
Citation: Martinez-Mosquera, D.;

Navarrete, R.; Luján-Mora, S.;

Recalde, L.; Andrade-Cabrera, A.

Integrating OLAP with NoSQL

Databases in Big Data Environments:

Systematic Mapping. Big Data Cogn.

Comput. 2024, 8, 64. https://doi.org/

10.3390/bdcc8060064

Academic Editor: Domenico Ursino

Received: 20 March 2024

Revised: 16 April 2024

Accepted: 22 April 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Review

Integrating OLAP with NoSQL Databases in Big Data
Environments: Systematic Mapping
Diana Martinez-Mosquera 1,* , Rosa Navarrete 1, Sergio Luján-Mora 2 , Lorena Recalde 1

and Andres Andrade-Cabrera 1

1 Department of Informatics and Computer Science, Escuela Politécnica Nacional, Quito 170525, Ecuador;
rosa.navarrete@epn.edu.ec (R.N.); lorena.recalde@epn.edu.ec (L.R.); luis.andrade03@epn.edu.ec (A.A.-C.)

2 Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain;
sergio.lujan@ua.es

* Correspondence: diana.martinez@epn.edu.ec

Abstract: The growing importance of data analytics is leading to a shift in data management strategy
at many companies, moving away from simple data storage towards adopting Online Analytical
Processing (OLAP) query analysis. Concurrently, NoSQL databases are gaining ground as the
preferred choice for storing and querying analytical data. This article presents a comprehensive,
systematic mapping, aiming to consolidate research efforts related to the integration of OLAP with
NoSQL databases in Big Data environments. After identifying 1646 initial research studies from
scientific digital repositories, a thorough examination of their content resulted in the acceptance of
22 studies. Utilizing the snowballing technique, an additional three studies were selected, culminating
in a final corpus of twenty-five relevant articles. This review addresses the growing importance
of leveraging NoSQL databases for OLAP query analysis in response to increasing data analytics
demands. By identifying the most commonly used NoSQL databases with OLAP, such as column-
oriented and document-oriented, prevalent OLAP modeling methods, such as Relational Online
Analytical Processing (ROLAP) and Multidimensional Online Analytical Processing (MOLAP), and
suggested models for batch and real-time processing, among other results, this research provides a
roadmap for organizations navigating the integration of OLAP with NoSQL. Additionally, exploring
computational resource requirements and performance benchmarks facilitates informed decision
making and promotes advancements in Big Data analytics. The main findings of this review provide
valuable insights and updated information regarding the integration of OLAP cubes with NoSQL
databases to benefit future research, industry practitioners, and academia alike. This consolidation of
research efforts not only promotes innovative solutions but also promises reduced operational costs
compared to traditional database systems.

Keywords: Big Data; NoSQL; OLAP; systematic mapping

1. Introduction

Over the past several years, the exponential growth of data has prompted research
into new paradigms and tools [1]. With data volumes escalating and NoSQL technology
maturing, traditional relational data warehouses are undergoing a profound transformation,
ceding ground to NoSQL-based counterparts equipped with Online Analytical Processing
(OLAP) capabilities [2]. This transformation marks a departure from the conventional
paradigm in which data warehouses adhered to distributed design principles like Atomicity,
Consistency, Isolation, and Durability (ACID) to ensure integrity, scalability, and availability.
Instead, NoSQL-based data warehouses embrace an entirely different philosophy.

The exponential increase in data volume, variety, and velocity has triggered the devel-
opment of innovative data technologies in modern information systems. This evolution
is driven by the need to address the challenges presented via massive data sets and the

Big Data Cogn. Comput. 2024, 8, 64. https://doi.org/10.3390/bdcc8060064 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8060064
https://doi.org/10.3390/bdcc8060064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-0573-8640
https://orcid.org/0000-0001-5000-864X
https://orcid.org/0000-0002-4949-3278
https://doi.org/10.3390/bdcc8060064
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8060064?type=check_update&version=2


Big Data Cogn. Comput. 2024, 8, 64 2 of 29

dynamic nature of information in today’s environment [3]. As organizations increas-
ingly adopt advanced data storage and processing solutions, there is a growing demand
for a deeper understanding of the methodologies, challenges, and advancements in this
integration [4]. This study sought to explore these evolving dynamics, adding valuable
insights to the ongoing discussion of integrating OLAP and NoSQL in the realm of Big
Data analytics.

OLAP involves dealing with fact tables and dimensions, which are fundamental
components of data warehousing (DW). Fact tables contain numerical data (facts) that
represent business transactions or events, while dimension tables provide context and
descriptive information about the data in the fact tables [5].

Integrating OLAP and NoSQL presents a significant challenge. Unlike relational
databases, NoSQL databases do not adhere to a rigid, predefined schema, which com-
plicates the implementation of fact tables and dimensions due to unexpected changes in
the database structure. Another major obstacle is automating all stages of the Extract,
Transform, Load (ETL) process because of the dynamic nature of the schema [5].

To address the increasing demand in this area and the lack of up-to-date systematic
mapping on the subject, this study aims to consolidate the most relevant advancements
made by different authors in the realm of OLAP and NoSQL. The primary objective is
to present scientific evidence on methods proposed for constructing OLAP cubes from
NoSQL databases. A notable challenge in this research was to identify studies that offered
solutions pertinent to the characterization of Big Data, especially in terms of volume,
variety, and velocity [6]. While numerous initiatives focus on deploying OLAP cubes over
data warehouses, traditional methods are unsuitable for handling Big Data, presenting a
prominent challenge in the research community.

This study collected articles from five digital scientific libraries, resulting in 1649 arti-
cles that were individually analyzed, with 25 selected studies that matched the research
question. Seven dimensions were raised, focusing on the most used NoSQL databases with
OLAP, types of OLAP systems, methods for processing data and building OLAP cubes,
and the computational resources required to implement the proposed methods.

The primary objective of this research is to explore the recent advancements in in-
tegrating OLAP with various types of NoSQL databases within the context of Big Data
environments. The study endeavored to offer a comprehensive roadmap for organizations
navigating the integration of OLAP with NoSQL, with a specific focus on addressing the
escalating demands of data analytics in modern business environments and understanding
the associated operational costs.

This work holds significance as the scientific community grapples with challenges
in implementing OLAP on Big Data, such as handling vast data volumes and dealing
with complex, multidimensional data models [5]. By consolidating the most relevant
contributions, this research facilitates academia and industry in addressing these challenges,
and it guides future research efforts.

The remainder of this paper is structured as follows. The Theoretical Background
section offers a concise explanation of the key concepts needed to understand the rest of
this paper. The Related Work section summarizes previous research efforts in the field. The
Materials and Methods section provides comprehensive details of the process followed to
conduct the systematic mapping, adhering to the guidelines proposed by Kitchenham for a
systematic literature review in software engineering [7]. The Results section highlights the
main findings and addresses the research questions one by one. The paper concludes with
a summary of the study’s findings in the Discussion section, and it outlines possible future
research directions in the Conclusion section.

2. Theoretical Background
2.1. Data Warehousing

DW refers to the process of collecting and storing data from various sources in a cen-
tralized repository. The data are structured and organized in a way that facilitates reporting,



Big Data Cogn. Comput. 2024, 8, 64 3 of 29

analysis, and decision making. DW systems are designed to handle large volumes of data
and provide historical and current insights into the operations of organizations [8].

2.2. NoSQL Databases

NoSQL databases, also known as “not only SQL”, are non-tabular databases that store
data differently from relational tables. They offer various types based on their data model,
including column-oriented, document-oriented, graph, and key–value databases [6]:

• Column-oriented databases, such as Apache Cassandra and HBase, store data in
columns, rather than rows, enabling high-speed read and write operations for
analytical queries.

• Document-oriented databases, such as MongoDB, store data in flexible, JSON-like
documents, making them suitable for handling semi-structured and unstructured
data types.

• Key–value databases store data as key–value pairs, providing fast access to individual
data items and efficient caching mechanisms.

• Graph databases, such as Neo4j, store data in graph structures with nodes, edges,
and properties, facilitating the representation and analysis of complex relationships
between data entities.

These databases provide flexible schemas, and they excel in scaling with large data
sets and handling high user loads [9].

2.3. OLAP

OLAP is a decision-oriented, descriptive modeling approach used for data analysis. At
the core of OLAP systems are multidimensional cubes, which organize data into multiple
dimensions, enabling users to explore and analyze data from various perspectives. These
cubes facilitate efficient data aggregation and summarization, making it possible to process
and visualize vast amounts of data. OLAP empowers users to perform complex queries,
data drill-downs, roll-ups, and pivots effortlessly, providing valuable insights for informed
decision making and strategic planning in business intelligence and DW scenarios [10].

An OLAP cube is an abstract representation of a Relational Database Management
System (RDBMS) that extends beyond the conventional two dimensions. For instance, it
can be expressed as a three-dimensional function, D, denoted as follows:

D = D1, D2, D3.
In this context, the dimensions D1, D2, and D3 serve as the axes of the cube, while D

represents the data or values stored in the individual cells of the cube. OLAP cubes enable
users to perform multidimensional analysis, allowing for a comprehensive view of data
from different perspectives and facilitating efficient data aggregation and summarization.

2.3.1. OLAP Systems

In this study, it is important to understand the different types of OLAP systems used
for analysis. Commonly mentioned ones include the following:

• Relational OLAP (ROLAP) stores data in relational databases, leveraging SQL for
query processing. Popular examples include Oracle OLAP and SAP BW [11].

• Multidimensional OLAP (MOLAP) stores data in pre-aggregated cubes, offering fast
query performance. It is suitable for complex analyses with many dimensions and
measures [11]. Popular tools are Essbase and SAP.

• Spatial OLAP (SOLAP) extends OLAP to spatial data, allowing users to analyze
multidimensional data with a spatial component [12]. Popular SOLAP tools include
GeoMondrian and Map4Decision.

This research findings explore additional proposals of OLAP variants within the
integration of NoSQL databases, enhancing the understanding of the dynamic landscape
of Big Data analytics. Among these proposals, OLAP for columnar databases, OLAP for
Hadoop, real-time OLAP, and OLAP for graphs were found.



Big Data Cogn. Comput. 2024, 8, 64 4 of 29

2.3.2. OLAP Schemas

In the realm of OLAP, diverse schema designs are key to shaping data warehouse archi-
tecture. Each schema provides unique benefits, catering to specific analytical requirements in
the ever-evolving landscape of DW and business intelligence. Notable among them are the
following [13]:

• Star schema: A central fact table is surrounded by dimension tables, forming a star-
like structure. The fact table contains quantitative data (measurements), and each
dimension table holds descriptive attributes.

• Snowflake schema: An extension of the star schema that normalizes dimension tables,
breaking them into multiple related tables. This schema results in a more complex,
snowflake-like structure.

• Galaxy schema: An extension of the star schema in which multiple fact tables share
dimension tables. This interconnected structure resembles a galaxy with stars (fact ta-
bles) and shared planets (dimension tables). This schema presents enhanced analytical
capabilities by allowing analysis across multiple fact tables.

2.4. Big Data

Big Data refers to the vast volume of structured, semi-structured, and unstructured
data generated at high velocities, and it requires advanced technologies and analytics
methods to process and extract meaningful insights. These data are characterized mainly
by their volume, velocity, and variety. Big Data technologies include distributed computing
frameworks like Hadoop, Spark, or NoSQL databases to process these massive data sets [6].

2.4.1. Map Reduce

MapReduce is a programming model and framework for processing large data sets
in parallel. It is a powerful tool used in Big Data analytics to handle massive amounts of
information [6].

2.4.2. Big Data Processing

Big Data processing refers to the set of techniques and tools used to analyze and extract
information from large data sets. There are two main approaches to Big Data processing:
batch and real-time. Batch processing involves processing historical data sets that have
already been stored. Real-time processing, meanwhile, involves processing data as they are
generated, without the need to store them beforehand [6].

2.5. TPC Benchmarks

TPC Benchmarks, or TPC performance tests, are a set of industry standards for mea-
suring the performance of transaction processing (TP) systems and databases. They are
developed and maintained by the Transaction Processing Performance Council (TPC), a
non-profit organization founded in 1988 [14].

TPC Benchmarks are based on real-world use cases, and they simulate the workloads
found in different types of enterprise applications. The test results are published on the
TPC website, and they can be used to compare the performance of different systems.

There are several types of TPC Benchmarks, each of which focuses on a specific type
of workload [14]:

• TPC-C is the best-known and most widely used benchmark for measuring the perfor-
mance of On-Line Transaction Processing (OLTP) systems. It simulates the activity of
an electronics wholesaler.

• TPC-H measures the performance of OLAP systems for complex queries on large data
sets. It simulates the analysis of sales data for a company.

• TPC-DS is a more recent version of TPC-H that focuses on data analysis from large
data warehouses.

• TPC-E measures the performance of e-commerce systems.



Big Data Cogn. Comput. 2024, 8, 64 5 of 29

TPC Benchmarks are an important tool for evaluating the performance of transaction
processing systems and databases. They help companies make informed decisions about
hardware and software selection and optimize their systems’ performance.

3. Related Work

Various digital scientific repositories were examined to discern the imperative of this
study. Regrettably, the exhaustive search yielded no up-to-date systematic mapping studies.
However, during the exploration, several analogous works were identified that aimed to
consolidate knowledge about OLAP, Big Data, and NoSQL from different perspectives.

Cuzzocrea [5] presents a comprehensive overview of the open issues and future
challenges of using OLAP over Big Data. This survey study, conducted in 2015, emphasizes
the relevance of the convergence between OLAP and Big Data in both academic and
industrial fields. Among the primary research problems identified in the study are the
sizes of fact tables, the complexity of building OLAP data cubes, computing resource
requirements, and considerations related to quality, usability, and visualization. The study
also suggests exploring innovative methodologies to design data cubes, aggregations,
high-performance architectures, and applications. As this article is dated from 2015, it is
important to provide an up-to-date revision of this work. Additionally, this systematic
mapping offers an in-depth examination of NoSQL and OLAP, providing a comprehensive
guide to current approaches and future directions.

Chevalier et al. [15] conducted a comparison of NoSQL multidimensional solutions for
DW in which they identified various benchmarks for OLAP on NoSQL and proposed a new
benchmark. Their study primarily focused on the proposal itself, rather than examining
existing solutions. In contrast, this work provides comprehensive systematic mapping,
contributing valuable insights to new proposals in the field.

Aftab and Farooq [16] conducted a survey in 2018, focusing on data warehouses for
Big Data. Although their study did not conduct systematic mapping, it addressed various
aspects, including data warehouse challenges, quality factors, data preprocessing, and
analysis. Additionally, they acknowledged the research challenge of implementing OLAP
in Big Data environments. It is important to note that their survey was performed in 2018,
while this systematic mapping was up to date as of December 2023. Furthermore, this
study covers specific criteria that were not considered in their research.

El Malki et al. [17] proposed a novel method for benchmark functionalities such
as support to NoSQL systems, snowflake, star, and flat schemas, variety, and velocity
characteristics. They covered multidimensional data warehouses, and NoSQL with the
support of column and document-oriented models. However, this study focused on
explaining a new approach, and it scarcely mentioned the existing research.

While other works have addressed the topic of OLAP and Big Data, none of them
have achieved the level of detail and precision planned in this research on NoSQL. In
Table 1, a summary of each related work that has been identified is provided, highlighting
the distinctions between these approaches and this study. This observation led to the
recognition of the necessity to conduct a systematic mapping study. In the following
subsection, the objectives and research questions of this study are delved into.

Table 1. Distinctions between related work and this study.

Related Work This Study

Cuzzocrea presented an overview of the open
issues and future challenges in using OLAP
over Big Data [5].

Conducted a systematic mapping study in
order to provide a comprehensive guide to
current approaches and future directions in
integrating OLAP with NoSQL databases.

Chevalier et al. focused on identifying various
benchmarks for OLAP on NoSQL, and they
proposed a new benchmark [15].

Focused primarily on examining existing
solutions to determine gaps and trends.



Big Data Cogn. Comput. 2024, 8, 64 6 of 29

Table 1. Cont.

Related Work This Study

Aftab and Farooq conducted a survey in 2018,
focusing on data warehouses for Big Data [16].

Conducted systematic mapping in 2023,
focusing on OLAP for NoSQL.

El Malki et al. covered multidimensional data
warehouses and NoSQL with the support of
column and document-oriented models [17].

Covered OLAP in column-oriented,
document-oriented, graph, and key–value
NoSQL databases.

4. Materials and Methods

Following Kitchenham’s guidelines to perform a systematic literature review in
software engineering [7], this study is structured into three phases: planning, con-
ducting, and reporting. The specific details of each phase are expounded upon in the
subsequent sections.

4.1. Planning

The planning phase was subdivided into two parts: the identification of the need and
the development of the review protocol, which serves as the foundational framework for
conducting a comprehensive and structured analysis.

4.1.1. Identification of the Need

The thorough review conducted in Section 3, Related Work, of other works related to
OLAP, NoSQL, and Big Data reveals that researchers have focused their efforts on analyzing
new, unstructured data types using OLAP techniques, driven by the interest of companies
in expanding analyses based on these data types and the potential of NoSQL databases.
Moreover, none of the studies attained the level of detail and precision intended in this
research concerning NoSQL. This observation underscores the imperative to undertake an
up-to-date, systematic mapping study.

4.1.2. Review Protocol

A well-defined review protocol is crucial to minimize potential biases from researchers,
and it should be established before conducting systematic mapping. Furthermore, a review
protocol enables other researchers to reproduce and validate research. During this stage, the
applied method was developed by first outlining specific development goals. Subsequently,
the main research question and seven dimensions aimed at summarizing existing evidence
regarding OLAP and NoSQL in Big Data environments were formulated. Finally, an
effective strategy to carry out this systematic mapping study was devised.

Objectives

The main objective of this research was to provide up-to-date and comprehensive
insights into the most relevant research about the models proposed for integrating OLAP
with NoSQL databases within a Big Data environment. As part of the efforts, the following
specific objectives were identified:

• Identify the various approaches and techniques utilized in constructing OLAP cubes
to effectively handle the complexities of Big Data with NoSQL.

• Gain insights into the prevalent NoSQL databases and their compatibility with OLAP,
enabling efficient data storage and analysis in the context of Big Data.

• Examine the computational resources required to implement the proposed methods
in designing multidimensional data structures over NoSQL.

Research Question

In the context of this research, three actors within the population were identified:
(1) researchers, (2) industry practitioners, and (3) academics, who research, document, and
implement solutions for DW with OLAP and NoSQL. The main goal was to summarize the



Big Data Cogn. Comput. 2024, 8, 64 7 of 29

findings and identify trends and gaps in the studied topic. The research question raised
in this study was the following: What approaches and techniques are commonly used to
construct OLAP cubes with NoSQL databases to handle Big Data complexities, and how
have these methods been implemented?

Based on this main research question, this work aimed to obtain the following seven
results (R).

R1: Types of OLAP systems proposed to integrate OLAP with NoSQL databases in
Big Data environments.

R2: The most common types of NoSQL databases used with OLAP.
R3: The most prevalent methods for modeling OLAP data cubes.
R4: The proposed structures of OLAP data cubes.
R5: The models suggested for batch and near-real-time processing.
R6: The computational resources required to implement the proposed models.
R7: The performance of the models in terms of query execution times.

Strategy

The strategy devised for this research on OLAP and NoSQL in Big Data environments
encompassed five key actions:

1. Initial studies were meticulously sourced from reputable scientific digital libraries,
focusing on criteria such as indexed research documents, database update frequency,
and relevance to the topic of interest.

2. Stringent exclusion and inclusion criteria were implemented to filter studies related
to OLAP, NoSQL, and Big Data, using specific search terms across titles, abstracts,
and keywords within the chosen digital libraries to select primary studies.

3. A full content review was carried out on the content of the selected primary studies to
select relevant papers.

4. The snowballing technique was employed to expand the search and identify additional
pertinent articles by examining references from within the already-reviewed studies.

5. Finally, the relevant studies were meticulously reviewed to obtain insights that address
the research question and the expected results.

4.2. Conducting

As planned in the strategy for this systematic mapping, initially, research studies were
identified from scientific digital libraries, and they were selected based on their relevance,
which was primarily determined according to the number of publications [18,19]. These
libraries include the following:

• IEEE Xplore
• Google Scholar
• Scopus
• Springer
• Web of Science (WoS)

The inclusion criteria applied to the initial studies encompassed those with the com-
mon search syntax (“Big Data” or “NoSQL”) and “OLAP” in the title, abstract, and keywords.
In this work, the proposals related to the implementation of OLAP on NoSQL databases
were identified. To cover the largest portion of studies, the search was expanded with the
term “Big Data”, obtaining the largest number of articles related to this research question.
Additionally, only studies from journals and conferences written in English were selected.
The search was not limited by a time frame, and it was conducted in December 2023.
As a result, 1646 studies were identified, of which 249 were duplicates; this represents
approximately 15.1% of the initially identified studies.

The computational tool used to consolidate the identified research studies and develop
the selection of primary and relevant studies was State of the Art through Systematic
Review (StArt) [20].



Big Data Cogn. Comput. 2024, 8, 64 8 of 29

A very interesting result was the unexpected proposals to create OLAP cubes in
environments like Hadoop using the MapReduce paradigm. This approach challenges
the initial belief that these technologies were limited to Big Data processing and reporting.
In the majority of cases, the proposals include the use of the Hive database, which is not
considered a NoSQL database [21]. For this reason, those works were discarded. Hence,
this work focuses only on those that present results on NoSQL databases.

In the selection phase, after performing a quick review of the titles, abstracts, and
keywords of the 1397 articles, only 182 were selected as primary studies, representing
approximately 13% of the initial articles. Finally, after thoroughly scanning the entire
content of these studies, 22 were accepted as relevant studies, representing approximately
12% of the primary selected 182 studies. With the snowballing technique, 3 more were
selected, resulting in a final corpus of 25 articles. In conclusion, out of the total 1646 articles
initially found, only 1.5% focused on addressing the research question. A summary of the
final corpus selection process is provided in Figure 1.

Title, abstract, and keywords

Primary StudiesIEEE Xplore

Google Scholar

Scopus

Springer

WoS

182 articles

1,646 articles
Duplicated?

Yes

249 articles 

Full content

1,397 articles

No

Final studies

("Big Data" OR "NoSQL") AND "OLAP"

25 articles

Duplicated studies

Snowballing

22 articles

Relevant studies

Figure 1. Conduction stage for systematic mapping.

4.3. Reporting

This stage was crucial, as it aimed to address the research question raised in the
review protocol. As a result, Section 5, Results, provides a detailed presentation of the
findings derived from the final selected studies. Additionally, Table 2 summarizes the
concept matrix derived from the features identified in the mapping process applied to the
25 selected relevant papers.



Big Data Cogn. Comput. 2024, 8, 64 9 of 29

Table 2. Concept matrix.

Reference Authors Year Title Journal/Conference R1 R2 R3 R4 R5 R6 R7

[22] Jiao et al. 2012
CDDTA-JOIN: One-Pass OLAP
Algorithm for
Column-Oriented Databases

Web Technologies
and Applications - Column-

oriented Snow-flake - Batch YES -

[23] Dehdouh et al. 2014

Columnar NoSQL CUBE:
Aggregation operator for
columnar NoSQL
data warehouse

International Conference on
Systems, Man, and Cybernetics MOLAP Column-

oriented - CN-Cube Batch YES YES

[24] Zhao et al. 2014
A multidimensional OLAP
engine implementation in
key–value database systems

Advancing Big Data
Benchmarks: Proceedings of
the 2013 Workshop Series on
Big Data Benchmarking

MOLAP Key–value Star - Batch YES YES

[25] Li et al. 2014
R-Store: A scalable distributed
system for supporting
real-time analytics

IEEE International Conference
on Data Engineering RTOLAP Column-

oriented - - Real YES -

[26] Chevalier et al. 2015
How can we implement a
multidimensional data
warehouse using NoSQL?

Enterprise Information Systems
International Conference ROLAP Document-

oriented Snow-flake - Batch YES YES

[27] Cuzzocrea et al. 2015
Taming Size and Cardinality of
OLAP Data Cubes over
Big Data

Data Analytics: International
Conference on Databases ROLAP Column-

oriented Snow-flake - Batch YES -

[28] Lee et al. 2015
Efficient level-based top-down
data cube computation using
MapReduce

Transactions on Large-Scale
Data- and Knowledge-Centered
Systems XXI

ROLAP - - MRLevel,
MRPipeLevel - YES -

[29] Song et al. 2015 Ha-OLAP: A Hadoop based
OLAP system for Big Data

Journal of Systems
and Software HaOLAP - - - Batch YES -

[30] Chevalier et al. 2015
Implementing
Multidimensional Data
Warehouses into NoSQL

International Conference on
Enterprise Information Systems ROLAP

Column-
oriented,
document-
oriented

Star - Batch YES -



Big Data Cogn. Comput. 2024, 8, 64 10 of 29

Table 2. Cont.

Reference Authors Year Title Journal/Conference R1 R2 R3 R4 R5 R6 R7

[31] Dehdouh et al. 2015

Using the column-oriented
NoSQL model for
implementing Big
Data warehouses

International Conference on
Parallel and Distributed
Processing Techniques
and Applications

- Column-
oriented Star - Batch YES -

[32] Chevalier et al. 2016

Document-oriented data
warehouses: Models and
extended cuboids, extended
cuboids in oriented document

International Conference on
Research Challenges in
Information Science

ROLAP Document-
oriented Star - Batch YES -

[33] Scabora et al. 2016
Physical data warehouse design
on NoSQL databases-OLAP
query processing over Hbase

International Conference on
Enterprise Information Systems - Column-

oriented Star - Batch YES -

[34] Chen et al. 2018 An optimized distributed
OLAP system for Big Data

IEEE International Conference
on Computational Intelligence
and Applications

ROLAP,
MOLAP

Column-
oriented - - Batch YES -

[35] El Malki et al. 2018 Benchmarking Big Data OLAP
nosql databases

In Ubiquitous Networking: 4th
International Symposium MOLAP

Column-
oriented,
Document-
oriented

Snow-flake,
star, flat - Batch YES YES

[36] Guminska and
Zawadzka 2018 Ev-OLAP graph–evolution and

OLAP-aware graph data model
In Beyond Databases,
Architectures and Structures Ev-OLAP Graph Star - Batch YES -

[37] Ferro et al. 2019

Document-oriented geospatial
data warehouse: An
experimental evaluation of
SOLAP queries

IEEE 21st Conference on
Business Informatics SOLAP Document-

oriented - - Batch YES -

[38] Dehdouh et al. 2020 Big Data Warehouse: Building
columnar NoSQL OLAP cubes

International Journal of
Decision Support System
Technology

MOLAP Column-
oriented Star MC-Cube Batch YES -

[39] Gómez et al. 2020 Online analytical processing on
graph data Intelligent Data Analysis - Graph Star Graphoid Batch YES -



Big Data Cogn. Comput. 2024, 8, 64 11 of 29

Table 2. Cont.

Reference Authors Year Title Journal/Conference R1 R2 R3 R4 R5 R6 R7

[40] Jianmin et al. 2020
An improved join-free
Snow-flake schema for ETL and
OLAP of data warehouse

Concurrency and Computation:
Practice and Experience ROLAP Column-

Oriented Snow-flake - Batch YES -

[41] Khalil et al. 2020 Key–value data warehouse:
Models and OLAP analysis

International Conference on
Electronics, Control,
Optimization and
Computer Science

ROLAP,
MOLAP Key–value Star KV-CUBE Batch - -

[42] Yue et al. 2020
Geocube: Towards the
Multi-Source Geospatial Data
Cube in Big Data Era

IEEE International
Geoscience and Remote
Sensing Symposium

SOLAP Column-
oriented Geo-Cube - Batch - -

[43] Akid et al. 2022
Performance of NoSQL Graph
Implementations of Star vs.
Snow-flake Schemas

IEEE Access MOLAP Graph Star,
Snow-flake - Batch YES YES

[44] Khalil et al. 2023

An Approach for
Implementing Online Analytical
Processing Systems under
Column-Family Databases

International Journal of
Applied Mathematics C-OLAP Column-

oriented Star MRC-Cube,
SC-Cube Batch - YES

[45] Khalil et al. 2023
A Data Placement Strategy for
Distributed Document-oriented
Data Warehouse

International Journal of
Computer Science - Document-

oriented Star MRC-Cube,
SC-Cube Batch YES YES

[46] Labzioui et al. 2023

New Approach based on
Association Rules for Building
and Optimizing OLAP Cubes
on Graphs

International Journal of
Advanced Computer Science
and Applications

- Graph Galaxy - Batch YES -



Big Data Cogn. Comput. 2024, 8, 64 12 of 29

5. Results

Researchers have dedicated their efforts to delving into the scientific realm of analyzing
novel, unstructured data types using OLAP methodologies. This scientific pursuit is
spurred by two fundamental factors: the keen interest of corporations in broadening
their analytical scope to encompass these emerging data types, particularly unstructured
data, and the vast potential offered via NoSQL databases. A crucial aspect driving this
exploration is the imperative need for systems capable of executing both real-time and
batch analyses, ultimately enhancing the decision-making process [26,36].

Through empirical experimentation, it has been demonstrated that employing OLAP
on NoSQL platforms can yield superior performance in terms of query execution times
compared to traditional DW solutions. Furthermore, NoSQL presents a simpler configura-
tion approach to managing vast data sets. For instance, a notable study [40] underscores
that, while conventional data warehouses necessitate a model rebuild for new queries,
NoSQL platforms require only the generation of concise code. Building upon these scientific
insights, this section elucidates the seven pivotal discoveries that directly address the core
research question of this study.

5.1. R1—Types of OLAP Systems Proposed to Integrate OLAP with NoSQL Databases in Big
Data Environments

The systematic mapping conducted in this study revealed a comprehensive spectrum
of OLAP proposals, showcasing the diversity in conceptualizations. The distribution of
seven types of OLAP systems, along with the respective number of proposals identified, is
presented in Figure 2 and detailed below.

Figure 2. Types of OLAP systems used with NoSQL.

ROLAP: Eight proposals were identified, representing approximately 32% of the stud-
ies, that involved mapping data from NoSQL databases into a relational structure that
can be queried using traditional SQL-based OLAP techniques [26–28,30,32,34,40,41]. The
process involves creating a virtual layer or schema on top of the NoSQL data and transform-
ing it into a relational format. This allows analysts and applications to perform complex
queries, aggregations, and analyses using SQL-like expressions, similar to how they would
with traditional relational databases. ROLAP provides a bridge between the flexible and
scalable storage capabilities of NoSQL databases and the analytical requirements of OLAP.

MOLAP: Seven proposals, representing 28% of the total studies, adapted a multidi-
mensional data model to fit the flexible schema of NoSQL systems [23,24,34,35,38,41,43].
Initially, a multidimensional data model was defined to capture relevant dimensions, hier-



Big Data Cogn. Comput. 2024, 8, 64 13 of 29

archies, and measures for analytical purposes. The data model was then adapted to align
with the flexible schema of NoSQL databases, accommodating diverse data structures.
Subsequently, data were loaded into the NoSQL database, and multidimensional cubes
were constructed to pre-aggregate and summarize data along different dimensions.

SOLAP: Two proposals, which account for 8% of the total studies, indicated a niche
focus on incorporating spatial elements into OLAP systems, allowing for multidimensional
analysis with spatial considerations [37,42]. Firstly, a spatial data model was defined,
encompassing geographical dimensions, measures, and hierarchies relevant to analytical
needs. The spatial data model was adapted to align with the schema-less nature of NoSQL
databases, which can handle diverse spatial data types. Data are then loaded into the
NoSQL database, ensuring compatibility with the spatial data model. Spatial indexing
techniques within NoSQL are employed to optimize spatial queries and analyses. Mul-
tidimensional cubes, which incorporate spatial dimensions, are constructed, facilitating
efficient OLAP operations.

Columnar OLAP (C-OLAP): One proposal [44], accounting for 4% of the 25 proposals,
introduced the concept of C-OLAP, suggesting a novel approach to implementing OLAP us-
ing columnar databases. C-OLAP involves transforming the multidimensional conceptual
model used as the basis of data warehouses and OLAP applications to a target columnar
logical model. This transformation allows for the efficient storage and retrieval of data for
OLAP operations.

Furthermore, C-OLAP introduces specific OLAP operators [44], such as Map-Reduce
Columnar Cube (MRC-Cube) and Spark Columnar Cube (SC-Cube), which leverage tech-
nologies like Hadoop MapReduce and Apache Spark to compute OLAP cubes. The MRC-
Cube operator works in multiple stages to compute the lattice of cuboids sequentially. It
involves the extraction of data from the column family data warehouse and the perfor-
mance of multiple joins between the fact and its dimensions. The operator leverages the
MapReduce paradigm to efficiently process and aggregate data for OLAP cube construction.

The SC-Cube operator works in multiple stages to compute the OLAP cube [44]. SC-
Cube involves reading input data from the columnar database and converting each row
to a key–value pair Resilient Distributed Dataset (RDD) in which the key is the row key
and the value is a nested map structure that associates a given column family and column
name to a value. The operator then applies transformations to fetch only the columns that
compose the cube, and it generates a new pair RDD in which the key is a combination of
all the dimensions involved in the cube and the value is the measure to be aggregated.

Hadoop OLAP (Ha-OLAP): One proposal [29], accounting for 4% of the total stud-
ies, introduced Ha-OLAP, which adopts a simplified, multidimensional model to map
dimensions and measures, and it uses dimension coding and traversing algorithms to
achieve roll-up operations over dimension hierarchies. Ha-OLAP also employs partition
and linearization algorithms to store data and chunk selection strategies in order to filter
data. The system architecture of Ha-OLAP includes a Hadoop cluster, a metadata server, a
job node, an OLAP service facade, and an OLAP client.

Real-Time OLAP (RTOLAP): One proposal [25], representing 4% of the total studies,
addressed Real-Time OLAP. In contrast to the other findings, this represents the sole
proposal centered specifically on real-time data processing.

RT-OLAP refers to the capability of performing OLAP queries in real time with column-
oriented databases. In the context of the R-Store system, RT-OLAP involves accessing the
latest value preceding the submission time of the query for each key, and it aims to provide
real-time analytics to make effective and timely decisions.

R-Store is a scalable, distributed system designed to support real-time OLAP queries by
extending the MapReduce framework and utilizing HBase as the underlying storage system.
It maintains a real-time data cube and implements incremental scanning to efficiently
process real-time queries, ensuring the freshness of answers and low processing latency.

Evolutionary OLAP (Ev-OLAP): One proposal, which accounted for 4% of the total
studies, introduced Evolutionary OLAP, suggesting an approach that adapts OLAP systems



Big Data Cogn. Comput. 2024, 8, 64 14 of 29

to graph databases [36]. Ev-OLAP was defined by the authors as a single graph with
a set of nodes, a set of edges, and a set of labels of all nodes and edges. The model
implements Ian Robinson’s approach of separating the structure from the state, allowing
the independent versioning of the graph topology and the state. The graph distinguishes
between identity nodes, structural edges, state nodes, and state edges. Ev-OLAP introduces
hypernodes, representing meta-nodes containing identity nodes with all connected state
nodes. Hierarchical edges associate the levels of an abstracted hierarchy as identity nodes.

The model’s mechanics enable the addition and modification of a graph structure
without deletion. For added entities, new state nodes that represent changes over time are
introduced. Deletion is treated similarly to modification, with the new state of the entity
stored in the graph. The evolution-awareness feature facilitates the analysis of changes in
both the state of the graph and its structure over time.

In terms of OLAP awareness, the paper presents core data warehouse terms for
Ev-OLAP. Dimensions are represented by node labels, and measures are divided into infor-
mational (numeric metrics in attributes or relationships) and topological (graph structure
analysis metrics) categories. Facts in Ev-OLAP can be concealed from the entire graph as
events modeled as either nodes or relationships. Hierarchies are created using a special
type of relationship called hierarchical edges, indicating the start of a hierarchy path and the
direction of an increasing detail level. The proposed model handles analytical queries, ad-
dressing issues like slowly changing dimensions in traditional data warehouses. Ev-OLAP
preserves historical data, allowing for both old and new data to coexist with information on
validity periods.

Additionally, there were six instances in which the type of OLAP was not explicitly
categorized, labeled as Not Available (NA) in Figure 2. This detailed breakdown provides
a nuanced understanding of the diverse OLAP approaches identified in the literature.

Figure 3 provides a comprehensive overview of how studies are distributed in the
realm of OLAP analysis across various types of NoSQL databases. It is highlighted that, in
terms of popularity, ROLAP is the most studied in column-oriented and document-oriented
databases, but it has also been studied in key–value databases. ROLAP is widely researched,
as is MOLAP for column-oriented databases. On the other hand, in key–value databases,
MOLAP emerges as the most proposed approach, followed by ROLAP, indicating the
versatility of these analysis models across different data storage types. MOLAP has also
been proposed in graph databases.

It is interesting to note that SOLAP, RTOLAP, and C-OLAP have a more limited
representation compared to ROLAP and MOLAP. However, implementations of SOLAP
have been proposed in both column and document-oriented databases, suggesting a
growing interest in spatial analysis in these contexts. On the other hand, RTOLAP and
C-OLAP are more related to column-oriented databases, while Ev-OLAP stands out in the
realm of graph databases.



Big Data Cogn. Comput. 2024, 8, 64 15 of 29

Figure 3. Types of OLAP system by NoSQL types.

5.2. R2—The Most Common Types of NoSQL Databases Used with OLAP

The results presented in Figure 4 indicate that column-oriented databases are the
most commonly proposed, with 13 articles, 52%, presenting OLAP integration proposals.
Document-oriented and graph databases follow closely, with five, 20%, and four articles,
16%, respectively, outlining approaches to combining OLAP functionality with their re-
spective NoSQL types. Key–value stores and a few instances categorized as NA were also
explored, with two articles, 8%, each. These findings highlight the diverse landscape of
NoSQL databases utilized in conjunction with OLAP, showcasing the adaptability of OLAP
across different NoSQL data models.

Figure 4. NoSQL types proposals with OLAP.



Big Data Cogn. Comput. 2024, 8, 64 16 of 29

The analysis of the most commonly used NoSQL databases in conjunction with OLAP
reveals specific Database Management Systems (DBMSs) associated with each NoSQL type,
as shown in Figure 5. In the column-oriented category, HBase stands out as the predomi-
nant choice, featured in eleven articles [22,23,25,30,31,33,34,38,40,42,44], 44%, while Cassan-
dra [35] and NA [27] were mentioned in one article, 4%, each. Document-oriented databases
were notably represented by MongoDB in four articles [26,30,35,37], 16%, with one article
marked as NA [45]. For graph databases, Neo4J emerged as a prominent choice, mentioned
in all four relevant articles [36,39,43,46], which constituted 28% of the total. Key–value
stores exhibited two proposals, 8%, with HBase [24] and Oracle NoSQL Database [41].
Although HBase was not typically categorized as a key–value NoSQL database, the authors
presented their proposals within this framework as a key–value solution.

These detailed insights into the specific DBMS associated with each NoSQL type
provide a comprehensive understanding of the diverse platforms integrated with OLAP
for various analytical purposes. This information can help select the best combination
according to the context of use.

Figure 5. Database management systems commonly used.

5.3. R3—The Most Prevalent Methods for Modeling OLAP Data Cubes

The results of the study, summarized in Figure 6, reveal that the star method is the most
prevalently reported, with 13 occurrences, 52% [24,30–33,35,36,38,39,41,43–45]. Following
behind is the snowflake method, with six instances, 24%, identified [22,26,27,35,40,43].
Additionally, the flat method, characterized by denormalized data storage in a single
table, was found in two instances [32,35], representing 8%. Less commonly encountered
were the galaxy [46] and geo-cube [42] methods, each appearing once in the data set,
which constituted 4% of the total. NA was classified in six articles [23,25,28,29,34,37],
24%, indicating either a lack of information or an inability to categorize according to the
predefined methods.

The analysis of Figure 7 reveals that the star method emerged as the most com-
monly employed approach across all data types, with six instances, 24%, reported in
the Column category, three instances, 12%, in the Graph category, and four instances,
16%, in the Document category. This suggests a widespread adoption of the star method
to model OLAP data cubes across different types of data. Conversely, the Snowflake
method is less prevalent overall, with four occurrences, 16%, in the Column category,



Big Data Cogn. Comput. 2024, 8, 64 17 of 29

one in the Graph category, accounting for 4%, and two in the Document category, repre-
senting 8%. This indicates a lower frequency of using the Snowflake method compared
to the Star method across the different data types analyzed. The Flat method was ob-
served in only one instance, 4%, within the Column category and two instances, 8%,
within the Document category, suggesting a less common but still present usage for
certain types of data. Additionally, the geo-cube and galaxy methods exhibited mini-
mal usage, each appearing only once and accounting for 4% in the Column and Graph
categories, respectively.

Figure 6. Methods of modeling OLAP data cubes.

Figure 7. Data modeling methods across different NoSQL types.

5.4. R4—The Proposed Structures of OLAP Data Cubes

In the proposals, the structure of OLAP data cubes follows a typical multidimensional
format, consisting of dimensions, measures, and cells. Dimensions serve as axes and en-
compass various attributes, while each dimension is organized into hierarchies, facilitating



Big Data Cogn. Comput. 2024, 8, 64 18 of 29

granularity levels. Measures represent the numerical data under analysis or aggregation.
Cells, located at the intersection points of dimensions and measures within the data cube,
hold the aggregated values. Furthermore, OLAP data cubes are often structured using
fact tables and dimension tables to efficiently organize and store data, with fact tables con-
taining detailed transactional data and dimension tables providing descriptive attributes
for analysis.

Another significant discovery from the review of selected studies is the novelty pro-
posal, such as cube operators, including Columnar NoSQL Cube (CN-Cube), Key–Value
Cube (KV-Cube), a graphoid model, Map Reduce Cube (MR-Cube), Spark Cube (SC-Cube),
Map Reduce Columnar Cube (MRC-Cube), and Map Reduce Columnar Cube (MC-Cube).
These last two abbreviations, MRC-Cube and MC-Cube, were used in different works to
refer to the same meaning, which is the Map Reduce Columnar Cube. However, the pro-
posed methods differ in each case. These operators showcase a wide range of approaches
and methodologies, highlighting the novelty within the realm of cube operations in OLAP
systems over NoSQL. Furthermore, algorithms such as MRLevel and MRPipe Level have
been proposed for the efficient computation of level-based, top-down data cubes.

CN-Cube [23] is an aggregation operator designed for column-oriented NoSQL
database management systems. It allows OLAP cubes to be computed using column-
oriented NoSQL data warehouses with a view based on the attributes (dimensions and
measures) needed to compute the OLAP cube. The operator uses value positions and
hash tables to take into account all dimension combinations and extract data that satisfy
the predicates of the query, thus producing the cells and measures needed for OLAP
cube computation. It has been implemented using the SQL Phoenix interface of HBase
DBMSs, and it has been shown to have OLAP cube computation times very suitable for
NoSQL warehouses.

CN-Cube follows a series of steps, starting with data extraction and grouping, in which
a query is initiated to extract data meeting specific conditions and is then grouped based on
dimensions. These grouped data form an intermediate result relation denoted as R, which
contains dimensions and measures for aggregation. Each dimension in R is hashed to create
position lists indicating a presence or an absence, and the logical AND function is used
to find the intersection of these lists, providing sets of positions that represent combined
dimension values for aggregation. These steps efficiently create the data cube, enabling
total and partial aggregations at various levels of granularity.

The experimental phase of the proposed model involved two main experiments to
assess the performance of the CN-Cube operator in OLAP cube computation times. The
first experiment evaluated cubes with two to five dimensions using a data set of 60 million
records. Four OLAP cube computation queries were performed, showing that the CN-Cube
operator performed better than the traditional Cube operator as the number of dimensions
increased, resulting in faster computation times.

The second experiment focused on evaluating the scalability of the CN-Cube operator
within a multi-node cluster. It assessed execution times for a three-dimensional OLAP
cube across various configurations and data sample sizes (100 GB, 500 GB, and 1 TB),
including single-node, five-node, ten-node, and fifteen-node clusters. The results showed
that increasing the number of nodes led to decreased computation times for OLAP cubes
of different warehouse sizes, particularly for larger data warehouses. This scaling effect
highlighted significant reductions in computation times with more cluster nodes, offering
valuable insights into the efficiency of the operator CN-Cube in computing OLAP cubes
within column-oriented NoSQL data warehouses.

KV-Cube [41] is structured with dimensions, cells, and measurements. The structure
involves the use of the Bit-Encoded Sparse Storage (BESS) technique to store dimensions
and measurements, allowing for the efficient computation of OLAP cubes. Additionally,
KV-Cube is designed to support basic OLAP operations, and it is implemented using a
key–value data model.



Big Data Cogn. Comput. 2024, 8, 64 19 of 29

BESS assigns a binary index to each dimension member, minimizing bits for optimal
storage, and it concatenates these binary representations to form cuboid indexes that
store corresponding values. Retrieving data involves using bit mask operations to extract
dimension indexes, enabling quick access to desired information. This integration ensures
that KV-Cube represents multidimensional data structures with minimal storage, which is
ideal for large-scale OLAP operations and supporting rapid data retrieval, the seamless
execution of basic OLAP operations, and effective multidimensional data analysis and
decision-making processes.

During the experimental analysis of the proposed model, a comparison between KV-
Cube and traditional Oracle Cubes was conducted, focusing on storage space consumption
for the Embedded Logical Model (ELM) and Hierarchical Logical Model (HLM) across
different scale factors. The evaluation also included measuring the response times of OLAP
queries by incrementally increasing the number of dimensions in the queries. Utilizing
the TPC-H benchmark, consisting of eight separate tables with defined relationships, the
experiments were conducted using the Oracle NoSQL database and Oracle 11g Release 2
as containers within a DevOps approach using Docker.

The comparison was based on the elapsed time in milliseconds to execute OLAP
queries with two to four dimensions and a scale factor equivalent to 5.2 million line items.
The results indicated that KV-Cube outperformed Oracle Cubes, showing up to three times
faster query response times. This advantage was attributed to the efficient data structure of
KV-Cube, utilizing BESS for dimension storage, which enabled rapid data extraction once
dimension combinations were established. The integrated caching feature further bolstered
the data retrieval speed, showcasing KV-Cube as a promising solution for efficient OLAP
operations within key–value data models.

A graphoid [39] is not an OLAP cube. Instead, a graphoid is a node- and edge-labeled
directed multi-hypergraph that serves as a basic data structure for modeling OLAP on
graph data. It represents information on the application domain at a certain level of
granularity and can be defined at several different levels of granularity using associated
dimensions. The paper proposes a formal multidimensional model for graph analysis,
and it demonstrates that the typical OLAP operations on cubes can be expressed over
the graphoid model. It also shows that the classic data cube model is a particular case of
the graphoid data model. The paper presents a formal definition of the graphoid model
for OLAP and proves that the classic OLAP queries remain competitive when using the
graphoid model.

In the experimental analysis of the proposed model, a case study involving group
calls between phone lines was used to analyze the data. The data set comprised calls in
which a line could not call itself, requiring the identification of the initiating line. This study
aimed to assess the hypergraph model against the traditional relational OLAP approach,
particularly focusing on analyzing vast amounts of call data with variable dimensions due
to varying participant counts. The analysis encompassed standard OLAP operations on
fact measures and the aggregation of graph elements using graph measures such as shortest
paths and centrality.

The experiment compared the performance of the graphoid model in two scenarios: the
classic OLAP scenario using the relational model and the graph OLAP scenario involving
the aggregation of graph metrics. The hypothesis tested was that, while the relational
OLAP approach is effective for fixed dimensionality scenarios, the graphoid model is
competitive when dealing with variable dimensions, and it outperforms in scenarios
requiring graph metrics aggregation. The results provided valuable insights into the model
of the graphoid effectiveness for modern data analysis needs, demonstrating its capability
to deliver superior performance for critical queries.

MR-Cube [25,29] refers to the use of the MapReduce framework to efficiently compute
and maintain data cubes in a large-scale distributed environment. In one proposal [25], the
data cube consisted of a lattice of cuboids in which each cuboid represents a combination
of dimensions. The cuboids are used to organize the data cube, and the map and reduce



Big Data Cogn. Comput. 2024, 8, 64 20 of 29

functions are used to compute the aggregation value for each cell of each cuboid. The map
output key is the combination of the dimension attributes for the cuboid, and the map
output value is the numeric value. The reduce function is invoked to compute the new
value of each cell based on the old cell value, the change in the cell, and the aggregation
function. In one work [29], the cube was divided into chunks, and each chunk contained
cells, which were the logical partitions of the cube. The cells contained measurements, and
the cube was organized based on dimensions, which were used to represent the different
aspects of the data being analyzed.

In one work [29], the analysis compared MR-cubes with several cloud data warehouse
systems like Hive, HadoopDB, Olap4Cloud, and HBaseLattice in terms of loading, dice,
roll-up, and storage performance. Ha-OLAP excelled in loading performance, especially
compared to Olap4Cloud and HBaseLattice, due to its simplified data model and lack of
index structure generation during loading. Queries consistently showed superior perfor-
mance, except against HBaseLattice, in terms of time consumption. Roll-up operations
across data sets revealed reduced result sizes due to aggregation, with time consump-
tion compared across systems. Storage experiments highlighted the low storage cost of
Ha-OLAP even with high-dimensional data sets, showcasing its efficiency for Big Data
analytics tasks compared to other cloud data warehouse systems.

SC-Cube [44,45] is an OLAP cube operator that uses the Apache Spark framework
to compute OLAP cubes. It processes data in memory using RDDs to speed up data flow
between iterations, thus overcoming the I/O cost associated with processing data on a
disk. SC-Cube performs cube computation in five stages. The first stage involves reading
input data, while the second stage focuses on building the lowest level of granularity. The
third stage computes higher granularity levels, and the fourth stage performs aggregation
with dimension attributes. Finally, the fifth stage involves materializing the cube. SC-Cube
is designed to take full advantage of in-memory processing, and it has been shown to
outperform the MapReduce paradigm in terms of performance.

The experimental analysis in one work [44] evaluated the performance, scalability, and
efficiency of OLAP cube operators, including the proposed SC-Cube, through three key
experiments. The first experiment compared SC-Cube and MRC-Cube with a traditional
relational approach as the data volume increased, revealing consistent performance for
SC-Cube and MRC-Cube due to NoSQL databases and parallel processing, while the
relational approach slowed significantly with larger data sets. The second experiment
focused on building full OLAP cubes using the SC-Cube Spark-Cube component, MR-
Cube, and Apache Hive, showcasing Spark-Cube’s faster execution times due to in-memory
processing. The third experiment assessed the query response times for all operators,
highlighting the superior performance of Spark-Cube for complex queries, thanks to in-
memory processing and optimized join operations.

The experimental analysis in another work [45] evaluated the performance and effi-
ciency of SC-Cube compared to other OLAP cube operators. The study involved comparing
SC-Cubes with Apache Hive across various analytical queries and cube-building tasks,
measuring key metrics like execution time and storage space under different scales and
scenarios. The analysis aimed to assess the ability of SC-Cube to handle large data volumes
and varying scalability demands. Additionally, the study compared the execution time for
building full cubes using MR-Cube and Spark-Cube from the proposed model of the data
warehouse to the default model of the Apache Hive. The study also evaluated the response
time of SC-Cube for processing analytical queries with varying dimensions in grouping
clauses to gauge its effectiveness in handling complex queries.

MRC-Cube [44,45] utilizes the MapReduce processing technique to build the cube
in multiple stages. The first stage involves extracting the data that forms the cube from
the column family, followed by a reduced side join operation. The second stage focuses
on building the first level of the cube corresponding to each dimension combination. The
third stage uses the output of the second stage to calculate the second level of granularity,
representing different dimension combinations.



Big Data Cogn. Comput. 2024, 8, 64 21 of 29

The experiments described in one work [44] focused on evaluating the performance
and scalability of MR-Cube compared to traditional relational OLAP implementations,
specifically Oracle OLAP. These experiments aimed to demonstrate the benefits of using
NoSQL technology and columnar databases for OLAP cube construction and analysis.
The first experiment assessed the storage efficiency of OLAP cubes built with MR-Cube
compared to the default star schema model, providing insights into storage optimiza-
tion achieved through the column–family architecture. The second experiment measured
the execution time of building full OLAP cubes using MR-Cube from a data warehouse
based on the proposed model, with Apache Hive serving as a benchmark competitor
against the default model. This comparison highlighted the efficiency and performance
gains of MRC-Cube over traditional OLAP implementations. Finally, Experiment 3 eval-
uated the scalability of MRC-Cube as the data warehouse size expands, showing con-
sistent performance and scalability in handling large data sets compared to relational
OLAP implementations.

The experiments in another work [45] primarily focused on evaluating the response
time of analytical queries with varying dimension numbers in grouping clauses, specif-
ically analyzing the performance of the implemented OLAP system using MRC-Cube
and SC-Cube operators. These experiments provided insights into the efficiency of OLAP
cube operators in managing analytical queries with diverse dimension combinations, and
they highlighted the impact of dimension numbers on query processing time and system
performance. Additionally, the experiments assessed the response time of queries with
variations in the scale factor, showcasing the performance disparities between Spark-Cube,
MR-Cube, and Hive when scaling up the data volume. The results emphasized the advan-
tages of memory-based computation in Spark over disk-based operations in MapReduce,
contributing valuable insights into query performance and scalability in OLAP systems
using MRC-Cube and SC-Cube operators.

MC-Cube [38] is also an aggregation operator designed to build OLAP cubes using a
column-oriented NoSQL model like MRC-Cube. In this proposal, MC-Cube is structured to
perform a cube in five phases. In the first phase, the study identifies the data that satisfy all
the predicates and allow the aggregation according to all columns representing dimensions
to be produced. Then, it implements the invisible join in a distributed environment to
perform the join between tables and achieve aggregation computing. MC-Cube uses
the MapReduce paradigm to optimize the processing of massive data, and it executes
MapReduce jobs to achieve the five phases of building an OLAP cube.

The data analysis phase of the research involved recording and analyzing the time
required to compute queries and construct OLAP cubes. This analysis aimed to evaluate the
performance of the system across various query types and dimensions, using computation
time as a key metric. Subsequently, the results of these experiments, including computation
and cube construction times, were reported to assess the efficiency and effectiveness of the
proposed MC-Cube operator. The analysis of experimental data yielded valuable insights
into the performance of the operator in efficiently building OLAP cubes and conducting
data analysis tasks. Through experiments with diverse queries and dimensions, the ability
of the proposed model to handle large data sets and perform tasks effectively was evaluated,
shedding light on its performance and scalability in real-world scenarios.

MRLevel [28] utilizes the MapReduce framework to efficiently compute level-based
top-down data cubes, aiming to parallelize cube computation and reduce the number of
data scans by level. It operates by processing levels in a top-down manner and storing
cuboid results with the cuboid size from the cube lattice structure.

Moreover, MRPipeLevel [28] integrates the MRLevel algorithm with the PipeSort
algorithm, known for its efficiency in top-down ROLAP cube computation. PipeSort gen-
erates a minimum-cost sort plan tree from a cube lattice and computes cuboids sharing
the same sort order to minimize the computation time and data scans. On the other hand,
MRPipeLevel [28] enhances its performance by incorporating a distributed parallel pro-
cessing strategy for PipeSort in the MapReduce framework, maximizing parallelism,



Big Data Cogn. Comput. 2024, 8, 64 22 of 29

and minimizing MapReduce phases and data scans. It includes pipeline and multi-
pipeline aggregation methods that aim to reduce the computational costs for Big Data and
high-dimensional cubes.

In the experimental phase of the proposed model, the performance of the MRPipeLevel
algorithm was thoroughly evaluated through a series of experiments. The analysis of
data from the proposed model involved several key steps. Firstly, the MRPipeLevel
algorithm was implemented to efficiently compute data cubes using MapReduce in a
distributed parallel processing environment. Various experiments were conducted to
assess the performance of the algorithm across different scenarios, including low- and high-
dimensional data sets. Comparative experiments were executed with other MapReduce
data cube algorithms to gauge the effectiveness of the MRPipeLevel approach. Secondly,
the experiments encompassed variations in data size, dimensions, and cluster numbers
to analyze the adaptability of the algorithm under diverse conditions. The elapsed time
for sorting trees and pipelines was meticulously measured and analyzed to comprehend
the efficiency of the MRPipeLevel algorithm in processing data cubes. Through these
systematic experiments and thorough analysis, the researchers successfully demonstrated
the efficiency and effectiveness of the MRPipeLevel algorithm in computing data cubes
within a distributed and parallel processing environment using MapReduce.

5.5. R5—The Models Suggested for Batch and Near Real-Time Processing

Out of the 25 studies comprising the final corpus, 23 presented their proposals with
batch data analysis, which accounted for 92% of the total. Only one study [25], 4%, focused
on real-time data, while one [28] did not specify its data processing method. In batch
analysis, the data typically used for testing are generated using warehouse benchmarks,
which are widely used to create data for decision support systems. These benchmarks are
populated with data samples, and they enable the generation of data sets of various sizes
by specifying the scalability factor (SF), which refers to a parameter that determines the
size or scale of the generated data sets.

The study [25], which presented its proposal in real time, focused on column-oriented
databases. The proposed solution to creating RTOLAP cubes involved the development of
R-Store, a scalable distributed system that extends the MapReduce framework and uses
HBase as the underlying storage system. The system architecture includes a distributed
key–value store, a streaming system to maintain the real-time data cube, a MapReduce
system for processing large-scale OLAP queries, and a MetaStore for storing global variables
and configurations. The solution efficiently scans real-time data, maintains the data cube,
and processes real-time queries based on an adaptive algorithm and cost model. It also
includes techniques for caching the data cube result and integrating streaming MapReduce
for faster data cube updates.

5.6. R6—The Computational Resources Required to Implement the Proposed Models

The hardware configurations varied across studies within each NoSQL type category,
reflecting differences in the number of nodes, RAM per node, CPU specifications, disk capacities,
and network speeds. Table 3 presents consolidated information regarding the hardware and
software utilized for each proposal categorized by NoSQL type. When considering the variety
of operating systems utilized across different types of NoSQL databases, the following points
are notable:

• CentOS was used the most in several studies of the column-oriented and document-
oriented NoSQL types.

• Ubuntu was also observed in multiple studies, mainly in the column-oriented, graph,
and key–value NoSQL types.

• Windows was mentioned in two specific studies of the column-oriented and graph
NoSQL types.

• Debian appeared in a study of the document-oriented NoSQL type.



Big Data Cogn. Comput. 2024, 8, 64 23 of 29

Table 3. Hardware and software specifications by NoSQL type.

NoSQL Type Study Nodes RAM per Node CPU per Node Disk Network Operating System OLAP System

Column

[40] 3 1 GB Intel Core i5 20 GB 1 Gbps CentOS 6.5 ROLAP

[34] 5 24 GB Intel (R) Xeon E3-1220 120 GB NA CentOS, CDH 5.5.1 ROLAP
MOLAP

[27] NA 32 GB Intel Xeon E5520, 2.27 GHz, 2 CPUs, 4 cores NA NA Squeeze-x64-xen-1.3 ROLAP

[23] 15 4 GB Intel-Core TMi3-3220 CPU 3.30 GHz NA 100
Mbps Ubuntu-12.10 MOLAP

[38] 15 4 GB Intel-Core TMi3-3220 CPU 3.30 GHz NA 1 Gbps Ubuntu-14.04 MOLAP

[35] 3 8 GB Intel Core i5-4670 p4-core CPU, 3.4 GHz 2 TB 1 Gbps CentOS MOLAP

[42] NA NA NA NA NA NA SOLAP

[44] NA NA NA NA NA NA C-OLAP

[25] 144 8 GB Intel X3430 2.4 GHz 2 × 500 GB 1 Gbps CentOS 5.5 RTOLAP

[22] 1 8 GB Intel Core i3-2312M CPU 2.10 GHz 500 GB NA Windows 7 NA

[33] 4 16 GB Intel-Core i5-3330 quad-core CPU at 3.0 GHz 1 TB 1 Gbps NA NA

[30] 3 8 GB Intel-Core i5 x 4 2 TB 1 Gbps NA ROLAP

[31] 25 8 GB Intel-Core TMi5-3220M CPU 3.30 GHz NA NA NA NA

Document

[26] 3 8 GB 4 Intel-Core i5 2 TB 1 Gbps NA ROLAP

[32] 3 8 GB Intel-Core i5 x 4 CPU 2 TB 1 Gbps CentOS ROLAP

[35] 3 8 GB Intel-Core i5-4670 x 44-core CPU, 3.4 GHz 2 TB 1 Gbps CentOS MOLAP

[37] 4 4 GB/8 GB Intel-Core i3 500 GB/1
TB 1 Gbps CentOS 7.1 SOLAP

[30] 3 8 GB Intel-Core i5 × 4 2 TB 1 Gbps NA ROLAP

[45] 6 NA Intel-Core i7-6600U 2.60GHz NA 100
Mbps Debian-10.10 NA

Graph

[36] NA 8 GB Intel Core i5-3210M NA NA Windows 10 Ev-OLAP

[43] 1 32 GB NA 8 TB NA Ubuntu-18.04.01 LTS MOLAP

[39] 1 12 GB i7-6700 250 GB NA NA NA

[46] NA 16 GB Intel-Core i7 1 TB NA NA NA

Key–value
[41] NA NA NA NA NA NA ROLAP

MOLAP

[24] 6 256 GB Intel Xeon CPU E5-2640 2.50 GHz NA 10 GBps Ubuntu Server 12.04 MOLAP

Furthermore, it is important to note that the utilization of tools like Apache Kylin 1.6.0
and Saiku 3.7 in the implementation of ROLAP and MOLAP was explicitly mentioned in a
single study [34], which proposed a solution for columnar databases. Apache Kylin [47]
is an open-source, distributed in-memory analysis platform that allows the definition of
multidimensional data models and offers high-performance OLAP analysis capabilities.
On the other hand, Saiku [48], developed by Meteorite BI, is a platform that enables
the efficient and visual implementation of ROLAP and MOLAP, providing an intuitive
interface for exploring and analyzing multidimensional data. The study [34] highlights
the importance of having specialized platforms for multidimensional data analysis in Big
Data environments.

Table 3 also facilitates the identification of computational resources utilized with
different OLAP system types. There were more details for ROLAP and MOLAP, but also,
data were available for additional proposals, such as C-OLAP, Ev-OLAP, and RTOLAP.

Table 3 reveals that the majority of studies utilize three nodes in the cluster for testing,
with one node being the minimum and 144 the maximum. Regarding RAM, the minimum
usage per node was 1 GB, while the maximum reached 32 GB. Intel CPUs were the most
commonly utilized. Disk capacities ranged from 120 GB to 8 TB per node, and network
speeds ranged from 100 Mbps to 10 Gbps.



Big Data Cogn. Comput. 2024, 8, 64 24 of 29

5.7. R7—Performance of the Models in Terms of Query Execution Times

Given that the studies vary greatly regarding the computational resources used, the
software, the type of data set used for testing, and the complexity of the queries, among
other factors, this question cannot be answered objectively. However, the most relevant
data from the analyzed studies were collected, which are presented in Table 4.

Table 4. Summary of computational resources and processing time.

NOSQL
Type

OLAP
System Study Data Set Number of

Nodes
RAM per
Node CPU per Node Time[s] for

1 GB
Time[s] for
10 GB

Time[s] for
100 GB

Time[s] for
1000 GB

Column

MOLAP [23] - 15 4 GB Intel-Core TMi3-3220
CPU 3.30 GHz - - 9188 -

MOLAP [38] - 15 4 GB Intel-Core TMi3-3220
CPU 3.30 GHz - - - 200

MOLAP [35] - 3 8 GB Intel Core i5-4670
p4-core CPU, 3.4 GHz 672 6643 69,025 -

C-OLAP [44] TCP-H - - - - 2000 - -

Document

ROLAP [26] - 3 8 GB 4 Intel-Core i5 540 6540 7920 -

- [45] TCP-H 6 - Intel-Core i7-6600U
2.60 GHz 135 258 - -

Graph MOLAP [43] TPC-DS 1 32 GB - 50 - - -

Key–value MOLAP [24] TPC-DS 6 256 GB Intel Xeon CPU
E5-2640 2.50 GHz 1000 4000 30,000 -

One notable observation from the selected studies is that multiple studies utilized the
following data set for benchmarking:

• Transaction Processing Performance Council Decision Support (TPC-DS)
• Transaction Processing Performance Council Huge (TPC-H)
• Star Schema Benchmark (SSB) [32]

The graph model, combined with MOLAP, exhibited a relatively shorter query exe-
cution time of 50 s when utilizing 1 GB of data with TPC-DS. However, for a larger data
set of 10 GB, the document-oriented model outperformed others, particularly when using
TCP-H, although the specific OLAP system was not specified in the data. Moving to even
larger data sets, such as 100 GB, document-oriented with ROLAP models demonstrated
optimal performance. Interestingly, only one data point was available for the 1000 GB data
set, which pertained to the column-oriented model with MOLAP, showcasing the shortest
query time. It is crucial to note, though, that this single result represents the entire data
available for this size.

6. Discussion

NoSQL databases are emerging as promising contenders for building agile and perfor-
mant data warehouses. Their ability to handle semi-structured and unstructured data sim-
plifies schema management and accommodates evolving data models. Additionally, hori-
zontal scaling capabilities enable the efficient handling of massive data sets, which makes
them ideal for Big Data scenarios where traditional relational databases may struggle.

This study identified a comprehensive overview of the open issues and future challenges
of using OLAP over NoSQL, offering valuable insights for further research and development.

The findings in R1 illustrate how NoSQL, similar to RDBMSs, empowers users to
interactively explore data across diverse dimensions and levels of detail through OLAP.
Additionally, similar to its prevalence in RDBMS-based setups, ROLAP emerges as the
most prevalent approach in NoSQL environments. MOLAP also enjoys considerable usage
in the studies reviewed, and as indicated in R7, its implementation in column-oriented
databases exhibits superior performance in terms of query execution times.

In this research, other proposals for types of OLAP systems for NoSQL, such as Ev-
OLAP, C-OLAP, Ha-OLAP, and RTOLAP, were also found; they leverage the capabilities of



Big Data Cogn. Comput. 2024, 8, 64 25 of 29

NoSQL to analyze large and complex data sets. ROLAP represented approximately 32%
of the studies. MOLAP represented 28% of the total. SOLAP accounted for 8%, focusing
on incorporating spatial elements into OLAP systems for multidimensional analysis with
spatial considerations. C-OLAP, accounting for 4%, introduces a novel approach using
column-oriented databases, enhancing OLAP operations with specific operators like MRC-
Cube and SC-Cube for efficient data processing and aggregation. Ha-OLAP, accounting
for 4%, adopts a simplified, multidimensional model, employing spatial data processing
techniques for optimized OLAP operations. RTOLAP centers real-time data processing
in column-oriented databases, ensuring timely analytics for decision making. Ev-OLAP,
accounting for 4% of the total, proposes an evolutionary approach, adapting OLAP systems
over graph databases and facilitating versioning and hierarchical analysis within a graph-
based structure. The breakdown of these OLAP approaches provides a comprehensive
view of their functionalities and applications across different database types.

Furthermore, ROLAP is the most popular approach in column-oriented and document-
oriented databases, and it has also been studied in key–value databases. MOLAP is
extensively researched in columnar databases, and it emerges as a preferred approach
for key–value databases, followed by ROLAP. The versatility of these analysis models is
evident across various data storage types, including graph databases for which MOLAP
has also been proposed. However, SOLAP, RTOLAP, and C-OLAP have less representation
compared to ROLAP and MOLAP, although SOLAP implementations are growing in
column and document-oriented databases, reflecting increasing interest in spatial analysis.
RTOLAP and C-OLAP are more associated with column-oriented databases, while Ev-
OLAP stands out in graph databases.

According to R2, most of the identified proposals are centered on solutions for column-
oriented NoSQL databases, followed by those tailored to document-oriented databases,
giving us insight into trends and research opportunities in the graph and key–value types.
Additionally, it was found that HBase is the most studied database, possibly because it is the
default database in the Hadoop ecosystem. This suggests a preference for using frameworks
that include a default DBMS, such as HBase in Hadoop. Furthermore, MongoDB and Neo4j
emerged as the most researched DBMSs in the document-oriented and graph-oriented
categories, respectively, which aligns with studies indicating their popularity in their
respective categories.

The results of this study, depicted in R3, revealed that traditional OLAP schemas
commonly used in RDBMS are also prevalent in NoSQL environments. The star method
emerged as the most common across the four types of NoSQL databases considered in the
collected studies, with 13 occurrences, accounting for 52% of the total instances. Following
closely was the snowflake method, identified in six instances, making up 24% of the
occurrences. The flat method, characterized by denormalized data storage, was observed
in two instances, representing 8% of the total. The galaxy and geo-cube methods were
less frequent, each appearing once and constituting 4% of the total instances. This finding
suggests that traditional OLAP methods seamlessly adapt to new solutions, with the star
and snowflake methods dominating the scene, while the flat, geo-cube, and galaxy methods
are used minimally.

R4 indicates that the methodologies employed to structure OLAP cubes exhibit simi-
larities to those utilized in RDBMSs. The analysis of OLAP data cubes in the NoSQL reveals
a structured format consisting of dimensions, measures, and cells. Nevertheless, innovative
proposals concerning cube operators, including CN-Cube, KV-Cube, MR-Cube, SC-Cube,
MRC-Cube, and MC-Cube, among others, have emerged. Algorithms like MRLevel and
MRPipeLevel have also been proposed for efficient computation of level-based, top-down
data cubes. Some studies have indicated that building cubes in NoSQL takes more time
compared to RDBMS, possibly due to the adaptation of solutions originally designed for
RDBMS. However, this delay seems to be offset due to a reduction in query time execution.

CN-Cube was designed for column-oriented NoSQL databases, employing value
positions and hash tables for OLAP cube computation. KV-Cube utilizes the BESS technique



Big Data Cogn. Comput. 2024, 8, 64 26 of 29

for efficient cube computation with key–value data models. The graphoid method, although
not an OLAP cube, serves as a data structure for graph modeling in OLAP systems. MR-
Cube and SC-Cube use MapReduce and Apache Spark, respectively, for efficient OLAP cube
computation, with SC-Cube leveraging in-memory processing to enhance performance.

MRC-Cube and MC-Cube, although similar in name, differ in their approaches to
building OLAP cubes using MapReduce techniques. MRLevel focuses on level-based
cube computation, while MRPipeLevel enhances performance using a distributed parallel-
processing strategy. These advancements aim to optimize computation time and data scans,
particularly for Big Data and high-dimensional cubes, showcasing ongoing innovations in
OLAP operations over NoSQL.

The prominent finding in R5 among the 25 studies analyzed is the overwhelming
focus on batch data analysis, with 92% of the proposals centered on this method. This indi-
cates a strong preference within the research community for employing batch processing
techniques in OLAP over NoSQL databases. Additionally, the study’s observation of only
one proposal, 4%, addressing real-time data analysis highlights a notable gap in research
focus, suggesting a potential area for future exploration and development in the field.

The results from R6 shed light on the hardware configurations across different NoSQL
types, underscoring significant variations in node counts, RAM, CPU specifications, disk
capacities, and network speeds. Notably, CentOS emerged as the predominant choice
across column-oriented and document-oriented NoSQL types, while Ubuntu is also widely
utilized, particularly in column-oriented, graph, and key–value databases. Windows and
Debian are less commonly mentioned but still present in specific studies.

Moreover, one study [34] highlighted the explicit mention of tools like Apache Kylin
and Saiku in a single study focusing on columnar databases. These tools, known for their
high-performance OLAP analysis capabilities, emphasize the importance of specialized
platforms for effective, multidimensional data analysis in Big Data environments.

The computational characteristics vary significantly, making it challenging to conduct
a direct comparison. Nonetheless, several noteworthy observations emerged. Firstly, the
number of nodes ranged from 3 to 144, with single-node solutions being disregarded, as
they did not constitute a cluster. Node counts of 3, 4, 5, 6, 15, 25, and 144 were observed.
Regarding RAM, there was a wide spectrum, ranging from 1 GB to 256 GB per node. CPU
specifications exhibited diversity, with the majority being Intel-based. Additionally, disk
storage varied from 120 GB to 8 TB.

When R7 tried to compare the query execution times of OLAP cubes built in NoSQL,
different data sets, queries, and, as mentioned earlier, hardware were noticed. The data
sets used include TPC and SSB, which were originally designed for traditional relational
databases but have been adapted to NoSQL systems. Studies demonstrated that lower
query execution times were achieved with solutions implemented in NoSQL compared
to RDBMSs.

The findings of this study underscore a dynamic landscape of performance across
OLAP models and data set sizes. Initially, the graph model paired with MOLAP impressed,
with a remarkably short query execution time of just 50 s, showcasing efficiency with
smaller data sets like 1 GB in the TPC-DS context. However, as data scale up to 10 GB,
the document-oriented model takes the lead, especially evident with TCP-H, despite the
lack of clarity on the specific OLAP system used. This trend continues with larger data
sets, notably 100 GB, for which document-oriented models paired with ROLAP exhibit
top-tier performance.

Interestingly, the 1000 GB data set presents a unique scenario, with only one data
point available, spotlighting the column-oriented model with MOLAP as boasting the
shortest query time. Nonetheless, it is essential to note that this singular result encompasses
the entirety of data accessible for this size, highlighting the need for broader data sets to
draw comprehensive conclusions. Hence, it is advisable to carefully choose one of these
proposals for implementation, considering factors such as the type of NoSQL database, the
available hardware resources, and the unique characteristics of the data being handled.



Big Data Cogn. Comput. 2024, 8, 64 27 of 29

The findings of this comprehensive analysis underscore the growing prominence
of NoSQL databases as robust solutions for building agile and high-performance data
warehouses. Notably, the study also highlights the need for careful consideration in
selecting a suitable proposal for implementation, factoring in the type of NoSQL database,
available hardware resources, and unique data characteristics involved, thereby paving
the way for informed decision making and the efficient deployment of OLAP systems over
NoSQL platforms.

7. Conclusions

This work has exhibited comprehensive, systematic mapping that sheds light on the
evolving landscape of OLAP integration with NoSQL databases in Big Data environments.
Seven key results were obtained, and they provide valuable insights into the state-of-the-art
methodologies, trends, and challenges in this domain.

The study’s findings underscore the growing significance of leveraging NoSQL
databases for OLAP query analysis in response to the escalating demands of data analytics.
By identifying the most commonly used NoSQL databases, prevalent OLAP modeling
methods, and suggested models for batch and real-time processing, this research offers a
roadmap for organizations navigating the integration of OLAP with NoSQL. Additionally,
the exploration of computational resource requirements and performance benchmarks
facilitates informed decision making and promotes advancements in Big Data analytics.

Moreover, the scientific research conducted in this area has focused on experimenting
with various NoSQL databases and OLAP systems to compare their performance with
RDBMS databases. The findings consistently show superior results with NoSQL databases,
showcasing their scalability and high availability advantages. Notably, systems like ROLAP
and MOLAP, as well as schema designs like Star and Snowflake, have demonstrated their
applicability in these new paradigms. This highlights the potential to integrate the benefits
of NoSQL, such as scalability and high availability, with well-established OLAP techniques,
opening up new avenues for efficient data processing and analysis.

In future research, our focus will be on maintaining up-to-date, systematic mapping
concerning methodologies for structuring OLAP cubes in NoSQL databases. Additionally,
we aim to evaluate the proposed methodologies in order to provide readers with more
precise comparisons, optimize hardware configurations, and conduct comprehensive per-
formance evaluations across diverse data sets. By addressing these aspects, we can provide
specific guidelines to harness the potential of NoSQL databases in order to revolutionize
DW and analytics.

Author Contributions: Conceptualization, D.M.-M. and R.N.; methodology, D.M.-M.; validation,
R.N.; formal analysis, A.A.-C.; investigation, A.A.-C.; writing—original draft preparation, D.M.-M.
and R.N.; writing—review and editing, S.L.-M. and L.R.; supervision, D.M.-M. and L.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to express our sincere gratitude to the Vicerectorate of Research,
Innovation, and Linkage of the Escuela Politécnica Nacional for supporting this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Agrawal, D.; Das, S.; El Abbadi, A. Big Data and cloud computing: Current state and future opportunities. In Proceedings of the

International Conference on Extending Database Technology, Uppsala, Sweden, 21–24 March 2011; pp. 530–533.
2. Hai, B.; Quix, C.; Jarke, M. Data lake concept and systems: A survey. arXiv 2021, arXiv:2106.09592.
3. Ghazali, D.P.S.; Latip, R.; Hussin, M.; Abd Wahab, M.H. A review data cube analysis method in big data environment. ARPN J.

Eng. Appl. Sci. 2015, 10, 8525–8532.
4. Golfarelli, M.; Rizzi, S. From Star Schemas to Big Data: 20 Years of Data Warehouse Research—A Comprehensive Guide through the Italian

Database Research over the Last 25 Years; Springer: Cham, Switzerland, 2017; pp. 93–107.



Big Data Cogn. Comput. 2024, 8, 64 28 of 29

5. Cuzzocrea, A. Data Warehousing and OLAP over Big Data: A Survey of the State-of-the-art, Open Problems and Future
Challenges. Int. J. Bus. Process Integr. Manag. 2015, 7, 372–377. [CrossRef]

6. Martinez-Mosquera, D.; Navarrete, R.; Lujan-Mora, S. Modeling and Management Big Data in Databases—A Systematic Literature
Review. Sustainability 2020, 12, 634. [CrossRef]

7. Kitchenham, B. Procedures for Performing Systematic Review; Keele University: Newcastle, UK, 2004; Volume 33, pp. 1–26.
8. Chaudhuri, S.; Umeshwar, D. An overview of data warehousing and OLAP technology. ACM Sigmod Rec. 1997, 26, 65–74.

[CrossRef]
9. Mongo, D.B. What Is NoSQL? Available online: https://www.mongodb.com/nosql-explained (accessed on 27 December 2023).
10. Thomsen, E. Building Multidimensional Information Systems; OLAP Solutions, Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2002;

pp. 1–688.
11. Chaudhuri, S.; Umeshwar, D. An overview of OLAP systems. In Data Mining and Knowledge Discovery; Springer: Boston, MA,

USA, 1997; pp. 3–43.
12. Bimonte, S.; Tchounikine, A.; Miquel, M. Towards a spatial multidimensional model. In Proceedings of the 8th ACM International

Workshop on Data Warehousing and OLAP, Bremen, Germany, 4–5 November 2005; pp. 39–46.
13. Inmon, W.H. Building the Data Warehouse; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005.
14. TPC Benchmarks. Available online: https://www.tpc.org/information/benchmarks5.asp (accessed on 8 April 2024).
15. Chavalier, M.; El Malki, M.; Kopliku, A.; Teste, O.; Tournier, R. Benchmark for OLAP on NoSQL Technologies Comparing

NoSQL Multidimensional Data Warehousing Solutions. In Proceedings of the International Conference on Research Challenges
in Information Science, Athens, Greece, 3–15 May 2015; pp. 1–6.

16. Aftab, U.; Farooq, G. Big Data Augmentation with Data Warehouse: A Survey. In Proceedings of the International Conference on
Big Data, Seattle, DC, USA, 10–13 December 2018; pp. 2775–2784.

17. El Marlki, M.; Kopliku, A.; Sabir, E.; Teste, O. Benchmarking Big Data OLAP NoSQL Databases. Open Archive Toulouse Archive
Ouverte. Available online: http://oatao.univ-toulouse.fr/24706 (accessed on 10 February 2022).

18. Pastor-Ramón, E.; Herrera-Peco, I.; Agirre, O.; García-Puente, M.; Morán, J.M. Improving the Reliability of Literature Reviews:
Detection of Retracted Articles through Academic Search Engines. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 458–464.
[CrossRef] [PubMed]

19. Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evalu-
ating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [CrossRef]
[PubMed]

20. State of the Art through Systematic Review. Available online: https://www.lapes.ufscar.br/resources/tools-1/start-1 (accessed
on 8 April 2024).

21. Apache Software Foundation. Hive: A Warehouse Infrastructure for Hadoop. 2023. Available online: https://hive.apache.org
(accessed on 4 January 2024).

22. Jiao, M.; Zhang, Y.; Sun, Y.; Wang, S.; Zhou, X. CDDTA-JOIN: One-Pass OLAP Algorithm for Column-Oriented Databases. In
Proceedings of the Web Technologies and Applications, Kunming, China, 11–13 April 2012; pp. 448–459.

23. Dehdouh, K.; Bentayeb, F.; Boussaid, O.; Kabachi, N. Columnar NoSQL CUBE: Agregation operator for columnar NoSQL data
warehouse. In Proceedings of the International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 5–8 October
2014; pp. 3828–3833.

24. Zhao, H.; Xiaojun, Y. A multidimensional OLAP engine implementation in key-value database systems. In Proceedings of the
Advancing Big Data Benchmarks: Proceedings of the 2013 Workshop Series on Big Data Benchmarking, Xi’an, China, 16–17 July
2013; pp. 155–170.

25. Li, F.; Ozsu, M.T.; Chen, G.; Ooi, B.C. R-Store: A scalable distributed system for supporting real-time analytics. In Proceedings of
the IEEE International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 40–51.

26. Chavalier, M.; El Malki, M.; Kopliku, A.; Teste, O.; Tournier, R. How can we implement a multidimensional data warehouse using
NoSQL? In Proceedings of the Enterprise Information Systems International Conference, Barcelona, Spain, 27–30 April 2015;
pp. 108–130.

27. Cuzzocrea, A.; Moussa, R.; Laabidi, A. Taming Size and Cardinality of OLAP Data Cubes over Big Data. In Proceedings of the
Data Analytics: International Conference on Databases, London, UK, 10–12 July 2017; pp. 113–125.

28. Lee, S.; Kim, J.; Moon, Y.S.; Lee, W. Efficient level-based top-down data cube computation using MapReduce. In Proceedings of
the Transactions on Large-Scale Data- and Knowledge-Centered Systems XXI, Valencia, Spain, 1–4 September 2015; pp. 1–19.

29. Song, J.; Guo, C.; Wang, Z.; Zhang, Y.; Yu, G.; Pierson, J.M. HaOLAP: A Hadoop based OLAP system for big data. J. Syst. Softw.
2015, 102, 167–181. [CrossRef]

30. Chavalier, M.; El Malki, M.; Kopliku, A.; Teste, O.; Tournier, R. Implementing multidimensional data warehouses into NoSQL. In
Proceedings of the International Conference on Enterprise Information System, Barcelona, Spain, 27–30 April 2015; pp. 172–183.

31. Dehdouh, K.; Bentayeb, F.; Boussaid, O.; Kabachi, N. Using the column oriented NoSQL model for implementing big data
warehouses. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications,
Beijing, China, 1–4 December 2015; pp. 469–479.

http://doi.org/10.1504/IJBPIM.2015.073665
http://dx.doi.org/10.3390/su12020634
http://dx.doi.org/10.1145/248603.248616
https://www.mongodb.com/nosql-explained
https://www.tpc.org/information/benchmarks5.asp
http://oatao.univ-toulouse.fr/24706
http://dx.doi.org/10.3390/ejihpe12050034
http://www.ncbi.nlm.nih.gov/pubmed/35621514
http://dx.doi.org/10.1002/jrsm.1378
http://www.ncbi.nlm.nih.gov/pubmed/31614060
https://www.lapes.ufscar.br/resources/tools-1/start-1
https://hive.apache.org
http://dx.doi.org/10.1016/j.jss.2014.09.024


Big Data Cogn. Comput. 2024, 8, 64 29 of 29

32. Chavalier, M.; El Malki, M.; Kopliku, A.; Teste, O.; Tournier, R. Document-oriented data warehouses: Models and extended
cuboids, extended cuboids in oriented document. In Proceedings of the International Conference on Research Challenges in
Information Science, Grenoble, France, 1–3 June 2016; pp. 1–11.

33. Scabora, L.C.; Brito, J.J.; Ciferri, R.R.; de Aguiar Ciferri, C.D. Physical data warehouse design on NoSQL databases-OLAP query
processing over HBase. In Proceedings of the 18th International Conference on Enterprise Information System, Rome, Italy, 25–28
April 2016; Volume 2, pp. 111–118.

34. Chen, W.; Wang, H.; Zhang, X.; Lin, Q. An optimized distributed OLAP system for big data. In Proceedings of the IEEE
International Conference on Computational Intelligence and Applications, Beijing, China, 8–11 September 2017; pp. 36–40.

35. El Malki, M.; Kopliku, A.; Sabir, E.; Teste, O. Benchmarking big data OLAP nosql databases. In Proceedings of the Ubiquitous
Networking: 4th International Symposium, Hammamet, Tunisia, 2–5 May 2018; pp. 82–94.

36. Guminska, E.; Zawadzka, T. EvOLAP graph–evolution and OLAP-aware graph data model. In Beyond Databases, Architectures and
Structures. International Conference Facing the Challenges of Data Proliferation and Growing Variety, Proceedings of the 14th International
Conference, BDAS 2018, Poznan, Poland, 18–20 September 2018; Springer: Cham, Swizerland, 2018; pp. 75–89.

37. Ferro, M.; Fragoso, R.; Fidalgo, R. Document-oriented geospatial data warehouse: An experimental evaluation of SOLAP queries.
In Proceedings of the IEEE 21st Conference on Business Informatics, Moscow, Russia, 5–17 July 2019; pp. 47–56.

38. Dehdouh, K.; Boussaid, O.; Bentayeb, F. Big data warehouse: Building columnar nosql OLAP cubes. Int. J. Decis. Support Syst.
Technol. 2020, 12, 1–24. [CrossRef]

39. Gómez, L.; Kuijpers, B.; Vaisman, A. Online analytical processsing on graph data. Intell. Data Anal. 2020, 24, 515–541. [CrossRef]
40. Jianmin, W.; Wenbin, Z.; Tongrang, F.; Shilong, Y.; Hongwei, L. An improved join-free snowflake schema for ETL and OLAP of

data warehouse. Concurr. Comput. Pract. Exp. 2020, 32, e5519. [CrossRef]
41. Khalil, A.; Belaissaoui, M. Key-value data warehouse: Models and OLAP analysis. In Proceedings of the International Conference

on Electronics, Control, Optimization and Computer Science, Las Vegas, NV, USA, 16–18 December 2020; pp. 1–6.
42. Yue, P.; Shangguan, B.; Zhang, M.; Gao, F.; Cao, Z.; Jiang, L.; Fang, Z. Geocube: Towards the Multi-Source Geospatial Data Cube

in Big Data Era. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA,
26 September–2 October 2020; pp. 3127–3130.

43. Akid, H.; Frey, G.; Ayed, M.B.; Lachiche, N. Performance of NoSQL Graph Implementations of Star vs. Snowflake Schemas. IEEE
Access 2022, 10, 48603–48614. [CrossRef]

44. Khalil, A.; Mustapha, B. An Approach for Implementing Online Analytical Processing Systems under Column-Family Databases.
IAENG Int. J. Appl. Math. 2023, 53, 1–9.

45. Khalil, A.; Mustapha, B.; Fouad, T. A Data Placement Strategy for Distributed Document-oriented Data Warehouse. Int. J. Comput.
Sci. 2023, 50, 1–9.

46. Labzioui, R.; Khadija, L.; Mohammed, R. New Approach based on Association Rules for Building and Optimizing OLAP Cubes
on Graphs. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 997–1008. [CrossRef]

47. Kylin, K. Extreme OLAP Engine for Big Data. Available online: https://kylin.apache.org/ (accessed on 8 April 2024).
48. Saiku Big Data. Available online: https://www.meteorite.bi/products/saiku-big-data/ (accessed on 8 April 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4018/IJDSST.2020010101
http://dx.doi.org/10.3233/IDA-194576
http://dx.doi.org/10.1002/cpe.5519
http://dx.doi.org/10.1109/ACCESS.2022.3171256
http://dx.doi.org/10.14569/IJACSA.2023.01407108
https://kylin.apache.org/
https://www.meteorite.bi/products/saiku-big-data/

	Introduction
	Theoretical Background
	Data Warehousing
	NoSQL Databases
	OLAP
	OLAP Systems
	OLAP Schemas

	Big Data
	Map Reduce
	Big Data Processing

	TPC Benchmarks

	Related Work
	Materials and Methods
	Planning
	Identification of the Need
	Review Protocol

	Conducting
	Reporting

	Results
	R1—Types of OLAP Systems Proposed to Integrate OLAP with NoSQL Databases in Big Data Environments
	R2—The Most Common Types of NoSQL Databases Used with OLAP
	R3—The Most Prevalent Methods for Modeling OLAP Data Cubes
	R4—The Proposed Structures of OLAP Data Cubes 
	R5—The Models Suggested for Batch and Near Real-Time Processing
	R6—The Computational Resources Required to Implement the Proposed Models
	R7—Performance of the Models in Terms of Query Execution Times

	Discussion
	Conclusions
	References

