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Abstract: This study proposes a method for classifying economic activity descriptors to match Nomen-
clature of Economic Activities (NACE) codes, employing a blend of machine learning techniques
and expert evaluation. By leveraging natural language processing (NLP) methods to vectorize activ-
ity descriptors and utilizing genetic algorithm (GA) optimization to fine-tune hyperparameters in
multi-class classifiers like Naive Bayes, Decision Trees, Random Forests, and Multilayer Perceptrons,
our aim is to boost the accuracy and reliability of an economic classification system. This system
faces challenges due to the absence of precise target labels in the dataset. Hence, it is essential to
initially check the accuracy of utilized methods based on expert evaluations using a small dataset
before generalizing to a larger one.

Keywords: NLP; multiclass classification; subgroups; NACE; economic activities; big data; expert
evaluation

1. Introduction

Nomenclature of Economic Activities (NACE) is a European standard classification
system used to categorize economic activities [1]. NACE has become instrumental in
standardizing economic data collection and analysis across European Member States since
its inception in the 1970s. It serves as the foundation for gathering and processing data on
economic activities, enabling cross-national and pan-European comparisons. It serves as a
common framework for statistical analysis and reporting within the European Union (EU)
and its member states. Each economic activity is assigned a unique NACE code, facilitating
consistency and comparability across different industries and regions [2]. The accurate clas-
sification of economic activities is crucial for various purposes, including economic policy
formulation [3], resource allocation [4], market analysis [5], and international trade [6].

Given the significance of NACE codes in understanding economic trends and facil-
itating decision-making processes, ensuring the accuracy of these codes is paramount.
However, discrepancies between the assigned NACE codes and the actual nature of eco-
nomic activities can occur, leading to misclassification and potential distortions in data
analysis and policy development.

The application of ML techniques in classifying economic activities is essential, as evi-
denced by its widespread adoption in the literature.

The EU’s monthly harmonized Short-term Business Statistics (STS) is pivotal for as-
sessing the European economy. The timeliness of STS is crucial for policymakers to respond
effectively to economic shifts. The paper [7] evaluates different machine learning algo-
rithms to enhance the timeliness and granularity of Austrian STS data via early estimations
of missing survey data. While a multivariate time series model is currently used for total
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industry and construction, adaptations could extend its applicability to NACE divisions,
except for divisions with small populations, suggesting the need for alternative methods in
such cases.

The study [8] introduces a method to classify European Cleantech companies using
supervised machine learning on business descriptions. By training the model on labeled
data, it learns to identify Cleantech firms based on terms like “sustainable” and “waste
management”, improving NACE-based classification accuracy.

Analyzing web job vacancies offers advantages over traditional survey-based meth-
ods, facilitating faster decision-making based on factual data. The paper [9] presents an
automated approach for classifying millions of web job vacancies into standard occupa-
tional categories using machine learning techniques, thereby enhancing the understand-
ing of labor market demands across different countries, with insights aligned with the
NACE taxonomy.

Paper [10] elucidates the Land Use/Cover Area frame Survey (LUCAS) methodology,
which is crucial for gathering comprehensive in situ data on land cover and use in the
EU, aligning with NACE classification standards. The resulting harmonized database
facilitates robust geo-spatial and statistical analyses of land surface changes, with potential
applications in multi-temporal assessments and deep learning advancements

Work [11] addresses the impact of Industry 4.0 on the labor market, particularly
within the Facility Service (FS) industry, and emphasizes the importance of assessing FS
employment trends aligned with the European Norm for Facility Management and NACE
classifications. Despite challenges in defining FS activities, the study provides insights into
FS employment in major European economies, informing future strategies amidst ongoing
transformations in the labor market.

The research addresses the challenge of classifying texts of descriptions of economic
activities in coherence with the NACE classification. Economic activity information in-
cludes not only textual descriptions but also prices, completion deadlines, and the already
proposed NACE product classification codes, which are designed to categorize activities by
economic types. However, discrepancies between the proposed codes and the predicted
NACE code may arise due to user incompetence or intentional misrepresentation. It posing
a challenge in accurately classifying activities.

Handling this problem involves using text preprocessing algorithms through natural
language processing (NLP) techniques to vectorize texts, fine-tuning hyperparameters of
various classifiers algorithms [12–14] with Genetic Algorithms (GA), subgroup discovery
algorithms [15], and statistical analysis methods to evaluate the effectiveness (accuracy) of
the developed models. The complexity lies in the absence of accurate target labels in the
training data, which are essential for classification methods and model training and tuning.

We aim to develop an approach capable of accurately classifying activities based on
their textual descriptions, thereby enhancing the reliability and utility of NACE-coded data
for economic analysis and decision-making.

2. Materials and Methods
2.1. Dataset Description

To address the research objectives, we leverage a dataset comprising 20 million records
of economic activities. These records encapsulate information such as activity descriptions,
prices, completion deadlines, and NACE product classification codes. The utilization of
NACE codes enables the categorization of activities based on economic activity types,
facilitating an analysis of the government procurement landscape.

The visualization of the distribution of activities across the 88 divisions, identified by
two-digit numerical codes (01 to 99) within the NACE classification system, is shown in
Figure 1. This diagram shows the prevalence of economic activities across various economic
sectors, shedding light on the dynamics of procurement activities within each division.
Table A1 provide descriptions of the NACE codes corresponding to the statistics shown in
Figure 1.
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Figure 1. Visual The representation of economic activities’ distribution according to NACE codes:
each cell of the diagram represents one of 88 divisions of NACE codes (1–99), grouped into 21 sections,
identified by alphabetical letters from A to U, with the number of corresponding activities depicted
in the center of each cell.

For the efficient processing and analysis of text descriptors at scale, we employed
Apache Spark, a high-performance framework for distributed data processing [16–19].
The approach involved vectorizing descriptor texts using the Term Frequency–Inverse
Document Frequency (TF-IDF) method, which assesses the importance of each word in the
context of the entire text corpus.

The vectorization process includes the loading of the initial data into Apache Spark in
DataFrame format. Then, each text was tokenized into individual words using a tok-
enizer. To convert words into vectors, we utilized the CountVectorizer and TfidfVectorized
methods, which assigns a unique numerical identifier to each word and converts it into
a fixed-length vector. TF-IDF vectors were computed for each text using Inverse Docu-
ment Frequency (IDF). This method considers the frequency of a word’s occurrence in a
document and its inverse frequency across the entire corpus. The obtained TF-IDF vectors
were utilized for the analysis and classification of text data, enabling the identification of
important patterns and trends within the data.

Figure 2 illustrates of the experimental pipeline of the article, featuring the processing
of large text data using Apache Spark, text vectorization via NLP, and classification of vec-
torized texts using various multi-class classifiers. Hyperparameter tuning of the classifier
was performed using a genetic algorithm, with the objective function being classification
accuracy. Expert assessment of a portion of the data was utilized to gauge accuracy, which
may be inaccurate due to the absence of correct labels. Ultimately, we obtained a model for
the improved classification of descriptors of economic activities.
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Figure 2. Experimental pipeline for economic activity descriptors’ classification.

2.2. Natural Language Processing

NLP [20,21] is a broad field of artificial intelligence and computational linguistics that
studies the problems of the computer analysis and synthesis of natural languages. It deals
with converting human language text into a format suitable for further computational
processing [22]. Text preprocessing [23] is essential for machine learning algorithms to
work with natural language text.

Typically, the first step in text processing is normalization [24]. This operation involves
converting texts to a desired case, removing punctuation marks [25] (usually achieved by
deleting specified characters from the text), removing numbers [26] (or converting them to
a different format), and eliminating whitespace characters [27]. Normalization is necessary
to standardize text processing methods. Basic transformations were performed on contract
descriptions at this stage, including removing special characters, single literals, multiple
spaces, geographical names, and abbreviations. Subsequently, all characters were converted
to lowercase for text standardization [28] and ease of further processing. Tokenization [29],
which involves splitting long strings into shorter ones, is the next step. This process allows
for complex textual data to be transformed into a simpler and more manageable form.

The next step is stemming [30]. The variety of correct word forms, which have similar
meanings but different spellings, with suffixes, prefixes, endings, etc., complicates the
creation of dictionaries and further processing. Stemming allows words to be reduced
to their basic form. The essence of this approach lies in finding the base of the word,
achieved by sequentially removing its parts from the end and beginning. Stemming
rules are predefined, often represented by regular expressions. Lemmatization [31] is
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an alternative to stemming, aiming to bring words to their dictionary form (lemma).
Lemmatization considers the morphological characteristics of words, unlike stemming,
which operates without context knowledge and does not differentiate between words with
different meanings based on their parts of speech. However, stemming has advantages: it
is easier to implement and faster [32].

Lemmatization and stemming are often used together for text processing [33]. Lemma-
tization reduces words to their canonical form, taking into account their morphological
features, while stemming removes word endings, bringing them to the root form. This can
improve text processing by reducing the number of word forms and simplifying analysis.
WordNetLemmatizer [34] and Stemmer from the nltk.stem module of the NLTK library
were used for lemmatization and stemming. Stemmer is specifically designed for process-
ing text and can effectively shorten words to their root (stem), which is useful for reducing
the morphological diversity of the text. This additionally reduced the volume of textual
data and simplified the analysis.

The final step is vectorization [35]. Most mathematical models operate in high-
dimensional vector spaces, so it is necessary to map text into a vector space. For example,
the bag-of-words model allows for a a document to be represented as a multidimensional
vector of words and their weights in the document [36]. In other words, each document is a
vector in a multidimensional space, where the coordinates correspond to the word numbers,
and the values of the coordinates correspond to the values of the weights. Another popular
vectorization model is Word2vec [37], which represents each word as a vector containing
information about contextually associated words. Another common vectorization model is
TF-IDF [38,39].

The computational complexity of various classification methods depends directly on
the dimensionality of the feature space. Therefore, to effectively train classifiers, it is often
necessary to reduce the number of features (terms) used [40]. By reducing the dimensional-
ity of the term space, it is possible to reduce the overfitting effect—a phenomenon where
the classifier relies on random or erroneous characteristics of the training data rather than
important and significant ones [41]. An overfitted classifier performs well on the instances
it was trained on but much worse on test data. To avoid overfitting, the number of training
examples should be proportional to the number of terms used. In some cases, reducing
the dimensionality of the feature space by a factor of 10 (or even 100) may result in only a
slight degradation of classifier performance.

There are several ways to determine the weight of document features. The most
common method is to compute the TF-IDF function [42]. Its main idea is to assign greater
weight to words with a high frequency within a specific document and a low frequency
across other documents. The term frequency (TF) is calculated as the ratio of the number
of occurrences of a word in a document to the total number of words in the document.
The inverse document frequency (IDF) is the inverse of the frequency with which a word
occurs in the collection of documents. IDF reduces the weight of common words. The final
weight of the term in the document relative to the entire document collection is calculated
by TF * IDF.

It should be noted that the formula evaluates the significance of a term solely based
on its frequency of occurrence in the document, without considering the order of terms in
the document and their lexical collocations.

To transform text into numerical vectors, two main vectorization methods were se-
lected and compared: CountVectorizer [43] and TfidfVectorizer [44]. CountVectorizer
employs the bag-of-words method, relying on the frequency of word occurrences in the
document. TfidfVectorizer is used to assess the importance of a word in the context of the
entire corpus of texts based on the TF-IDF approach. The parameters used for both models
are shown in Table 1.
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Table 1. Parameters for CountVectorizer and TfidfVectorizer.

Parameter Description CountVectorizer TfidfVectorizer

max_features Max. number of most frequently occurring words in vectorization 1500 1500
min_df Min. document frequency for a word to be included in analysis 5 5
max_df Max. document frequency for a word to be excluded from analysis 0.7 0.7

2.3. Optimizing Classifier Parameters Using a Genetic Algorithm

The primary criterion for evaluating the effectiveness of models was classification
accuracy. The analysis revealed that the accuracy of the models showed no significant
differences when using different text vectorization methods. This indicates that both
approaches to text vectorization were effective for the task and adequately transformed
textual data for machine learning [45].

Despite the similarity in terms of accuracy, one of the key factors in choosing the vec-
torization method was the data processing speed. Vectorization using TF-IDF demonstrated
a higher speed of text transformation into vectors compared to the bag-of-words method.

Based on the comparison, TF-IDF was chosen as the primary method of text vectoriza-
tion in the project. This choice was motivated not only by the similarity in accuracy between
the two methods but also by considering the efficiency of data processing. The application
of TF-IDF not only effectively represents text as vectors for subsequent model training but
also reduces the time required for data preparation, which is a significant advantage when
working with large text corpora.

A series of experiments was undertaken utilizing various machine learning techniques
to finetune the parameters of classifiers for the effective classification of economic activities
in accordance with NACE codes.

For parameter optimization, we leveraged the genetic algorithm from the DEAP library.
The optimization process spanned 10 generations. In each iteration, a new generation of
individuals was generated by combining the current population using crossover probability
as 0.5 and mutation probability as 0.1. Subsequently, each individual in the new gener-
ation was evaluated, and fitness values were assigned accordingly. The top-performing
individuals were then selected to form the subsequent generation. The optimization efforts
targeted parameters across multi-classifiers, including Naive Bayes, Decision Tree, Random
Forest, and Multilayer Perceptron. For each candidate in the population, the value of the
fitness function was computed. In this case, this corresponded to the accuracy metric of
classification quality.

Naive Bayes classifier [46] demonstrated an accuracy of 66%, which is a satisfactory
result. It is worth noting that the Naive Bayes classifier is known for its ability to handle
large volumes of data and provide a satisfactory classification quality in a relatively short
training time.

The Decision Tree model, as described by Song et al. [47], employed specific hyperpa-
rameters, which were determined after optimizing the classifier’s hyperparameters using
a genetic algorithm. These hyperparameters included Gini as the criterion [48], Best as
the splitter [49], a maximum tree depth [50] of 20, two samples for split [51], a minimum
of one sample for split, a minimum weight fraction [52] for split set to 0, and equal class
weights. This approach provided an accuracy of 62.7%, which was lower than that of
the Naive Bayes classifier. Although decision trees can capture the relationships between
features, there is a possibility that an overly complex tree was built in this experiment,
leading to overfitting and a deterioration in the model’s ability to generalize information to
new data.

Random Forest [53] model achieved the best results after the GA-based fine-tuning
optimization process, with the following parameters: 48 trees, tree depth of 93, minimum
number of samples required to split an internal node of 94, and minimum number of
samples required to form a leaf node of 3. The combination of these parameters yielded the
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highest accuracy of 0.71 for the classification of construction and installation works within
the given dataset.

The Multilayer Perceptron [54] (MLP) model achieved the highest classification accu-
racy of 71%, with an F1-score of 0.7. The settings for the artificial neural network obtained
after genetic algorithm finetuning optimization included a single hidden layer with 100
neurons, ReLU activation function [55], Adam optimizer [56] for weight tuning, an α coeffi-
cient of 0.0001 for L2 regularization, a batch size of 200 for training, 200 epochs, momentum
set to 0.9, and beta values of 0.9 and 0.999 for β1 and β2, respectively.

Figure 3 illustrates the evolution of hyperparameters and the accuracy of Decision Tree,
Random Forest, and MLP multi-class classifiers across generations of Genetic Algorithm
optimization. It is evident from the plot that there is a trend towards the simplification
of model architectures with a slight increase in accuracy over generations. This obser-
vation underscores the significance of model refinement in handling large volumes of
data efficiently.
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Figure 3. Evolution of hyperparameters and accuracy in Decision Tree (upper row), Random Forest
(mid row), and MLP (bottom row) multi-class classifiers across generations of GA hyperparameters
during finetuning optimization.

Table 2 presents accuracy and F1-score metrics for each of the considered models
based on the conducted experiments.
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MLP demonstrated the best performance among the tested methods, achieving a
classification accuracy of 71% and an F1-score of 0.73. These metrics indicate the model’s
high ability to distinguish between classes and its balance between precision and recall.

It is worth mentioning that this model has several advantages, including flexibility in
tuning and the ability to identify complex dependencies in the data, which are critical for
multi-class classification tasks.

Additionally, the Naive Bayes classifier, while showing slightly inferior results, did not
require the finetuning of hyperparameters, highlighting its potential as a reliable baseline
solution for initial classification system deployment.

The decision tree, although showing slightly lower results compared to other models,
has the advantage of interpretability and ease of visualization, which can be useful when
analyzing classification errors and understanding the decision-making logic of the model.

However, for the purpose of achieving the maximum efficiency and accuracy of the
system, Multilayer Perceptron will be used as the primary tool for classifying economic
activities. Further experimentation is proposed to finetune the MLP hyperparameters to
improve classification results and avoid overfitting.

Table 2. Comparison of Classification Methods.

Classification Method Accuracy F1-Score

Naive Bayes 66% 0.71
Decision Tree 62.7% 0.70
Random Forest 71% 0.70
Multilayer Perceptron 71% 0.73

3. Results
3.1. Subgroups

During the development of the classification model, a problem of a large number of
incorrectly labeled [57] activities in the provided data was identified. The main reasons for
the incorrect assignment of codes were identified as follows:

• Random error in code selection by the author.
• Intentional selection of the wrong code.
• Selection of the wrong code due to a lack of information about which code should be

assigned.

Table 3, containing examples of economic activity descriptors with the initially labeled
NACE codes and the NACE codes predicted by the best classifier, along with possible
reasons for discrepancies in the data. For instance, a descriptor like ‘Fire depot in the village’
lacks information regarding the nature of the activity—whether it involves the repair or
procurement of the fire depot. Similarly, the ‘Execution of works on the manufacture
and installation of fire doors’ illustrates an error in code selection, as the predicted code
proved to be more accurate than the initially labeled one. This further emphasizes the
importance of classification in large datasets, where more accurate classification can be
achieved through machine learning than when using human judgment.

The first group of erroneously labeled activities is small and will not be processed
separately. For the second group, it makes sense to identify patterns related to price and
duration (it is likely that the author’s selection of the wrong code for personal benefit is
associated with these parameters). For the third group, it was assumed that the author
selected the code based on the most suitable description.

Special detection is required for the most numerous third group, as a large amount of
incorrect data can affect training and, consequently, classification accuracy.
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Table 3. Examples of incorrectly labeled economic activities’ descriptions.

Economic Activity
Description

Initial
NACE

Description of
Initial NACE Code

Predicted
NACE

Description of
Predicted NACE Code

The Type of
Discrepancy

Execution of facade
repair works 41.2 Building and

construction works 43.3 Finishing works in buildings
and structures

Intentional selection
of the wrong code.

Fire depot in the village 42.1 Road construction 26.3 Communication
equipment Lack of description

Execution of works on the
manufacture and installation
of fire doors

43.2 Electrical and other
types of installation works 43.3 Finishing and finishing works

in buildings and structures
Error in NACE
code selection

The implementation of works
on the device of an inclined
lift for low-mobilitygroups
of the population

43.2 Electrical and other
types of installation works 43.9 Other specialized

construction works
Error in NACE
code selection

Emergency maintenance
in 2019 43.2 Electrical and other

types of installation works 33.1
Repair services for metal
products, machinery,
and equipment

Lack of description

Rent of special equipment 43.9 Other specialized
construction works 68.2 Rental services for

own or leased real estate.
Intentional selection
of the wrong code.

As a result, we proposed to identify within individual groups, each of which represents
an NACE code, subgroups/clusters that raise questions.

To solve this problem, the pysubgroups library was used [58]—a tool for identifying
lexical patterns among contract descriptions. These subgroups are easy to analyze; instead
of labeling a large amount of data, it is necessary to analyze patterns (rules representing
words/phrases present in code descriptions) and make a decision based on how well the
rule corresponds with the contract.

The pysubgroups library is an instrument used to find subgroups in a dataset. A sub-
group is a subset of data that can be distinguished by certain characteristics or patterns,
resulting in subgroup members demonstrating behavior that is different from the gen-
eral population [59]. For example, in a dataset of activities, a subgroup may represent
construction activities with unique characteristics, such as seasonality or type of work.

Using pysubgroups to divide activities into subgroups allows for a more detailed
analysis and understanding of the data, thus improving the quality of classification. For in-
stance, if we have a general category “Architectural, engineering, and related technical
consultancy services”, subgroup analysis can reveal subcategories such as “Technical
consultancy services”, “Construction supervision”, and “Architectural and engineering
services”, each with unique attributes, described by their own lexical rules.

In addition to in-depth analysis, subgroup discovery can contribute to improving
the accuracy of predictive models. Models trained on data divided by subgroups can
more accurately reflect the characteristics of each subgroup, reducing overall classification
error [60]. As a result, the model can more accurately identify anomalies and incorrectly
classified examples, which is critically important for cleaning the training dataset before
model training.

Finally, the use of subgroups can significantly assist in identifying and correcting
misclassified groups [61]. By defining the key features that characterize each subgroup, it
is possible to develop a system of rules or modify existing classification models to better
recognize and assign activities to their true categories. This can be particularly useful when
processing new activities, where the likelihood of error is higher due to the lack of previous
examples for training. As a result of subgroup analysis by experts, the existing dataset
was cleaned.

3.2. Expert Evaluation

Group F and division 71, associated with construction and building works, were
considered by experts. Figure 4 shows the distribution of descriptors across these codes.
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169,218 236,578

78,320 43,773

274,163 29,770

150,107 269,982

12,802 181,369

43.9 71.1

42.9 42.2

42.1 43.1

41.2 43.2

41.1 43.3

Contracts numbers of Building NACE codes

43.9 - Other construction installation

71.1 - Architectural and engineering activities

42.9 - Construction of other civil engineering projects

42.2 - Construction of utility projects for fluids

42.1 - Construction of roads and railways

43.1 - Demolition and site preparation activities

41.2 - Construction of residential and non-residential buildings

43.2 - Electrical, plumbing and other construction installation activities

41.1 - Development of building projects

43.3 - Building completion and finishing

Figure 4. Visual representation of the distribution of economic activities of the considered NACE
codes: Construction and Installation Works (CIW)—41.2, 42.1, 42.2, 42.9, 43.1, 43.3, 43.9 (lightblue);
Engineering and Surveying Works (ESW)—41.1, 71.1 (lightgreen); Communication Infrastructure
Installation (CII)—43.2 (salmon).

Experts evaluated how well each activity’s descriptor matched the expected meaning
of the NACE code. The expert assessments impact the final results by removing outliers
from the data, such as economic activities with a duration exceeding 100 years or costing
below EUR 1. The aforementioned contract groups are proposed to be treated as outliers
and removed. With a large sample of 20 million records, we can eliminate these few
anomalies without harming the data. On the contrary, removing or correcting outliers can
improve model quality, reduce overfitting, and enhance its generalization ability.

The following features were discovered when reviewing these activities:

• NACE code 42.1: groups containing phrases indicating road maintenance (including
the words “maintenance” and “road AND maintenance”) were identified, which are
not suitable for this group.

• NACE code 41.1L groups related to construction supervision (including words “con-
trol” and “supervision”) were identified. These contract groups were marked as not
corresponding to their NACE code.

• NACE code 41.2: groups of activities related to procurement rather than construction
were identified. The groups based on the key rule “procurement” were designated as
miscellaneous.

• NACE code 42.2: activities were divided into two main groups: repair and construc-
tion. Subgroups based on the rules “repair” or “repair” AND “capital” were identified,
with the remaining activities containing construction objects. A few activities contain-
ing the words “technological” AND “connection” were also identified. This group
should belong to NACE 43.2.

• NACE code 43.1: subgroups with the word “landscaping” were assigned to NACE
42.9. Additionally, subgroups based on the rules “wood”, “wood AND territory”,
“emergency AND wood”, and “supply” were excluded and classified as miscellaneous.

• NACE code 43.2: a separate group of activities based on the rule “alarm” was identi-
fied. This group is not relevant to the analyzed code and was classified as miscella-
neous.
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A visual representation of the concordance between the classifications provided by
our predictive model and those determined by domain experts for specific NACE codes is
shown in Figure 5.

33,429 3,744

19,262

code is correct
class is correct

code is correct
class is incorrect

code is incorrect
class is correct

code is incorrect
class is incorrect

Expert Subgroup Statistics Heatmap

Figure 5. Expert Subgroup Statistics Heatmap for subgroup of 56,435 activities.

The heatmap illustrates three distinct scenarios: (1) instances where both the model
and experts correctly identified the code (33,429), (2) cases where the initial code was
incorrect, but the model predicted it accurately (19,262), and (3) situations where the code
was initially correct, but the model misclassified it (3744). Notably, instances where both
the model and experts erred were not considered further, as they could not be discerned
with a single expert assessment. Overall, for the selected subgroup, the model’s accuracy
in predicting NACE codes reached 93%.

Figure 6 illustrates the confusion matrix, providing an in-depth analysis of the multi-
class classification MLP model’s performance across both balanced and imbalanced sub-
groups of the original dataset. It offers a comprehensive overview of the predicted versus ac-
tual class labels across all categories, achieved through the multilayer perceptron classifier.

The expert evaluation process allowed for the identification and correction of incon-
sistencies [62] in the classification of activities, ensuring the accuracy and reliability of
subsequent analyses and models.
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Figure 6. Confusion Matrices and classification reports illustrating MLP multi-class classification
results for imbalanced (left picture) and balanced (right) datasets of economic activity descriptors.

4. Discussion

Based on the analysis conducted and the results obtained, we identified several
directions for further work that will help improve the classification system for economic
activities and enhance its effectiveness. For instance, additional experiments are proposed
to finetune the hyperparameters of the current model [63]. Furthermore, exploring the
application of more sophisticated machine learning models, including ensemble methods
and deep learning, is recommended to increase classification accuracy. To gain a deeper
understanding of the reasons behind misclassifications, a detailed analysis of cases of
incorrect classification is proposed [64]. This will allow for weaknesses in the model to be
identified and the training process to be adjusted to eliminate systematic errors. To improve
the model’s generalization ability, it is advisable to meticulously label the training dataset,
especially for classes with a high number of erroneous predictions. [65]. These measures
may help increase the accuracy and reliability of the classification system, while also
ensuring its adaptability and scalability for future tasks.

The need for text classification is widely addressed in various scientific sources. Text
classification in NLP is rapidly evolving, driven by transformer-based models like LLMs.
Fields et al. [66] surveys text classification techniques across diverse applications, proposing
an expanded taxonomy to include multimodal classification. It evaluates model accuracy,
discusses the ethical implications, and emphasizes the importance of a nuanced under-
standing and holistic deployment in real-world scenarios.

The increasing complexity of legal documents demands advanced automated text clas-
sification techniques. Xie et al. [67] proposed a method that utilizes Convolutional Neural
Networks [68] (Conv1D), which is adept at capturing hierarchical features in sequential
data. Max-pooling aids in extracting significant features, while softmax activation handles
multi-class legal citation categorization. Addressing previous limitations, their model
aims to enhance legal citation text classification, offering a robust solution for automated
categorization in the legal domain. A performance evaluation of RandomForest, SVM [69],
and MLP models reveals Conv1D’s superior outcomes, with a weighted F1-Score of 0.57.
Its notable precision and F1-Score underscore its accuracy and suitability for multi-class
categorization in analyses of legal text.

Large Language Models [70] (LLMs) excel in various AI and NLP tasks but can lead
to issues like fake news if misused. Detecting AI-generated text is crucial for responsible
LLM use. Abburi et al. [71] explores how to distinguish AI from human-generated text and
attribute text to specific language models. They propose an ensemble neural model using
the probabilities from pre-trained LLMs as features for a Traditional Machine Learning
(TML) classifier. For English, their F1 score is 0.733 for AI-generated text classification.
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Zhao et al. [72] introduce BERT-Augmented Prompt Engineering in Large Language
Models (BAP-LLM), a novel method combining BERT’s precision with Foundation Models’
extensive training foundations. When applied to the New York Times news corpus, the
BAP-LLM approach outperformed existing models, showcasing its potential for automated
news categorization and paving the way for hybrid model research. The accuracies of
BERT [73], GPT-4 [74], GPT-3 [75], and BAP-LLM are 0.74, 0.76, 0.62, and 0.79, respectively,
against a baseline random classifier of 0.19. BAP-LLM surpasses all individual models
across metrics, highlighting its efficacy in leveraging BERT’s insights and the generative
capabilities of Foundation Models.

As a neural network model based on transformers, BERT leverages deep learning
and is pre-trained on a large corpus of texts. BERT generates context-dependent vector
representations (embeddings) for words and sentences, which can be utilized in various
NLP problems.

TF-IDF is a simpler and computationally cheaper method that can be effective in basic
text analysis tasks. It is a statistical technique for evaluating the importance of a word in a
document within a collection of documents. It generates weight coefficients for words in a
document, which are used to represent documents as fixed-length vectors.

One feature of the problem of classifying economic activity based on textual descrip-
tions is the presence of a training dataset with labels, many of which are incorrect (up to
30% of all examples). Thus, the training dataset for classification contains a significant
number of anomalies.

Vectorizing text using the relatively simple TF-IDF method is sufficient. The main
problem is in constructing a classifier using vectorized data, which shifts the focus from
LLMs to multi-class classifiers like Naive Bayes, Decision Trees, Random Forests, and Mul-
tilayer Perceptrons for large datasets requiring finetuning. This problem is addressed by
applying a genetic algorithm to fine-tune the classifier’s hyperparameters.

5. Conclusions

In conclusion, the study focused on improving the classification system for economic
activities’ descriptions using a combination of machine learning techniques and expert
evaluation. Through the analysis, we identified key areas for enhancement and proposed
strategies to address them. Optimizing the hyperparameters of a multi-class classifier
using GA offers the advantage of automatically finetuning model settings for improved
performance and accuracy. Expertly assessing labels on a subset of data can facilitate the
construction of an enhanced model to classify economic activities according to NACE codes.

After optimizing the hyperparameters of the multi-class classifiers, the following
best configurations were identified: for Random Forest, the number of trees is 48 and the
maximum depth of the trees is 93. For MLP, the number of hidden layers is 1, the number
of neurons in the hidden layer is 100, and Adam is used as an optimizer. Both achieved
an accuracy of 71% and an F1 score of 0.7 and 0.73, respectively for Random Forest and
MLP. Expert assessment of a subset of activities, specifically for the construction of NACE
codes, revealed a significant portion of incorrect labels in the original dataset (up to 30%),
and that the MLP model actually has an accuracy of 93% on the selected data subset.

Overall, these efforts are expected to lead to a more accurate and reliable classification
system for economic activities, with increased adaptability and scalability for future tasks
in this domain.
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Appendix A

Table A1 provide descriptions of the NACE codes corresponding to the statistics
shown in Figure 1. Each row in the table represents a specific NACE code along with its
corresponding title, providing a comprehensive reference for understanding the depicted
statistics. Descriptions were taken from [76].

These tables serve as a key reference for interpreting the data presented in the corre-
sponding figure, facilitating a better understanding of the statistical insights depicted in
the research.

Table A1. NACE codes descriptions.

Division Title

A.1 Crop and animal production, hunting, and related service activities
A.2 Forestry and logging
A.3 Fishing and aquaculture
B.5 Mining of coal and lignite
B.6 Extraction of crude petroleum and natural gas
B.7 Mining of metal ores
B.8 Other mining and quarrying
B.9 Mining support service activities

C.10 Manufacture of food products
C.11 Manufacture of beverages
C.12 Manufacture of tobacco products
C.13 Manufacture of textiles
C.14 Manufacture of wearing apparel
C.15 Manufacture of leather and related products

C.16 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles
of straw and plaiting materials

C.17 Manufacture of paper and paper products
C.18 Printing and reproduction of recorded media
C.19 Manufacture of coke and refined petroleum products
C.20 Manufacture of chemicals and chemical products
C.21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
C.22 Manufacture of rubber and plastic products
C.23 Manufacture of other non-metallic mineral products
C.24 Manufacture of basic metals
C.25 Manufacture of fabricated metal products, except machinery and equipment
C.26 Manufacture of computer, electronic, and optical products
C.27 Manufacture of electrical equipment
C.28 Manufacture of machinery and equipment n.e.c.
C.29 Manufacture of motor vehicles, trailers, and semi-trailers
C.30 Manufacture of other transport equipment
C.31 Manufacture of furniture
C.32 Other manufacturing
C.33 Repair and installation of machinery and equipment
D.35 Electricity, gas, steam, and air conditioning supply
E.36 Water collection, treatment, and supply
E.37 Sewerage
E.38 Waste collection, treatment, and disposal activities; materials recovery
E.39 Remediation activities and other waste management services
F.41 Construction of buildings
F.42 Civil engineering
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Table A1. Cont.

Division Title

F.43 Specialised construction activities
G.45 Wholesale and retail trade and repair of motor vehicles and motorcycles
G.46 Wholesale trade, except of motor vehicles and motorcycles
G.47 Retail trade, except of motor vehicles and motorcycles
H.49 Land transport and transport via pipelines
H.50 Water transport
H.51 Air transport
H.52 Warehousing and support activities for transportation
H.53 Postal and courier activities
I.55 Accommodation
I.56 Food and beverage service activities
J.58 Publishing activities

J.59 Motion picture, video and television programme production, sound recording, and music
publishing activities

J.60 Programming and broadcasting activities
J.61 Telecommunications
J.62 Computer programming, consultancy, and related activities
J.63 Information service activities
K.64 Financial service activities, except insurance, and pension funding
K.65 Insurance, reinsurance, and pension funding, except compulsory social security
K.66 Activities auxiliary to financial services and insurance activities
L.68 Real estate activities
M.69 Legal and accounting activities
M.70 Activities of head offices; management consultancy activities
M.71 Architectural and engineering activities; technical testing and analysis
M.72 Scientific research and development
M.73 Advertising and market research
M.74 Other professional, scientific, and technical activities
M.75 Veterinary activities
N.77 Rental and leasing activities
N.78 Employment activities
N.79 Travel agency, tour operator reservation service, and related activities
N.80 Security and investigation activities
N.81 Services to buildings and landscape activities
N.82 Office administrative, office support, and other business support activities
O.84 Public administration and defence; compulsory social security
P.85 Education
Q.86 Human health activities
Q.87 Residential care activities
Q.88 Social work activities without accommodation
R.90 Creative, arts, and entertainment activities
R.91 Libraries, archives, museums, and other cultural activities
R.92 Gambling and betting activities
R.93 Sports activities and amusement and recreation activities
S.94 Activities of membership organisations
S.95 Repair of computers and personal and household goods
S.96 Other personal service activities
T.97 Activities of households as employers of domestic personnel
T.98 Undifferentiated goods-and services-producing activities of private households for own use
U.99 Activities of extraterritorial organisations and bodies
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