΣπϵB(Z)−1 Πt=1 φ, ∀πϵL∗ (6)

In a decoding phase, prefix search decoding is used to find the best path probability,
an optimal solution, that is, PMAX(π|X) π is a certain path:

PMAX(π|X) = argmaxP(π|X), ∀πϵL∗ (7)

2.2. Self-Attention Mechanism

The self-attention mechanism is a crucial technique in deep learning, particularly in
the field of natural language processing [12,16]. It enables the model to focus on different
parts of an input sequence to better understand the input and generate an appropriate
output [10]. A fundamental idea behind the self-attention mechanism is that, for a given
word, this model considers all words in its context and calculates the relevance scores
between these words and the target words. Each part of an input sequence is then weighted
according to these scores to produce a representation of words.

A key advantage of the self-attention mechanism is its ability to capture long-range
dependencies in an input sequence. By weighting the entire input sequence, it can effec-
tively capture dependencies over longer distances within a sentence or text. This capability
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enables the self-attention mechanism’s superior performance when dealing with complex
linguistic structures and long sequences.

There are several implementations of a self-attention mechanism, with the most
common being Scaled Dot-Product Attention and Multi-Head Attention. Scaled Dot-
Product Attention computes a dot product between an input sequence and a query vector,
then obtains a weight distribution through the Softmax function [25]. Multi-Head Attention
divides an input sequence into multiple sub-sequences, applies multiple independent
self-attention mechanisms to each sub-sequence, and then stitches these results together to
form the final output.

The structure of the self-attention mechanism is shown in Figure 1. Define an input
sequence X = {x1,x2, . . . . . .xT}, xiϵRdmodel and define three weight matrices Wq, Wk, Wv

such that query=Xi*Wq, key =Xi*Wk, Value = Xi*Wv, where WqϵRdmodel∗dk , WkϵRdmodel∗dk ,
and WvϵRdmodel∗dv . Then, we can obtain an attention score calculation formula:

Score(Xi, Xj) = so f tmax{qi ∗ qj} (8)

In the eighth formula, we normalize it to obtain the ninth formula:

Score(Xi, Xj) = so f tmax{(qi ∗ qj)/
√

dk} (9)

dk is a dimension of an embedding vector. The final output is out:

Out = Score(Xi, Xj) ∗ V (10)

Out = LayerNorm(Out + Xi) (11)

Similarly, in the FeedForword layer, define 2 weight matrices Fq and Fw. Obtain
F1 = Fq ∗ Xi, F2 = F1 ∗ Fw; finally, the output is out = Layernorm(F2 + Xi).
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Figure 1. Structure diagram of the self-attention mechanism.

2.3. Self-Attention Mechanism with DCNN-GRU

As shown in Figure 2, the self-attention mechanism with DCNN-GRU model diagram
consists of five parts: a convolutional neural network, a gated recurrent neural network,
a self-attention mechanism layer, a fully connected layer, and a Softmax layer. Before
the gated recurrent neural network, we use the convolutional neural network, which is
primarily used to process the input data after they have been enhanced by the replicated
Google SpecAugment data augmentation algorithm. The convolutional neural network
layer employed is a two-dimensional convolutional layer, which serves to spatially localize
input data through convolutional operations to extract local features.
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Figure 2. Self-attention mechanism with DCNN-GRU model diagram.

In this model structure, this convolutional neural network layer consists of two layers,
each with 32 convolutional kernels, a BatchNormalization layer, and a MaxPooling2D layer.
The third and fourth convolutional layers consist of one layer with 64 convolutional kernels,
a BatchNormalization layer, and a MaxPooling2D layer. After this convolutional layer,
there is a Reshape layer that transforms the input data into two dimensions, which are
then fed into a gated recurrent network layer. The gated recurrent network layer has 128
output units.

The use of the gated recurrent neural network helps to better capture long-term
dependencies in time series data, thereby improving this model’s performance. This also
addresses the vanishing gradient problem often encountered in recurrent neural networks,
enabling this model to better handle long sequences of data.

Following this, there is a five-layer self-attention mechanism. The self-attention
mechanism layer computes the correlations between positions in parallel, without relying
on the sequential processing required by traditional recurrent neural networks. This allows
this model to better handle long sequential data and capture global dependencies. It
captures interdependent features over long distances in a sentence by calculating the
weight of each word concerning all other words.

The last two layers are a fully connected layer and a Softmax layer. This fully connected
layer connects all neurons of the previous layer to all neurons in the current layer, allowing
the neural network to learn complex relationships and combinations of features. It maps
the extracted “distributed feature representations” to a sample label space. This Softmax
layer then extends the dimensionality of the output data from the fully connected layer
to match the number of classes in the sample space and computes the probability of the
samples of the output data using the Softmax function.

2.4. Convolutional Neural Networks and Bidirectional Gated Recurrent Neural Networks

Figure 3 represents the structure of the bidirectional gated recurrent neural network,
which consists of 11 layers: 4 convolutional neural network layers, 2 bidirectional gated
recurrent neural network layers, 3 fully connected neural network layers, and 1 Softmax
layer. The first 2 convolutional neural network layers have 32 convolutional kernels,
followed by 2 more convolutional neural network layers with 64 convolutional kernels.
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Figure 3. Deep convolutional neural network and two-way gated recurrent neural network.

After these convolutional layers, there is a fully connected neural network layer with
128 output units, followed by a 2-layer bidirectional gated recurrent neural network, a
3-layer fully connected neural network with 128 output units, and finally, a Softmax layer
with 1,437 output units.

Figure 4 shows the structure of a deep convolutional neural network with 12 layers,
including 10 convolutional neural network layers with the following number of convolu-
tional kernels: 32, 32, 64, 64, 128, 128, 128, 128, 128, and 128. There is also a fully connected
network layer with 128 output units, and a Softmax layer with output units corresponding
to the number of characters in some sample data. The role of the Softmax layer is to
calculate the probability of each character in the output units.

32
32

32
32

64 6464 64 128 128128 128128 128 128 128128 128128 128 128 128128 128128 128

Maxpooling 
Layer

Deep CNN Layer

Softmax 
Layer

Softmax 
Layer

CTC   Loss

Dense
Layer

Figure 4. Deep convolutional neural network.

A bidirectional gated recurrent neural network combined with a deep convolutional
neural network and a fully connected neural network is similar to a 12-layer convolutional
neural network, except that the core components differ.

2.5. Chinese Pinyin

Chinese pinyin was chosen as the output for the experiment because pinyin and
Chinese characters complement each other. Pinyin is a standardized phonetic system that
helps people from different dialect areas communicate using a unified language. With
pinyin, we can quickly pronounce Chinese characters, thus increasing reading speed. For
beginners, pinyin can help them understand the meaning of Chinese characters faster. By
learning pinyin, we can better memorize the pronunciation and spelling rules of Chinese
characters, thus mastering them more effectively. In the model structure used in the
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experiment, the number of pinyin is 1437 while the number of Chinese characters is
larger, indicating that many Chinese characters share the same pinyin. Choosing a smaller
set of pinyin samples as the model output helps to reduce training time and improve
recognition efficiency. For different model structures, it is critical to quickly recognize
Chinese characters that share the same pinyin.

3. Related Work

In the field of neural networks, self-attention mechanisms and gated logic units
are two key techniques that have been widely studied and applied. The self-attention
mechanism allows models to dynamically adjust attention weights according to correlations
at different locations in an input sequence, thus better capturing dependencies within
the sequence. Convolutional neural networks process data through local connectivity,
capturing local features in the input data. Gated logic units, on the other hand, control
the flow of information through gating mechanisms, helping the network to better handle
long-distance dependencies and the transfer of sequence information.

Researchers have begun to explore ways to combine self-attention mechanisms with
DCNN-GRU to achieve better performance and generalization capabilities in the design of
neural networks. The goal of this combination is to leverage the self-attention mechanism
while further regulating the flow of information through DCNN-GRU, thereby enhancing
the modeling and characterization capabilities of the model.

Research has shown that models combining self-attention mechanisms with DCNN-
GRU have achieved success in various natural language processing tasks. For example,
in machine translation tasks, models that integrate the self-attention mechanism with
DCNN-GRU can better capture semantic relationships between source and target lan-
guages, improving translation quality and fluency. In text categorization and sentiment
analysis tasks, this combined model can more accurately capture critical information and
sentiment tendencies in the text, thereby enhancing categorization and sentiment analy-
sis performance.

Although progress has been made, research on combining self-attention mechanisms
with DCNN-GRU still faces challenges and unresolved issues. For instance, effectively
designing the model structure, adjusting model hyperparameters, and addressing problems
like gradient vanishing and gradient explosion require further exploration and research.

Therefore, future work will continue to explore the combination of self-attention
mechanisms with DCNN-GRU and address related challenges to provide more effective and
reliable solutions for applying neural networks in natural language processing and other
fields. Through further research and experimentation, we aim to improve the performance
and generalization ability of this model and advance the development and application of
neural network technology in practical contexts.

4. Experimental Steps
4.1. Dataset

The AISHELL-1 dataset is a valuable resource in the field of speech recognition and
speech processing, particularly for Mandarin Chinese. Developed by the Institute of
Automation of the Chinese Academy of Sciences, it provides over 178 h of high-quality
speech data, recorded by 400 participants from diverse backgrounds. Each participant
contributed around 300 sentences, covering a wide array of topics, ensuring that this dataset
is both diverse and generalizable.

Recordings of AISHELL-1 dataset were conducted in a quiet room environment,
using three different devices to mimic various real-world recording conditions. This
approach enhances its applicability to real-world scenarios, making it particularly useful
for developing and testing Mandarin Chinese speech recognition systems.
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4.2. Model Parameters

The convolutional neural networks used for all three sets of experimental model
structures have convolutional kernels of 32, 32, 64, and 64. The step size of these networks
is 1 × 1, and all pooling layers have a pool size of 1. The number of output units for the
fully connected network is 1437, and the ReLU function is used as its activation function.

For the self-attention mechanism, three weight matrices are employed with three fully
connected neural networks, and the number of output units is 128. The dropout is set to
0.2. The dimension of the hidden layer in this feed-forward layer is 128.

4.3. Training and Decoding

The experiments were performed using a replicated Google SpecAugment data en-
hancement algorithm on audio data, with a time window of 25 ms and various masking of
the spectrograms—15% masking of a frequency range horizontally and 15% masking of a
period vertically. Half of the extracted frequency feature data were used, as both sides are
symmetric. The input data were three-dimensional to store more information about the
data. All experiments were conducted using the TensorFlow 2 framework, with the NVIDIA
AX5000 GPU. We used the ADAM optimizer with a learning rate ranging between 0.001 and
0.0000001 to train on this dataset. Additionally, we employed a dropout layer and a batch
normalization layer to improve the performance of this model structure in experiments
involving network models with self-attention mechanisms and DCNN-GRU. The batch
normalization layer was used in deep convolutional neural networks and bidirectional
gated recurrent neural networks to enhance the performance of the model structure.

The prefix search decoding algorithm is used to decode output data from three sets of
neural networks. This algorithm is based on a prefix tree data structure, which leverages
the properties of prefixes to enable quick search and decoding, making it suitable for
processing large-scale sequential data. The prefix search decoding algorithm can accurately
find the longest matching prefix sequence, thus ensuring accuracy in decoding. To obtain
information on Chinese characters, the experiment also incorporates a 2-Gram model,
which uses the 2-Gram algorithm primarily to convert pinyin into Chinese characters.

5. Analysis of Results

We conducted experiments to compare the efficiency and accuracy of three models on
Chinese datasets. Figures 5 and 6 show the training times of the three models for each step
and round of the training set. The bar graphs reveal that as the number of neural network
layers increases, the training time for deep convolutional neural networks is significantly
shorter than that of bidirectional gated recurrent neural networks. Notably, the training
time for self-attention mechanisms with DCNN-GRU is shorter than that of Bi-GRUs.

The reason for this difference is that CNNs typically handle image data and may
not require sequence-to-time-step conversion like RNNs do. Due to their structural char-
acteristics, CNNs can speed up the training process. In contrast, Bi-GRUs may contain
more parameters due to their bidirectional structure, resulting in longer training times.
Self-attention mechanisms with DCNN-GRU networks, in general, are more complex than
Bi-GRUs. The self-attention mechanism within these networks captures relationships
between different positions in an input sequence, making them better at handling long-
distance dependencies. As a result, the training time for self-attention mechanisms with
DCNN-GRU networks is usually a bit shorter than that of Bi-GRUs.



Big Data Cogn. Comput. 2024, 8, 195 9 of 13

1000

900

800

700

600

500

400

300

200 

100  

552

801

512

Deep_CNN BIGRU DCNN-GRU-Self-Attention

ms/step
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The time for Bi-GRUs is about 1.45 times that of DCNNs, both in terms of the time
per step and time per round. The time for the self-attention mechanisms with DCNN-GRU
networks is slightly shorter than that of Bi-GRUs, and about 0.92 times that of DCNNs, in
both the time per step and time per round. This suggests that while DCNNs process data
quickly, they may struggle with contextual information and are more susceptible to local
minima, leading to an unstable training process.

Bidirectional gated recurrent neural networks are capable of capturing long-term
dependencies in input sequences. Being able to process sequential data, they can automati-
cally learn historical information and use it to predict future outcomes. However, they are
prone to gradient vanishing or explosion problems, leading to longer training times and
higher computational complexity. Self-attention mechanisms with DCNN-GRU networks,
by capturing relationships between different positions in an input sequence, are better
suited to handling long-distance dependencies.

5.1. Analysis on the Pinyin Sequence

This CER is obtained by calculating a substitution error rate, an insertion error rate,
and a deletion error rate of the model on the test set. The former is a sum of the latter three
calculations. Table 1 shows the values of three neural network models on CER, where it is
evident that the substitution error rate is the most dominant part of CER and also varies
the most between each model. This suggests that the similar pinyin part within the same
neural network model could be a deficiency of the model. For the AISHELL-1 dataset,
when speakers pronounce Chinese, some words share the same pinyin, but some pinyin
has tones while others do not, which is a significant factor influencing CER.

Table 1. The table shows pinyin error rates on three neural network models, denoted by CER, where
S stands for substitution error rate, I for insertion error rate, and D for deletion error rate.

Model CER S I D

BIGRU 15.815% 15.081% 0.407% 0.338%
Deep_CNN 20.694% 19.683% 0.366% 0.642%

DCNN-GRU-Self-Attention 15.114% 14.537% 0.228% 0.294%

For Table 2, the substitution error rate of deep convolutional neural network is 19.683%
in CER and 33.002% in WER. This substitution error rate of the bidirectional gated recurrent
neural network is 15.081% in CER and 27.85% in WER. This substitution error rate for the
self-attentive mechanism with the DCNN-GRU neural network is 14.537% in CER and
27.621% in WER.

Table 2. The table shows the difference between the substitution error rate for the pinyin error rate
and the substitution error rate for the word error rate on three neural network models, denoted by S
(substitution error rate), CER (pinyin error rate), and WER (word error rate).

Model S (CER) S (WER) Difference

BIGRU 15.081% 27.85% 12.769%
Deep_CNN 19.683% 33.002% 13.319%

DCNN-GRU-Self-Attention 14.537% 27.621% 13.084%

For Table 3, the deep convolutional neural network has an insertion error rate of
0.366% in CER and 0.295% in WER. This insertion error rate of the bidirectional gated
recurrent neural network is 0.407% in CER and 0.297% in WER. The insertion error rate for
the self-attentive mechanism with the DCNN-GRU neural network is 0.288% in CER and
0.202% in WER.
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Table 3. The table shows the difference between the insertion error rate for the pinyin error rate and
the insertion error rate of the word error rate on three neural network models, denoted by I (insertion
error rate), CER (pinyin error rate), and WER (word error rate).

Model I (CER) I (WER) Difference

BIGRU 0.407% 0.297% 0.11%
Deep_CNN 0.366% 0.295% 0.071%

DCNN-GRU-Self-Attention 0.288% 0.202% 0.086%

For Table 4, the deep convolutional neural network has a deletion error rate of 0.642%
in CER and an insertion error rate of 0.431% in WER. This bidirectional gated recurrent
neural network has a deletion error rate of 0.338% in CER and 0.23% in WER. The self-
attentive mechanism with DCNN-GRU neural network has a deletion error rate of 0.294%
in CER and 0.214% in WER.

Table 4. The table shows the difference between the deletion error rate of the pinyin error rate and
the deletion error rate of the word error rate on three neural network models, denoted by D (deletion
error rate), CER (pinyin error rate), and WER (word error rate).

Model D (CER) D (WER) Difference

BIGRU 0.338% 0.230% 0.108%
Deep_CNN 0.642% 0.431% 0.211%

DCNN-GRU-Self-Attention 0.294% 0.214% 0.08%

For Table 5, this CER of the deep convolutional neural network is 20.694%, while the
CER of the bidirectional gated recurrent neural network is 15.815%, which indicates that
the accuracy of the pinyin sequence of the bidirectional gated recurrent neural network is
higher than that of the deep convolutional neural network.

Table 5. The table shows the difference between pinyin error rates on a bidirectional gated recurrent
neural network model and a deep convolutional neural network model, where CER stands for the
pinyin error rate.

Index BIGRU Deep_CNN Difference

CER 15.815% 20.694% 4.879%

For Table 6, this CER of the two-way gated recurrent neural network is 15.815%, while
the CER of the self-attention mechanism with the DCNN-GRU neural network is 15.114%,
which indicates that the accuracy of the pinyin sequence of the self-attention mechanism
with the DCNN-GRU neural network is higher than that of this two-way gated recurrent
neural network.

Table 6. The table shows the difference in the pinyin error rates, represented by CER, between a
bidirectional gated recurrent neural network model and a self-attentive mechanism with the DCNN-
GRU neural network model.

Index BIGRU DCNN-GRU-Self-Attention Difference

CER 15.815% 15.114% 0.707%

For Table 7, this CER of the deep convolutional neural network is 20.694%, while the
CER of the self-attention mechanism with the DCNN-GRU neural network is 15.114%,
which indicates that the accuracy of the pinyin sequence of the self-attention mechanism
with the DCNN-GRU neural network is higher than that of the deep convolutional neu-
ral network.
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Table 7. The table shows the difference in pinyin error rates, represented by CER, between a deep
convolutional neural network model and a self-attention mechanism with the DCNN-GRU neural
network model.

Index Deep_CNN DCNN-GRU-Self-Attention Difference

CER 20.694% 15.114% 5.58%

5.2. Analysis on the FLOPs

The DCNN-GRU-Self-Attention model boasts approximately 24.54 billion FLOPs,
incorporating various deep learning architectures. In comparison, its overall computational
expense is less than that of the DCNN model but slightly exceeds the BIGRU model. This
underscores that integrating the self-attention mechanism has not drastically escalated the
computational burden, while imparting greater expressive capability, thereby enhancing
the model’s capacity to capture temporal dynamics and feature correlations.

Conversely, the DCNN model, with approximately 47.69 billion FLOPs, incurs double
the computational cost of the DCNN-GRU-Self-Attention model. This highlights the
substantial computational demands of the DCNN model, particularly when dealing with
numerous convolutional kernels or extensive feature maps, both of which significantly
amplify the computational overhead. While the DCNN excels in feature extraction, it incurs
a significant computational expenditure.

The BIGRU model, with approximately 24.22 billion FLOPs, aligns closely with the
DCNN-GRU-Self-Attention model and falls below the DCNN model in terms of computa-
tional expense. This suggests that the GRU structure is less resource intensive in processing
sequential data, making it well suited for constrained environments. Despite its modest
computational cost, BIGRU remains effective in modeling long-term sequences, offering a
commendable balance between computational efficiency and performance.

6. Conclusions

In this experiment, we introduced a neural network model based on the self-attention
mechanism with DCNN-GRU applied to a Chinese dataset. The results, derived from
170 h of the AISHELL-1 Chinese dataset, show that our self-attention mechanism with
DCNN-GRU model outperforms a bidirectional gated recurrent neural network model
and a deep convolutional neural network model. The predictions of this model output are
based on CER, highlighting the importance of capturing contextual information, especially
in the context of Chinese speech recognition. These experiments confirm that the self-
attention mechanism with DCNN-GRU model exhibits superior performance with the CTC
algorithm in Chinese speech recognition. It is worthwhile to further study and explore
deeper neural network models to achieve even better results in Chinese speech recognition.
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