
Citation: Morinaga, T.; Patanukhom,

K.; Somchit, Y. Analyzing the

Attractiveness of Food Images Using

an Ensemble of Deep Learning

Models Trained via Social Media

Images. Big Data Cogn. Comput. 2024,

8, 54. https://doi.org/10.3390/

bdcc8060054

Academic Editors: Robail Yasrab and

Md Mostafa Kamal Sarker

Received: 18 March 2024

Revised: 21 May 2024

Accepted: 22 May 2024

Published: 27 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Analyzing the Attractiveness of Food Images Using an Ensemble
of Deep Learning Models Trained via Social Media Images
Tanyaboon Morinaga 1, Karn Patanukhom 2,3,* and Yuthapong Somchit 2

1 Data Science Consortium, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
tanyaboon_m@cmu.ac.th

2 Department of Computer Engineering, Faculty of Engineering, Chiang Mai University,
Chiang Mai 50200, Thailand; yuthapong@eng.cmu.ac.th

3 Advanced Technology and Innovation Management for Creative Economy Research Group,
Chiang Mai University, Chiang Mai 50200, Thailand

* Correspondence: karn.patanukhom@cmu.ac.th

Abstract: With the growth of digital media and social networks, sharing visual content has become
common in people’s daily lives. In the food industry, visually appealing food images can attract
attention, drive engagement, and influence consumer behavior. Therefore, it is crucial for businesses
to understand what constitutes attractive food images. Assessing the attractiveness of food images
poses significant challenges due to the lack of large labeled datasets that align with diverse public
preferences. Additionally, it is challenging for computer assessments to approach human judgment
in evaluating aesthetic quality. This paper presents a novel framework that circumvents the need for
explicit human annotation by leveraging user engagement data that are readily available on social
media platforms. We propose procedures to collect, filter, and automatically label the attractiveness
classes of food images based on their user engagement levels. The data gathered from social media are
used to create predictive models for category-specific attractiveness assessments. Our experiments
across five food categories demonstrate the efficiency of our approach. The experimental results show
that our proposed user-engagement-based attractiveness class labeling achieves a high consistency
of 97.2% compared to human judgments obtained through A/B testing. Separate attractiveness
assessment models were created for each food category using convolutional neural networks (CNNs).
When analyzing unseen food images, our models achieve a consistency of 76.0% compared to human
judgments. The experimental results suggest that the food image dataset collected from social
networks, using the proposed framework, can be successfully utilized for learning food attractiveness
assessment models.

Keywords: CNNs; image aesthetic quality assessment; social media; food image; image classification;
attractiveness

1. Introduction

In the era of digital media and social networks, the proliferation of visual content
has been unprecedented. A massive number of images are shared daily on platforms like
Instagram, Facebook, and X (formerly Twitter), capturing various aspects of our lives,
from personal moments to artistic expressions. One domain that has witnessed a surge
in visual content sharing is the restaurant and food industry. Restaurants increasingly
rely on visually appealing images of their dishes and ambiance to attract customers and
promote their brand on social media [1], where people share and communicate through
images. One key aspect of food content on social media is its attractiveness, which is often
determined by the visual appeal of the food images. Attractive food images can attract
attention, engagement, and even drive sales for businesses that rely on food as a product or
service [2]. As a result, it is important for businesses and individuals to understand what
makes a food image attractive to their audience.
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Currently, convolutional neural networks (CNNs) are state-of-the-art in many image
classification tasks, showing remarkable success in various fields, such as facial recogni-
tion [3,4], medical applications [5–7], or agricultural applications [8–10]. A CNN is a type
of artificial neural network that utilizes convolutional layers in the model. The convo-
lutional layers result from the convolution of the input with various kernels. Applying
convolutional layers to neural networks can reduce the number of trainable parameters in
comparison with fully connected layers since convolutional layers allow multiple weights
to share values. For image recognition tasks, the two-dimensional convolution operator
allows neural networks to learn local patterns such as edges, textures, or shapes that appear
in the input data. Cascading multiple convolutional layers and down-sampling layers
makes neural networks capture more complex patterns of shapes or textures. For food
images, CNNs can be utilized for food category or menu recognition [11–13], calorie es-
timation [14,15], or attractiveness assessments [16,17]. In supervised learning scenarios,
where CNNs excel, the model’s accuracy heavily depends on the volume and quality of its
training data. Although there are many labeled datasets for food category or menu recogni-
tion tasks, such as ISIA Food-500 [18], which contains 399,726 images from 500 classes of
foods, Food2K [19], which contains more than 1 million images from 2000 classes of foods,
or FruitVeg-81 [20], which contains 15,737 images from 81 classes of vegetables and fruits,
there are few datasets that can be used for food attractiveness assessments. The reason for
this is that the preparation of such datasets for assessing food image attractiveness can be
labor-intensive and challenging. It requires not only collecting a vast number of food im-
ages but also ensuring that these images are labeled accurately. More importantly, the labels
need to align with the diverse and subjective preferences of the general public rather than
relying solely on the opinions of a few (expert) annotators, like menu classification tasks.

This research presents a novel data-driven approach that circumvents the need for
explicit human annotation by leveraging user engagement data that are readily available on
social media platforms. It demonstrates that food images appearing on social media plat-
forms, along with their corresponding user engagement metrics such as the number of likes,
can be applied to train models to evaluate their attractiveness. However, appropriate data
processing is necessary since the level of user engagement can be influenced by factors other
than the attractiveness of the image itself, particularly the poster’s identity, the duration
the post has been up, or the polarity of engagement (positive or negative sentiments).

This work presents a novel method for preparing food image datasets and using CNN
training, bypassing the need for manual labeling by utilizing poster engagement data
from social media as indicators of the visual attractiveness of the images. We also propose
procedures to collect images as training data, automatically label attractiveness classes for
the training data, and create an attractiveness assessment model. We also proposed methods
to mitigate the previously mentioned bias factors. Regarding the popularity of posters that
can affect the number of engagements, we propose separately ranking the engagement of
images among individual posters and developing multiple predictive models based on each
poster’s dataset independently. Additionally, for the time of posting and duration since
posting, which might impact the number of engagements, the recently posted images are
removed from the training data to ensure that the level of user engagement for each image
is stable and reflective of its actual attractiveness level. To simplify the problem, in this
work, we first focus on studying the category-specific attractiveness assessment models
and test them on five food categories, including sushi, ramen, pizza, burger, and cake.

To summarize the contributions of this work, they are as follows:

1. We propose a novel end-to-end framework for analyzing the attractiveness of food
images, which includes data collection, filtering, automatic labeling, and predictive
ensemble model development.

2. We conduct experiments to demonstrate that the food image dataset collected from
social networks can be automatically annotated and utilized to develop the attractive-
ness assessment model in a supervised manner.



Big Data Cogn. Comput. 2024, 8, 54 3 of 20

3. We conduct experiments using Grad-CAM to visualize the important regions in the
food images that affect the attractiveness score.

The paper is organized as follows: Section 2 will present some existing research
related to this work, Section 3 will present the proposed food attractiveness assessment
methodology, Section 4 will present our experiment and results, and the conclusion of this
work will be presented in Section 5.

2. Literature Review

In general, there are two perspectives in image assessment. The first one, image
quality assessment (IQA) [21–23], focuses on the perceptual quality affected by factors
such as noise, distortion, blur, compression, etc. The other is image aesthetic quality as-
sessment (IAQA) [24–29], which measures image quality in artistic aspects affected by
lighting conditions, color settings, camera direction, image composition, etc. Human judg-
ments of aesthetic quality depend on their experiences and may differ among individuals.
The techniques for computer-based IAQA can be categorized into two groups: handcrafted
feature-based methods [24,25] and deep learning-based methods [26,29]. Our work can be
considered a type of IAQA, which we call food image attractiveness assessment.

Currently, numerous studies have presented guidelines for image processing, focus-
ing on aesthetics and attractiveness assessments. These studies involve creating training
datasets to evaluate aesthetics and testing them with various machine learning algorithms
and visual features. It has been concluded that these methods can perform effectively. One
notable work is the study by Sheng et al. [30], who introduce the Gourmet Photography
Dataset (GPD). This large-scale dataset is specifically designed for assessing the aesthetics
of food images. The GPD contains 12,000 food images aesthetically scored by human anno-
tators on Amazon Mechanical Turk. It serves as a benchmark for training and evaluating
models for food image aesthetic assessment and has been utilized in various challenges. In
this study, various machine learning models are tested on the GPD. CNN-based models
can achieve testing accuracy in the range of 77.25–90.79%.

Another work by Sheng et al. [31] introduces a new regularization method to improve
model generalization on aesthetic assessment tasks. This work elaborates on the difficulties
of distinguishing aesthetically pleasing food images and the limitations of the datasets
available for this purpose. The GPD presented here contains 24,000 images, an increase
from the initial offering, emphasizing binary aesthetic labels across a broad range of food
types and scenes. A novel contribution of this paper is the introduction of a non-stationary
regularization method, adaptive smoothing regularization (ASR), which is designed to
combat overfitting and enhance model generalization. The paper demonstrates that neural
networks trained with ASR on the GPD can achieve comparable performance to human
experts, offering insights and support for further research in visual aesthetic analyses of
food images.

The work of Takahashi et al. [16,17] presents methods for estimating food image
attractiveness based on the visual characteristics of main ingredients and image feature
analysis. Their innovative approach combines analysis of the overall food image impres-
sion with a detailed evaluation of the main ingredient, enriching the understanding of
aesthetic appeal in food images, which is particularly relevant in social media and digital
marketing contexts. Their method involves extracting image features that focus on both
the appearance of the entire food item and its main ingredients. Attractiveness is then
estimated through a regression scheme that integrates these features. A specially con-
structed and publicly released food image dataset, containing images of ten food categories
taken from 36 angles with accompanying attractiveness values, was used for evaluation.
The results demonstrated the effectiveness of integrating two kinds of image features for
estimating the attractiveness of food images. The quantitative outcomes of their research
are compelling. The average mean absolute error (MAE) of the proposed method was 0.087,
significantly outperforming the comparative method, with an MAE of 0.344. This indicates
superior accuracy in estimating food image attractiveness by considering specific food
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image characteristics rather than general aesthetic qualities. The research suggests that the
attractiveness of food photography can be quantified and predicted with a high degree of
accuracy using the proposed method. This capability can support systems that recommend
the best camera framing for capturing attractive food images or assist in selecting the most
appealing image from a set, ultimately enhancing the visual appeal of food images shared
on social media platforms.

Philp et al. [32] examine the relationship between the visual characteristics of food
images on Instagram and social media engagement. They utilize Google Vision AI, an im-
age classification machine learning algorithm, to analyze the confidence of food image
classification and use it as a proxy for the visual typicality of food images. Their findings
suggest that images deemed more visually typical are positively associated with higher
social media engagement. The quantitative analysis reveals a positive correlation: as the
visual typicality of food images increases, so does engagement, as measured through likes
and comments. Specifically, the study highlights that for each unit increase in food typical-
ity, there is a significant uptick in the number of both likes and comments. This challenges
the prevailing notion in marketing that uniqueness drives engagement, suggesting instead
that familiarity may be equally, if not more, compelling in attracting audience interaction
on social platforms.

The work of Attokaren et al. [33] presents a comprehensive study on food classifica-
tion CNNs, highlighting the importance of accurate food monitoring for health reasons.
The authors discuss the challenges in food image classification, the potential of CNNs to
overcome these challenges, and the applications of this technology in health monitoring
and dietary management. Utilizing the Food-101 dataset and a pre-trained InceptionV3
model [34], they achieve an accuracy of 86.97% in food image classification. This research
not only demonstrates the effectiveness of CNNs in classifying food images but also em-
phasizes their importance for applications in smart dietary management technologies.
The high accuracy achieved underscores the potential of leveraging CNNs for enhancing
food recognition systems, thereby contributing to advanced solutions in health monitoring
and nutritional advice.

Islam et al. [35] develop a CNN model specifically designed to classify food images.
Their work aims to address the significant intra-class variability found within images of
the same food category, a major challenge in image classification. Utilizing the Food-11
dataset and employing the pre-trained InceptionV3 model, they demonstrate the poten-
tial of CNNs to effectively extract spatial features from food images. This research is
particularly significant for social media platforms and restaurants, providing a tool for
identifying and categorizing food images, which can be beneficial for targeted advertising
and enhancing user engagement. The experimental results were impressive, with the pre-
trained InceptionV3 model achieving an accuracy of 92.86%, significantly outperforming
the scratch-built CNN model, which achieved an accuracy of 74.70%. This highlights the
effectiveness of using pre-trained models for food image classification in overcoming the
challenges of significant intra-class variability within food categories.

From the related work presented in this section, we can observe the high potential of
CNN models for analyzing food images. Unfortunately, there are few studies related to
the assessment of attractiveness in food images. To the best of our knowledge, there is no
work that has proposed a procedure to utilize social media data without real attractiveness
annotations to train an attractiveness assessment model.

3. Proposed Methods
3.1. Overview

Our proposed methods consist of two phases: the learning phase and the inference
phase. The illustrations of each phase are shown in Figures 1 and 2. In the learning phase,
we collect data from multiple posters within the target food categories. Subsequently, data
cleaning and automatic labeling processes are applied to the dataset. Finally, multiple
models are trained using data from each poster to train individual models. As a result,
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if data are collected from N posters, there will be N models for the assessment of attractive-
ness. In the inference phase, the target unseen image is input to each model, resulting in N
predictions. Then, a voting ensemble is utilized to combine the results from the N models,
producing the final prediction of the attractiveness class. The details of each process will be
described in the following sections.

Figure 1. Overview of the learning phrase of the proposed attractiveness assessment model.

Figure 2. Overview of the inference phrase of the proposed attractiveness assessment model.

3.2. Data Collection

In the data collection process, we have to search for user accounts of potential food
image posters for the target food category on a specific social media platform. The process
starts by searching for public images using the target food category name (e.g., sushi,
ramen, pizza) as a keyword. Poster accounts are collected from the search results for further
investigation. Next, the images posted on each account are inspected to determine whether
the poster primarily focuses on a target food category. Data collection efforts focus on
accounts dedicated to reviewing and showcasing specific types of food, as these accounts
tend to feature a concentrated collection of images within a particular food category. If a
poster consistently posts images of a target food category, and the number of relevant
images exceeds the threshold Mmin, the account is considered suitable for inclusion in
our data collection process. The value of Mmin can vary depending on the social media
platforms and the target food categories. Increasing the value of Mmin can improve the data
quantity for individual model training but may decrease the number of models used in the
voting ensemble process as the number of qualified posters decreases. Since each dataset
from a single poster will be used to train one model, the dataset must only contain images of
a single food category that meet the minimum number threshold (Mmin). For each qualified
poster, we create a dataset that contains the user profiles, the set of posted images, and their
corresponding data, such as the number of likes and comments and the posted date.

3.3. Data Filtering

The initial step in preprocessing involves filtering out irrelevant images:

• Duplicate removal : Any duplicate images are identified using hashing techniques
and subsequently removed to ensure the uniqueness of each image in the dataset.
To ensure that there are no duplicated images, a manual check is performed afterward.

• Irrelevant image exclusion: Images that do not relate to food in the target category,
such as people, scenery, pets, or images from other food categories, are excluded in this
step. This ensures that the dataset strictly focuses on the target food images. In this
paper, a manual filtering process is employed to achieve this exclusion; however, it
can also be performed automatically using machine-learning models [33,36–39].
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• Recency filter: Normally, newly posted images tend to initially have lower engage-
ment levels, but the level of engagement increases rapidly in the early stages. The rate
of increase gradually decreases over time, and once a sufficient amount of time has
passed, the number of engagements tends to stabilize or change minimally. To en-
sure stability in user engagement metrics, recently posted images were excluded.
The optimal timing threshold Tmin can be obtained based on the knee point of the user
engagement curve over the posting duration.

3.4. Automatic Attractiveness Class Labeling

Once the dataset is cleaned, the next step is labeling. As mentioned before, the level
of user engagement cannot be directly used as the level of attractiveness since it may be
influenced by the duration that the post has been up and the poster’s identity. By using the
recency filter in the previous step, we can now assume that the level of user engagement
in the cleaned data is independent of the duration that the post has been up. Addition-
ally, the dataset for training each model for each food type is collected from separate
posters. Each poster may have a different number of followers, which influences the user
engagement level on the images compared to other posters. Using the dataset separately
for each model can reduce the bias associated with using the user engagement level as a
measure of attractiveness. For the same poster, more attractive images typically receive
more user engagement than less attractive ones. As a result, the level of user engagement
for training each model is independent of the poster’s identity and can serve as a potential
representation of the attractiveness level.

To train a model to learn the differences in attractiveness levels, we sort the data based
on their user engagement levels. The images with the top-k percentile user engagement are
labeled as in the highly attractive (H) class while, the images with the bottom-k percentile
user engagement are labeled as in the less attractive (L) class. Now, we have obtained the
labeled data balanced between two classes.

The unlabeled data between the top-k percentile and the bottom-k percentile are
considered the blurred boundary between the distributions of two attractiveness classes
and will not be used for model training. The value of k must be less than 50%. Decreasing
the value of k results in a training dataset with higher confidence in automatic class labeling,
though the number of samples will decrease. This represents a trade-off between the quality
and quantity of the dataset.

3.5. Attractiveness Assessment Model

In this work, we simplify the attractiveness assessment problem into the binary clas-
sification problem of H and L classes. In this work, we utilize CNNs as the classifier
because they are currently state-of-the-art techniques. However, to implement this in
the real world, the classifier can be extended to use other machine learning techniques
as well as CNNs. Any pre-trained CNN-based classifier, such as VGG [40], ResNet [41],
Inception [34], MobileNet [42], or EfficientNet [43], can be utilized as the backbone of our
attractiveness assessment model. In the training phase, N binary classifiers are trained
separately using a labeled dataset collected from each qualified poster. Using a CNN model,
each classifier can learn the difference between highly and less attractive images via visual
features. Training multiple models from different sources may help each individual model
learn attractiveness from different aspects. After all models are trained, we can use them
to predict the attractiveness class of any image. In the inference phrase, the target image
is input to each classifier, with the output being the prediction of class H or L. In the final
step, hard voting is applied to all predicted results to obtain the final attractiveness class. In
addition, we can calculate the attractiveness score ∈ [0, 1] as NH

N , where NH is the number
of models that predict the target image as class H.



Big Data Cogn. Comput. 2024, 8, 54 7 of 20

4. Experiment and Results
4.1. Data Collection

In the experiment, we evaluated the performance of our proposed food attractiveness
assessment procedure on five food categories, which are sushi, ramen, pizza, burger,
and cake. These categories were chosen because they are representative of popular food
types, with a large number of posters meeting our criteria. Additionally, they provide a
diverse range of visual styles and aesthetics, making them suitable for testing our approach
to assessing the visual appeal of food images. We chose Instagram as the social media
platform to collect the data because it is the social media platform where users primarily
communicate by posting images. There are many accounts that specialize in food reviews
of the target categories, ensuring a diverse and representative set of samples.

The data were collected, filtered, and labeled using the process described in Sections 3.2–3.4.
In this experiment, we used Mmin = 1000 for sushi, ramen, burger, and cake, and Mmin = 800
for pizza because the number of pizza images posted is less than the other categories.

The process of collecting the data is shown in Figure 3. We scraped data from Insta-
gram to find posters with the number of images of one food type that satisfy the above
conditions. One food type required 10 posters. We found a total of 50 posters with a total
of 168,361 images of all five food types. Then, the images were processed by data filtering,
and 112,190 (66.6%) remained after the process. Afterward, the data were divided into two
sets: the development set and the A/B testing set.

Figure 3. Data collection and processing flow diagram.

For the development set, five posters per food type were randomly selected to train
five individual classifiers, i.e., one poster for one model. As a result, there are five models for
one food type, with a total of twenty-five models for all five food types. In this experiment,
we used k = 40% for automatic attractiveness class labeling, which means images within
the top 40th percentile were tagged as class H and images within the bottom 40th percentile
were tagged as class L. There are a total of 22,074 images in the development set that were
not tagged into any class and are unused in this experiment. Finally, the development
set was partitioned into a training set and a validation set with a ratio of 1:1, resulting
in 24,100 images for the training set and 24,100 images for the validation set. Half of the
images are class H, and the other half are class L. The number of images for training each
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individual model in each food category is demonstrated in Table 1. For the A/B testing set,
we randomly chose 10 pairs of class H and class L images from each poster, resulting in a
total of 250 H-class images and 250 L-class images.

Table 1. Size of training sets.

Model Sushi Ramen Pizza Burger Cake

Model 1 1400 800 1500 1200 1100

Model 2 1300 700 1120 1500 800

Model 3 600 660 600 800 600

Model 4 800 1800 600 740 900

Model 5 1800 900 400 680 800

Total 5900 4860 4220 4920 4200

In this experiment, we used the number of likes as the positive user engagement
metric, which was converted into the attractiveness class. We examined the curve of the
number of likes over the posting duration. Figure 4 shows the relationship between the
average number of likes and the posting duration (gray line) and the samples of the number
of likes for each image from three posters (color dots). We can observe that the number of
likes changes rapidly over the first five days (knee point) and slows down after seven days.
To ensure stability in the number of likes, images posted less than seven days ago were
excluded (Tmin = 7). By removing these images, we can ensure that the number of likes for
each image in our dataset is stable and reflective of its actual attractiveness level.

Figure 4. Number of image likes, which increased since the image was posted.

We conducted further investigations to confirm that the time and date of posting
do not impact the number of likes. The number of likes from images across our dataset
was plotted against the posting time and day, as shown in Figures 5 and 6, respectively.
The results consistently demonstrate a similar range in the number of likes, regardless of
what time or on what day the posts were made. These findings verify that the time and
day of posting do not affect the number of likes in our datasets.
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Figure 5. Boxplot of the number of likes against the time of posting.

Figure 6. Boxplot of the number of likes against the day of posting.

4.2. A/B Testing

To assess the effectiveness of our model, we conducted A/B testing. For each food
category, we selected 50 pairs (H-class image, L-class image) from the testing set (images
from different posters than those in the training set). We gathered 51 participants to perform
the A/B testing. The participants were blind to the actual like counts of the images. During
A/B testing, 50 pairs of images were shown to the participants, with the order of images in
each pair randomized, as shown in Figure 7. Participants were asked to select the image
they found most attractive in each pair. When we compared the A/B testing results with
our proposed automatic class annotation utilizing the number of likes, there was a 97.2%
consistency between the A/B testing results and the automatic class annotation results. The
consistency percentage is defined as the ratio of the number of images in class H, which
more than 50% of the participants selected as more attractive in A/B testing, to the number
of testing pairs. The detailed results in each category are shown in Table 2. The burger
category has the highest consistency of 100%, while the sushi category has the lowest
consistency of 94%. The results of the A/B testing show that we successfully mapped the
number of likes to the real attractiveness level.

Table 2. The consistency percentage between the A/B testing results and the automatic class
annotation results.

Food Category Sushi Ramen Pizza Burger Cake

Consistency 94% 96% 98% 100% 98%
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Image 1 Image 2

Vote 1 Vote 2

VS

Figure 7. Interface of A/B testing for image attractiveness.

Table 3 shows how variations in the values of the k parameter impact the consistency
of the A/B testing results and the training set size. From these results, it can be concluded
that varying the k parameter does not affect consistency. However, larger values of k result
in a larger training dataset size. Therefore, we used k = 40% in this experiment.

Table 3. The variations in the values of the k parameter with the consistency of A/B testing results
and the training set.

Parameter k 40% 30% 20% 10%

Consistency 97.2% 97.4% 97.8% 98.1%

Training Set Size 24,100 18,075 12,050 6025

4.3. Model Development and Training

In this experiment, we selected InceptionV3 [34], pre-trained on the ImageNet dataset [44],
as the backbone of our attractiveness classification model. We extended this architecture
by appending a global average pooling 2D layer to reduce the dimensions of the feature
maps and minimize overfitting. This is followed by a dropout layer set at a rate of 0.2
to further regularize the model during training. The final layer is a dense layer with a
softmax activation function that outputs the probability distribution over the two classes. The
number of convolutional layers is 94, and the number of trainable parameters is 21,772,450.
The architecture of InceptionV3 is shown in Figure 8. These models are implemented using
the TensorFlow library.

Image augmentation is applied during the learning phase. The augmentation parame-
ters include random transformations like shearing, zooming, and horizontal flipping to
improve the model’s ability to generalize from our dataset. All models use the stochastic
gradient descent (SGD) optimizer with the same learning rate of 0.0001 and momentum
of 0.9. The loss function used is categorical cross-entropy. Training is conducted over
5000 epochs, a large number, which is intended to ensure thorough learning, with early
stopping implemented to prevent overfitting. During training, the model’s accuracy on the
validation set is monitored, and only the best-performing weights are saved.
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Figure 8. Architecture of the InceptionV3 model.

The training and validation accuracies are reported in Tables 4 and 5. Models 1 through 5,
as shown in the tables, are classifiers that were trained and validated using datasets collected
from different posters. Therefore, any model i represented across different food categories in
the tables refers to distinct models. The results indicate that training accuracies vary between
99% and 100%, while validation accuracies range from 55% to 99%.

Table 4. Training accuracy of all models across each food category.

Model Sushi Ramen Pizza Burger Cake

Model 1 100% 100% 100% 100% 100%

Model 2 99% 100% 100% 100% 100%

Model 3 100% 100% 99% 100% 100%

Model 4 100% 100% 99% 100% 100%

Model 5 100% 100% 100% 100% 100%

Table 5. Validation accuracy of all models across each food category. The best validation accuracy of
each category is highlighted in yellow.

Model Sushi Ramen Pizza Burger Cake
Model 1 99% 79% 69% 81% 90%

Model 2 73% 66% 98% 70% 88%

Model 3 78% 75% 55% 90% 75%

Model 4 75% 68% 74% 89% 81%

Model 5 80% 73% 75% 74% 71%
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4.4. Model Performance Evaluation
4.4.1. Quantitative Evaluation

The proposed attractiveness assessment models were evaluated on 100 images for
each food category, corresponding to 50 pairs in A/B testing, totaling 500 images. Similar to
human evaluators in A/B testing, the models were tasked with selecting the more attractive
image in each pair by comparing the predicted attractiveness scores. For the individual
model, the attractiveness score is equal to the predicted probability of class H. For the
ensemble model, the attractiveness score is calculated from the ratio of class H predictions
made by the individual models to the total number of models.

The A/B testing results from the models are compared with (1) automatically labeled
classes based on the number of likes and (2) the voting results of the human participants in
A/B testing. The results are presented in Tables 6 and 7, respectively. Yellow backgrounds
indicate the best individual model results for each food category, while blue backgrounds
indicate the ensemble results.

Table 6 presents the performance of various models in predicting the visual appeal of
food images across five categories: sushi, ramen, pizza, burger, and cake. The predictions
are compared against automatically labeled attractiveness classes. In this table, the consis-
tency is calculated from the ratio of the number of images in class H that the model selects
as more attractive in A/B testing to the number of testing pairs. For ensemble models,
the best consistency of 90% is obtained in the sushi category, while the worst consistency of
66% is obtained in the cake category. The information from Tables 1 and 6 shows that the
prediction performance tends to increase as the number of training samples increases.

Next, in Table 7, we compared the models’ judgments in A/B testing with the human
participants’ judgments. In this table, the consistency is calculated as the ratio of the number
of pairs where the model and the majority of the human participants select the same image
as the more attractive image to the number of testing pairs. The results indicate that the
ensemble models demonstrate consistent alignment with human judgments, with rates of
84% for sushi, 76% for ramen, 72% for pizza, 80% for burger, and 68% for cake images.

Table 6. Consistency of the individual and ensemble model predictions in comparison to automati-
cally labeled attractiveness classes. The best consistencies obtained from the individual models are
highlighted in yellow, while those from the ensemble models are highlighted in blue.

Model Sushi Ramen Pizza Burger Cake
Model 1 74% 74% 82% 80% 56%

Model 2 70% 66% 66% 66% 58%

Model 3 82% 48% 60% 88% 68%

Model 4 76% 76% 72% 72% 74%

Model 5 88% 68% 52% 58% 50%

Ensemble 90% 76% 74% 80% 66%

Table 7. Consistency of the individual and ensemble model prediction in comparison to the human
voting results of A/B testing. The best consistencies obtained from the individual models are
highlighted in yellow, while those from the ensemble models are highlighted in blue.

Model Sushi Ramen Pizza Burger Cake
Model 1 72% 70% 80% 80% 54%

Model 2 68% 70% 64% 66% 60%

Model 3 80% 44% 62% 88% 66%

Model 4 70% 80% 74% 72% 76%

Model 5 82% 68% 50% 58% 52%

Ensemble 84% 76% 72% 80% 68%
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The results in Table 6 align with those obtained in Table 7 because of the high consis-
tency between the automatic class labeling and A/B testing results from human voters,
as previously shown in Table 2. For burger, the results in Tables 6 and 7 are exactly the
same. The most significant difference in the results between Tables 6 and 7 is sushi, which
has a consistency with A/B testing results that is 6% lower than the consistency with the
automatic class labeling. Four out of the five food categories have ensemble consistencies
lower than those of the best individual models. The reason for this is that the performance
of each individual model in the ensemble process is diverse. For example, in the case of
pizza, the consistency of each individual model in Table 7 varies from 50%, 62%, 64%, 74%,
to 80%. Theoretically, if we assume that all individual models are independent, the ex-
pected consistency obtained from the ensemble model is 78.6%. The experimental result
has a consistency of 72%, which is 6.6% lower than the expected result. On the other hand,
for sushi, the consistency of each individual model listed in Table 7 exhibits less variation
(68%, 70%, 72%, 80%, and 82%) and a higher mean compared to the previous example.
Theoretically, the expectation of the consistency obtained from the ensemble model is 89.2%.
In this case, the expectation of ensemble consistency is higher than that of all individual
consistencies. The experiment achieved a consistency of 84%, which is 5.2% lower than
the expectation.

It is worth noting that some variations in performance exist across different cuisine
categories, which may be attributable to factors such as the diversity of visual styles,
cultural influences, or the specific characteristics of the training data within each category.
However, the overall results are encouraging and underscore the promise of our approach
in developing scalable and efficient solutions for computational aesthetic assessment,
particularly in the domain of food images.

Moreover, we conduct a fine-grained evaluation to observe the consistency between
the model-generated attractiveness scores and the human voting results in A/B testing. Let
P be the image that receives more votes from human participants, and let N be the image
that receives fewer votes. We calculate scores for comparison based on the differences in
the number of votes between images P and N from both the human participants and the
ensemble model, as detailed in Equations (1) and (2).

∆scoreH =
HP − HN
HP + HN

(1)

∆scoreM =
MP − MN
MP + MN

(2)

In the equations, HP and MP represent the number of votes for image P in the A/B
testing from the human participants and the ensemble model, respectively. Similarly,
HN and MN represent the number of votes for image N. ∆score shows the difference in
attractiveness for each testing pair in the A/B testing. The terms ∆scoreH and ∆scoreM
indicate the score differences obtained from the human participants and the ensemble
model, respectively. We categorized the values of ∆score into six classes, referred to as
∆-class, as shown in Table 8. The consistency of the ∆-class obtained from the model and
the human results is illustrated as confusion matrices in Tables 9 and 10. Table 9 shows
results from ensemble models. Table 10 shows results from the best individual models. In
these tables, a green background indicates that the votes from the model and humans are
exactly the same. Light green signifies that votes from the model and humans differ by one
or two levels of the ∆-class. A red background indicates that the winner of attractiveness
voted by the model differs from that voted by the humans.

It can be concluded from the results in Table 9 across all five food categories that 25.6%
of the samples have a ∆score from the model voting in the same ∆-class as from the human
voting, 66.8% are within one level of ∆-class difference, and 87.6% are within two levels of
∆-class difference. On the other hand, for the best individual model in Table 10, 20.0% of
the samples have a ∆score from the model voting in the same ∆-class as from the human
voting, 60.0% are within one level of ∆-class difference, and 89.2% are within two levels
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of ∆-class difference. The fine-grained results from the ensemble model are closer to the
human votes than those from the best individual models.

Additionally, considering the attractive vote winner that differs between the model
and humans, there are a total of 60 samples where the ensemble model votes differ from
those of the humans in the A/B testing. We found that in 71.6% of these cases, the ∆-class
is F1, which indicates that the ensemble models selected most of the incorrect images in the
A/B testing with low confidence.

Table 8. Definition of ∆-class.

∆-Class Range of ∆Score Definition

T3 (0.8, 1.0] Image P is significantly more attractive than image N.

T2 (0.4, 0.8] Image P is moderately more attractive than image N.

T1 (0.0, 0.4] Image P is slightly more attractive than image N.

F1 (−0.4, 0.0] Image N is slightly more attractive than image P.

F2 (−0.8,−0.4] Image N is moderately more attractive than image P.

F3 [−1.0,−0.8] Image N is significantly more attractive than image P.

Table 9. Confusion matrix of ensemble model in A/B testing.

Sushi Ramen Pizza Burger Cake
∆ScoreH ∆ScoreH ∆ScoreH ∆ScoreH ∆ScoreH

T3 T2 T1 T3 T2 T1 T3 T2 T1 T3 T2 T1 T3 T2 T1

∆
sc

or
e M

T3 9 9 0 6 3 0 5 3 1 9 4 1 3 4 0
T2 10 4 0 7 4 2 4 10 2 12 4 1 7 4 0
T1 2 6 2 11 3 2 1 9 1 4 4 1 11 5 0
F1 1 1 1 4 4 2 2 4 4 5 2 1 6 6 0
F2 0 2 2 1 0 0 0 2 1 0 1 0 1 1 1
F3 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0

Table 10. Confusion matrix of the best individual model in A/B testing.

Sushi Ramen Pizza Burger Cake
∆ScoreH ∆ScoreH ∆ScoreH ∆ScoreH ∆ScoreH

T3 T2 T1 T3 T2 T1 T3 T2 T1 T3 T2 T1 T3 T2 T1

∆
sc

or
e M

T3 5 2 0 6 6 1 4 11 5 9 6 2 3 6 0
T2 2 2 0 6 4 0 2 3 0 8 3 1 8 2 0
T1 14 13 3 12 2 3 5 8 2 10 4 1 10 9 0
F1 1 4 3 3 1 1 2 4 2 3 1 0 6 2 0
F2 0 1 0 1 1 2 0 2 0 0 1 0 0 1 0
F3 0 0 0 1 0 0 0 0 0 0 0 1 2 0 1

These results show the efficiency of our approach in leveraging Instagram to increase
the number of likes and create labeled datasets for training aesthetic assessment models.
The high degree of alignment between the models’ predictions and human perceptions
highlights the potential of our method to capture and encode visual appeal accurately
without the need for labor-intensive manual annotation.
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4.4.2. Qualitative Evaluation

To analyze the factors that play important roles in image attractiveness, 32 sample
images from the proposed framework’s attractiveness grading results are illustrated in
Figure 9. Food images within the same category, which are quite similar to each other,
are grouped together, resulting in 12 groups for use in comparison. Color settings and
lighting intensity impact attractiveness, as demonstrated in the Ramen-A (samples 8 and 9),
Ramen-C (samples 13 and 14), and Pizza-A (samples 15, 16, and 17) groups. A warmer tone
of lighting is shown to reduce attractiveness, as seen in the Ramen-A group, where sample
9 has a lower attractiveness score than sample 8, and in the Ramen-C group, where sample
14 scores lower than sample 13. Additionally, lighting temperature affects attractiveness
scores; overly bright or dark lighting reduces the attractiveness score. This is demonstrated
in the Pizza-A group, where sample 17 has a higher attractiveness score than samples 15
and 16. The number of foods in the image also affects attractiveness scores. This is evident
in the Sushi-A (samples 1, 2, and 3) and Pizza-B (samples 18, 19, and 20) groups, where
focusing on a single piece of sushi or pizza yields a higher attractiveness score. Similarly,
results from the Cake-B group (samples 31 and 32) show that images containing both a
drink and a cake have lower attractiveness scores compared to those focusing solely on
a cake. In the case of burgers, results from the Burger-A (samples 21, 22, 23, and 24) and
Burger-B (samples 25, 26, and 27) groups demonstrate that presenting more meats in the
images can lead to higher attractiveness scores.

For an in-depth analysis of the results, gradient-weighted class activation mapping
(Grad-CAM) [45] is used. Grad-CAM is a technique that produces class activation maps
highlighting important regions in an image for a classifier to predict each class probability.
Let GH and GL represent the activation maps for classes H and L, respectively. Figure 10
shows an example of Grad-CAM analysis from five models for one image. GH highlights the
regions that positively influence attractiveness, while GL highlights regions that negatively
influence attractiveness. Since each model learns the differences between two classes of
attractiveness from different datasets, the important regions identified by each model may
vary. For instance, consider the sliced meat region in the ramen image shown in Figure 10.
In models 4 and 5, this region positively influences attractiveness, whereas in model 1,
a similar region negatively influences attractiveness.

Figure 11 displays examples of GH from fifteen food images extracted from five models,
revealing patterns in their focus areas. In the case of Sushi 1, all models focus on the same
area, demonstrating high confidence in the prediction. For Sushi 2, four out of five models
focus on the salmon sushi, which is the most colorful piece in the image. In the Ramen 1
image, four models concentrate on the noodles, while one model focuses on surrounding
objects, such as gyoza or a wooden plate. Similarly, in the Ramen 3 image, which features
blue-colored soup, four models indicate that it is unattractive. From Pizza 1, four models
focus on the toppings, while one model highlights the pizza crust. For Burger 1, four
models focus on the fries, while one model focuses on the burger itself. Finally, in Cake 2,
two models focus on the strawberry topping, while only one model concentrates on the
body of the cake.

To summarize, by applying Grad-CAM, the proposed framework can not only analyze
the level of food attractiveness but also identify the locations in the image that make it
more or less attractive. This framework reveals insights into food image attractiveness that
allow users to choose the most appropriate food images for advertising.
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Figure 9. Groups of sample images organized by their categories and close similarity, along with
their attractiveness scores. The numbers in the top line indicate the attractiveness scores obtained
from our ensemble model. The numbers displayed in the bottom-left corner of each sample image
indicate the image index.
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Figure 10. Example of an image analyzed using Grad-CAM from five models.

Figure 11. Example of GH (class H attractiveness) map images from all five categories, analyzed by
Grad-CAM across five models.

5. Conclusions

In this paper, we have presented a novel end-to-end framework for assessing the
attractiveness of food images without the need for explicit human annotation. By leveraging
user engagement data readily available on social media platforms, we have developed a
procedure to collect, filter, and partition data in order to mitigate biases stemming from
poster identity and posting duration. Highly attractive food images and less attractive
food images are selected based on their user engagement level for inclusion in the dataset.
We conducted A/B testing with 51 human participants on a total of 250 image pairs from
five popular food categories (sushi, ramen, pizza, burger, and cake). The aim was to
evaluate the consistency of our proposed engagement-based attractiveness class labeling
with the majority of human judgments. The results show that the proposed dataset creation
method achieves 97.2% consistency across five food categories. As the final step, we created
ensemble models to evaluate the attractiveness of food images using the dataset obtained in
the previous step. The ensemble models achieved a consistency of 76.0% (averaging from
five food categories) compared to human judgments obtained through A/B testing. In the
fine-grained evaluation, the ensemble models’ judgments were closer to human judgments
than those of the best individual models. Moreover, analyzing the results with Grad-CAM
provided valuable insights into the regions that influence attractiveness judgments. These
results highlight the potential of our method to capture and encode visual appeal accurately,
aligning with diverse public preferences.
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The proposed approach offers a scalable and efficient solution for the computational
aesthetic assessment of food imagery, circumventing the labor-intensive task of manual
annotation. Our method can be applied to various domains and industries where visual
appeal plays a crucial role, such as marketing, advertising, and user experience design.
Furthermore, our work contributes to a better understanding of visual appeal in the food
and hospitality industries, providing valuable insights for businesses and individuals seek-
ing to enhance user engagement and drive consumer behavior through visually appealing
food content.

For future work, it is also essential to consider other potential biases not addressed in
this study. While our research has taken steps to mitigate certain biases, such as adjusting for
basic differences in user engagement, further exploration into factors like paid sponsorships
is necessary. These could affect image visibility and, consequently, the attractiveness
assessments. Future research should aim to classify engagement among sponsored images
separately to maintain the integrity of the attractiveness evaluations. While our experiments
focused on specific food categories, the methodology can be extended to other domains and
applications where user engagement data are available. Future research could explore the
integration of additional features, such as image metadata or textual descriptions, to further
enhance the attractiveness assessment models. Additionally, future research could focus
on training CNNs to remove duplicated and irrelevant images. This enhancement would
enable the framework to be fully automated from the initial photo scraping to the final
attractiveness prediction.
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