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Abstract: This study explores the implementation of the analytic hierarchy process in usability
evaluations, specifically focusing on user interface assessment during software development phases.
Addressing the challenge of diverse and unstandardized evaluation methodologies, our research
develops and applies a tailored algorithm that simplifies heuristic prioritization. This novel method
combines the analytic hierarchy process framework with a bespoke algorithm that leverages transitive
properties for efficient pairwise comparisons, significantly reducing the evaluative workload. The
algorithm is designed to facilitate the estimation of heuristic relevance regardless of the number of
items per heuristic or the item scale, thereby streamlining the evaluation process. Rigorous simulation
testing of this tailored algorithm is complemented by its empirical application, where seven usability
experts evaluate a web interface. This practical implementation demonstrates our method’s ability to
decrease the necessary comparisons and simplify the complexity and workload associated with the
traditional prioritization process. Additionally, it improves the accuracy and relevance of the user
interface usability heuristic testing results. By prioritizing heuristics based on their importance as
determined by the Usability Testing Leader—rather than merely depending on the number of items,
scale, or heuristics—our approach ensures that evaluations focus on the most critical usability aspects
from the start. The findings from this study highlight the importance of expert-driven evaluations for
gaining a thorough understanding of heuristic UI assessment, offering a wider perspective than user-
perception-based methods like the questionnaire approach. Our research contributes to advancing
UI evaluation methodologies, offering an organized and effective framework for future usability
testing endeavors.

Keywords: heuristic evaluation; usability testing; analytic hierarchy process; usability; algorithm
efficiency; expert evaluation; human–computer interaction; heuristic evaluation; user interface

1. Introduction

Usability is critical in the design and development of technology and software. It
refers to the ease with which users can effectively, efficiently, and satisfactorily interact with
a system or product to achieve their goals [1]. This concept is paramount in determining
the success or failure of software applications and technological products. Its importance is
emphasized by Giacomin, who states that user-centric designs lead to higher productivity,
reduced errors, and enhanced user engagement [2]. A focus on usability ensures that
products are intuitive and accessible, meeting the diverse needs of users [3] and enhancing
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human performance [4]. Thus, integrating usability in technology fosters a positive user
experience [5] and significantly influences user adoption and satisfaction [6,7].

Experts often try to quantify the usability of systems despite these challenges [8]; they
implement heuristic evaluations and quantification approaches like the System Usability
Scale (SUS) for usability testing [9], the Questionnaire for User Interaction Satisfaction
(QUIS) for human–computer interfaces [10], the Software Usability Measurement Inventory
(SUMI) for testing computer usability satisfaction [11], or the Post-study System Usability
Questionnaire (PSSUQ) [12], among others. Heuristic evaluations involve experts exam-
ining an interface against established usability principles [13]. This qualitative method
relies on the expertise of evaluators to identify usability issues. In contrast, mixed-method
approaches quantify perceived ease of use from the end user’s perspective [14]. They pro-
vide a numerical score to measure a product’s usability. While heuristic evaluations offer
in-depth, expert analysis, approaches such as SUS capture user feedback quantitatively [15],
collectively benefiting a comprehensive understanding of usability [16].

Developing a unified usability strategy that combines qualitative (also known as
inquiry) and quantitative or so-called testing-based approaches presents several chal-
lenges [17]. Technology developers need to balance expert-driven insights from heuristic
evaluations with user-centric data from tools like usability measurement estimations, re-
quiring an intricate understanding of both approaches [18]. Qualitative methods, rich
in contextual information, can be subjective. At the same time, quantitative approaches,
though objective, might not capture nuanced user experiences [19]. It is necessary to devise
a sophisticated strategy that integrates these methodologies to produce a comprehensive
usability score. This strategy should respect the strengths and limitations of each method,
ensuring that the usability score reflects the expert analysis and user experience [20].

Usability benefits extend beyond merely evaluating technology adoption; they are
instrumental for identifying characteristics that require improvement in software engi-
neering and task prioritization within software development [21]. However, evaluating
usability based on expert assessment is challenging due to the numerous components
and potential for order effects, which can introduce bias [22]. These challenges highlight
the need for methodologies that prioritize the order of evaluation to mitigate bias and
enhance accuracy. Existing approaches often quantify usability based on expert heuristics
evaluations. However, these methods can vary significantly in terms of scales, components,
and the number of heuristics [23], making quantification dependent on these characteristics.
This work proposes using the analytical hierarchical process [24] as a strategy to evaluate or
estimate the relevant weights of the heuristics that do not depend on the instrument’s char-
acteristics. Our approach modifies the traditional application, focusing not on comparing
alternatives but on identifying the relevance of each component. Furthermore, considering
the extensive number of items per instrument during heuristic UI assessment, we propose
a tailored algorithm for decreasing the number of comparisons required by leveraging
the transitivity property. We designed this alternative for experts who find the number of
comparisons cumbersome and prone to bias due to their exhaustiveness.

Given the dynamic nature of usability, which is strongly influenced by the specific
lifecycle stage of software and the version in use, along with the complex and diverse
strategies for fostering user–machine interactions [25], it is crucial to delineate the scope of
this research, especially when there are ambiguous definitions and applications of usability
testing. Considering the taxonomy proposed by Alonso-Ríos et al. [26], this document
examines the need for an easily implemented and objectively assessed methodology for
evaluating user interfaces (UIs) during these critical phases. Section 2 delves into the evolu-
tion and implications of expert approaches for quantifying UI usability. The methodology
detailed in Section 3 incorporates the analytic hierarchy process to estimate weightings and
explores a simulation approach for a practical application with actual data. We applied
these methods to adapt to the evolving nature of software, ensuring that the heuristic UI
assessment is both relevant and precise for each stage. The findings from this approach are
aggregated and interpreted in Section 4, with a discussion on their practical and theoretical
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significance provided in Section 5. Ultimately, Section 6 summarizes the principal findings
and underscores the contributions of this research, which aims to refine the discourse in
HCI by presenting a methodologically rigorous and empirically validated approach to UI
assessment.

2. Background

The term usability was defined by ISO/CD 9241-11, where the usability of an interac-
tion system is primarily evaluated based on its capacity to aid the user with accomplishing
a task, thereby improving effectiveness, simplicity, and enjoyment, which are the three
fundamental usability aspects [27]. Heuristic evaluation was first introduced by J. Nielsen
and R. Molich in 1990 in their seminal work “Heuristic Evaluation of User Interfaces” [13],
which is a method for assessing usability in user interfaces. It involves expert evaluators
scrutinizing an interactive system’s UI to gauge its quality of use. This assessment measures
the extent to which the interface adheres to a predetermined set of usability guidelines or
heuristics—hence, the name. This technique relies on a curated list of guidelines drawn
from the collective expertise of the evaluators. Their experience enables them to identify
usability issues or areas for improvement effectively. The method typically entails the
following steps: evaluators individually complete questionnaires, documenting encoun-
tered problems; subsequently, they convene to discuss and consolidate their findings into a
cohesive list. Throughout these discussions, evaluators prioritize the identified problems
based on severity, frequency, and criticality.

Nielsen and Molich proposed ten heuristics to guide evaluations in their original work.
This structured approach ensures a systematic and thorough assessment of the interface’s
usability, leading to actionable insights for optimization. Their findings about that method
were various, and they opened multiple research lines in the following years. Among their
conclusions, they highlighted the following:

1. Heuristic set: The heuristic set originally contained nine heuristics extracted from the
work by Molich and Nielsen [13]. It serves as a way to categorize usability problems.
However, it does not provide information about how to solve them.

2. Number of evaluators: The authors noticed that the number of evaluators was a
critical factor, and they determined that an optimal number of them might be around
three to five, and that more than ten evaluators might be unnecessary.

3. Evaluator biases: The answers from the evaluators are subject to their expertise,
previous experience, and own judgment, providing potential limitations and biases in
the results.

Several studies emerged to update and propose different sets of heuristics regarding
the heuristic set. Nielsen introduced another heuristic to the initial set of nine, providing
what is commonly known as “The 10 Nielsen’s Heuristics”. However, authors consider
the initial set of heuristics too general [23], opening up new studies to improve the initial
set to be more specific to the desired object of study. This led to the proposal of new sets
of principles, such as Shneiderman’s Eight Golden Rules [28], which emphasize usability
guidelines for user interface design, Norman’s Seven Principles [29], focusing on cognitive
aspects of design, or Tognazzini’s First Principles of Interaction Design [30], providing
foundational principles for crafting engaging user experiences.

Performing heuristic evaluations offers numerous advantages beyond enhancing tech-
nology acceptance [31], including cost-effectiveness, as it requires minimal time and fewer
users compared to traditional user testing [32,33]. Additionally, it demands less extensive
planning, involves fewer people, and entails a streamlined analysis process. Moreover,
heuristic evaluation is versatile and applicable across various stages of software devel-
opment, including the planning, development, and post-release phases [34]. However,
several disadvantages exist. Firstly, finding evaluators with sufficient expertise to provide
high-quality feedback can be challenging [35,36]. Secondly, depending on the project stage,
evaluators may struggle to grasp the full range of tasks applicable to the software [37,38].
Thirdly, the evaluation results may lack actionable suggestions for resolving identified
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usability issues, potentially necessitating additional data collection [39]. Finally, the original
scoring system introduced by Nielsen and Molich [13] has often perplexed evaluators due
to its differentiation among severity, frequency, and criticality attributes; thus, heuristic
methods without a rigid framework poorly support problem discovery [40]. This confu-
sion has led many experts to predominantly focus on one attribute, typically criticality,
highlighting the need for subsequent proposals to refine this aspect [41,42].

Numerous authors have contributed to the evolution of usability heuristics to explore
aspects beyond user interfaces by proposing tailored sets specific to their use cases [43],
prompting further inquiries and the development of methodologies to compile such data.
Quiñones et al. [44] conducted a comprehensive systematic review of various usability
heuristic proposals in the literature, elucidating diverse approaches to their creation. Their
findings reveal a spectrum of methodologies, including considering existing heuristics,
literature reviews, analyses of usability problems, incorporating design recommendations,
interviews, and theoretical frameworks. From the analysis of over 70 papers, two main
clusters emerged in heuristic research: one focused on developing domain-specific usability
heuristics, and the other focused on processes and methodologies for their creation. In
exploring the process of heuristic development, researchers have investigated the existence
of a consensus on the most effective approach [45–50]. Hermawati and Lawson did another
approach [51] where they analyzed more than 90 articles that used heuristic evaluation,
and their findings were that less than 10% were acceptable and robust. They justified this as
most of the studies did not perform validation, did not conduct a comparative justification
between heuristics, did not quantitatively analyze the comparison results, and relied only
on detailed textual descriptions.

Extracting actionable insights from qualitative feedback without numeric measure-
ments necessitates effort from researchers to quantify or estimate usability attributes such
as effectiveness, efficiency, and satisfaction [52]. Mitta proposed a methodology for quan-
tifying expert usability using a linear multivariate function, with user perceptions and
performance as independent variables [53]. This approach, illustrated with a practical
example, yielded a usability score through linear normalization of experimental data.
Delice and Güngör explored the quantification of attributes like severity, as defined by
Nielsen and Molich [13], using the analytic hierarchy process in combination with heuristic
evaluation for heuristic prioritization [54]. Their method involved expert website usability
evaluations and ranking and identified problems using pairwise comparisons based on
Saaty’s scale [24]. Granollers investigated a combined approach for heuristic UI assessment,
integrating a 15-principle heuristic set with specific questions and a 4-option rating scale
for quantification, resulting in a usability percentage (UP) [55]. This method garnered
attention as a notable proposal in the field [56]. Paz et al. proposed a specialist-oriented
inspection technique for usability quantification, employing a 64-item checklist validated
by Bonastre and Granollers [57,58]. Usability was quantified by averaging evaluators’
responses, establishing the reliability of the assessment methodology.

In terms of enhancing the checklist approach for heuristic assessment, Kemp et al. [59]
introduced a detailed checklist for each heuristic, with specific questions to assess the
system, utilizing a 0 to 4 rating scale. This refinement aimed to improve the precision of
assessments. However, numerous sub-heuristics or topics raised concerns about evaluator
fatigue, a challenge initially addressed by Nielsen [32] and later by Granollers [55] through
limiting the question quantity. Furthermore, the diversity in checklist formats—ranging
from PDF and DOC to XLS—underscores the variation in support mechanisms employed
across studies [60,61], reflecting the adaptability of heuristic evaluation methods to different
technological contexts and evaluator preferences. While beneficial for tailored assessments,
this adaptability necessitates careful consideration to maintain evaluator engagement and
ensure the reliability of usability insights. Despite the diversity in instruments designed to
quantify system usability, the discipline of psychometrics covers all approaches [62]. This
connection underscores the necessity of grounding heuristic evaluation and survey design
within robust psychological principles in HCI.
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However, ensuring the best instrument for measuring concepts or getting the “gold
standard” in psychometric research (understood as the highest level of methodological
quality for survey design) is a paramount activity [63]. Different strategies arise in the
literature to enhance the instrument’s consistency and effectiveness [64]. Maintaining a
uniform scale, measurement level, or end-point scale across all analyzed items or constructs
helps to unveil the similarities between latent variables [65], especially for multivariate
and correlational models [66]. Using the same number of items ensures that different test
versions are consistent and can be compared across different administrations or populations,
helping the generalizability of the results [67]. Face validity indicates the extent to which
a test appears effective in terms of its stated aims [68]. Mathematically, aligning the
number of items per construct enhances reliability [69] and reflects principles from item-
response theory, emphasizing the significance of each question’s contribution to the overall
construct [70].

Some research does not follow a uniform scale, and experts have designed proper
weight systems to accomplish that task [71–73]. The study by Gulzar et al. [74] presents
multiple criteria weights used in the past, like mathematical programming, analytic net-
work processes, linear weighting, and analytic hierarchy processes. Kamaldeep et al. [71]
followed the “CRiteria Importance Through the Inter-criteria Correlation” (henceforth
CRITIC) methodology to establish and find objective weights related to the criteria of their
evaluation. Although they do not use a heuristic evaluation, they compared the relation-
ships between properties of the individual criteria. In the same way, Muhammad et al. [72]
used the “Fuzzy analytic hierarchy process” (henceforth FAHP) to create their methodology
to compute global weights for usability factors. In that study, they do not specify that they
followed a heuristic evaluation, but the methodology used refers to the range of usability
factors that come from an expert evaluation. Iryanti et al. used a similar approach [73]
with a fuzzy preference programming method known as “Inverse Trigonometric Fuzzy
Preference Programming” (henceforth ITFPP) to evaluate a specific domain like e-learning
through the arc-sine function.

3. Materials and Methods

This research introduces significant modifications to the Granollers heuristic UI assess-
ment method to enhance its adaptability and relevance to diverse HCI contexts, including
flexibility and adaptability to different tests for usability assessment. Traditionally, Gra-
nollers’ method evaluates usability across 15 items with uniform significance, irrespective
of the interface, user, or technology involved [55]. Our approach redefines the assessment
process by introducing variable weights to these items, recognizing the original limitation.
We propose this modification predicated on the understanding that certain heuristics may
bear more significance than others during specific software development phases depending
on the specific objectives of the Usability Testing Leader: for example, prioritizing those
aspects more relevant in the software to be improved or organizing the heuristic UI as-
sessment process based on prioritizing the most relevant aspect at the beginning of the
evaluation to avoid bias due to exhaustiveness.

Considering all aspects or characteristics of UI assessment, particularly in heuristic
evaluation, it becomes evident that a multicriteria decision making (MCDM) approach is
indispensable. This necessity arises due to the complex and varied elements involved, such
as group decision making, sensitivity to changes in initial matrix values, and integrating
qualitative evaluation with quantitative assessment criteria. Despite the diversity of MCDM
methodologies, selecting an appropriate method hinges significantly on researchers’ and
practitioners’ specific requirements and assumptions. Munier highlights that a guideline for
choosing a multicriteria method can be significantly beneficial [75]. This guideline assesses
compatibility based on 54 potential characteristics, ensuring that the selected method
aligns closely with the unique demands of a project, thereby optimizing the assessment
of user interface heuristics pragmatically and efficiently. Table 1 shows the characteristics
related to heuristic UI assessment. We identified 16 characteristics to consider, with the
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analytic hierarchy process (AHP) and the technique for order of preference by similarity
to ideal solution (TOPSIS) being the most suitable methodologies for this research scope.
Considering the relevance of decomposing complex problems into a set of simple sub-
problems [76], we employed AHP to systematically assign weights to the heuristic elements.
We chose AHP and not TOPSIS because the Usability Testing Leader does not have a
reference value, so we do not try to classify alternatives with an ideal solution (indeed,
we do not have alternatives). Additionally, the researchers are familiar with AHP, and the
present research modifies the traditional AHP to make it more suitable for the research
aims (this section describes all these assumptions and modifications).

Table 1. Multicriteria method comparison for heuristic UI assessment based on Munier’s approach [75].

Method

ID Characteristic SAW AHP TOP VIK PRO MOO ELE ANP LPr SIM

1 Simple scenario 1 1 1 1 1 1 1 1 1 1
8 Several DMs (group decision

making)
0 1 0 0 0 0 0 0 0 1

9 Ease of changing the initial
matrix values

1 0 1 1 1 1 1 0 1 1

10 Large project involving
consultations with people

1 0 1 1 1 1 1 0 1 1

11 Linguistic initial matrix 0 1 0 0 0 0 0 1 0 0
12 Qualitative criteria 1 1 1 1 1 1 1 1 1 1
14 Using a particular

normalization procedure
0 1 1 0 0 1 0 1 0 0

16 Independent alternatives 0 1 0 0 0 0 0 1 0 0
19 Many criteria 1 0 1 1 1 1 1 0 1 1
20 Independent criteria

(compensatory methods)
1 1 1 0 0 0 0 1 0 0

22 Necessity of knowing
criteria’s validity range

0 1 1 0 1 0 1 1 1 1

46 Necessity to evaluate
criteria’s relative importance

1 1 1 1 1 1 1 1 0 1

47 Want to use subjective
weights

1 1 1 1 1 1 1 1 0 0

50 Sensitivity analysis (SA)
with weights

1 1 1 1 1 1 1 1 0 0

54 Not theoretically complex 1 1 1 0 1 0 0 0 0 0

Requirement 16 16 16 16 16 16 16 16 16 16
Match 10 12 12 8 10 9 9 10 6 8

Best (minimum gap) 6 4 4 8 6 7 7 6 10 8
SAW: Simple Additive Weighting, AHP: Analytic Hierarchy Process, TOP: Technique for Order of Preference
by Similarity to Ideal Solution, VIK: VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), PRO:
Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), MOO: Multi-Objective
Optimization, ELE: ELECTRE (Elimination Et Choice Translating Reality), ANP: Analytic Network Process, LPr:
Linear Programming, and SIM: Simulation

AHP, a structured technique for organizing and analyzing complex decisions, is based
on mathematics and psychology. It involves decomposing a problem into a sub-problem
hierarchy, which is then analyzed independently. A correct AHP implementation is a
challenge due to the ambiguous formulation of research questions, potentially resulting in
varied treatment hierarchies that can undermine the robustness of its outcomes [77]. Addi-
tionally, the method’s reliance on hierarchical structuring of objectives can inadvertently
skew the distribution of weights, affecting the overall balance and fairness of the analy-
sis [78]. The selection of units for analysis and the strategies employed in modeling within
AHP frameworks are critical, as they substantially influence the conclusions’ validity [79]
as well as the emergent relationships between criteria, subcriteria, and alternatives, which
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generate dependence and feedback between components [80]. Thus, when implementing
AHP, it is important to consider pairwise comparisons, judgment scales, derivation meth-
ods, consistency indices, incomplete matrices, synthesis of the weights, sensitivity analysis,
and group decisions [81].

In this study, we applied AHP to quantify the relative importance of each heuristic
item. This methodology involved generating pairwise comparisons and deriving weights
through standardized equations, ensuring a robust and replicable approach. Our AHP
implementation requires assumptions such as the independence of criteria, treating each as
a distinct usability aspect for evaluation. The questions in our test functioned as guidelines,
facilitating both the quantification of value and the collection of expert feedback. Unlike
typical applications of AHP, which focus on evaluating alternatives, our approach targets
the assessment of system usability and aims to establish a baseline indicator for a UI’s
usability component improvements. Furthermore, the method for generating weights
enhances the sensitivity of the heuristic UI quantification process. It does not depend
on the number of components or the scale of components within each heuristic under
consideration. This adaptation ensures that our heuristic UI assessment is comprehensive
and finely attuned to subtle variations in system interaction, providing valuable insights
for enhancing user experience.

3.1. Heuristic Instrument

The heuristic evaluation framework by Toni Granollers is an extension and adaptation
of principles from pioneers like Nielsen and Tognazzini [55] and aims to provide a compre-
hensive toolkit for usability assessment in HCI. The framework comprises 15 heuristics,
each with specific questions designed to probe various aspects of user interaction and
interface design. These heuristics cover areas from the visibility of system states and error
management to aesthetic design and efficiency of use. The questions are quantified, and
their answers are categorized to reflect the degree of the system’s alignment with these
heuristics, ranging from full compliance to non-applicability. The number of questions
per heuristic varies, reflecting the depth of investigation into each area. The usability
value derived from these evaluations is a calculation expressed as a percentage, standard-
ized between 0% to 100%, indicating the extent of adherence to usability standards. A
color-coding system is employed to communicate this value visually: green represents
high usability, yellow indicates moderate usability, red suggests poor usability, and white
denotes non-applicability or non-issues. The full list of heuristics and the number of as-
sociated questions and descriptions can be meticulously detailed, ensuring a robust and
well-rounded evaluation instrument.

1. Visibility and system state (five questions): Focuses on ensuring that users are always
aware of what the system is doing and their position within it.

2. Connection with the real world (four questions): Prioritizes using familiar language,
metaphors, and concepts, aligning the system with real-world analogs.

3. User control and freedom (three questions): Emphasizes allowing users to navigate
and undo actions easily.

4. Consistency and standards (six questions): Ensures uniformity in the interface, with
consistent actions and standards across different elements.

5. Recognition rather than memory (five questions): Aims to design systems that mini-
mize the need for remembering information, enhancing user learning and anticipation.

6. Flexibility and efficiency (six questions): Focuses on providing shortcuts and efficient
paths for experienced users while remaining accessible to novices.

7. Help users recognize, diagnose, and recover from errors (four questions): Focuses on
designing systems that provide clear, understandable error messages, aiding users in
recognizing and rectifying issues efficiently.

8. Error prevention (three questions): Involves designing systems to prevent errors
before they occur.
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9. Aesthetic and minimalist design (four questions): Encourages visually appealing
designs and minimal unnecessary elements.

10. Help and documentation (five questions): Stresses the importance of accessible, clear
help and documentation for users.

11. Save the state and protect the work (three questions): Addresses the need to save user
progress and protect against data loss.

12. Color and readability (four questions): Ensures that text is readable with appropriate
color contrast and size.

13. Autonomy (three questions): Allows users to make personal choices and customiza-
tions in the system.

14. Defaults (three questions): Focuses on providing sensible default settings while
allowing users to revert to these defaults when needed.

15. Latency reduction (two questions): Aims to minimize delays and provide feedback
during processes that require time.

Granollers’ heuristic framework analysis extends beyond the traditional limits of user
interface review, incorporating a broader and integrated approach. This method thoroughly
evaluates the three fundamental pillars of usability as outlined by ISO 9241-11: effectiveness,
efficiency, and satisfaction. This multidimensional assessment guarantees a comprehensive
examination of usability, considering not only the precision and completeness with which
users can achieve their intended goals but also analyzing the use of resources and the overall
subjective experience of the user. The first pillar, effectiveness, addresses how accurately
and completely users can perform their tasks and is influenced heavily by heuristics such
as system status visibility, real-world connections, and error prevention. These guidelines
help clarify the system’s operations for the user, enabling a more straightforward and
accurate interaction with the system.

Efficiency, the second pillar, concentrates on minimizing the resources required to
achieve goals. Key heuristics are vital here, including user control and freedom, flexibility,
and efficiency. By enabling users to correct errors or navigate efficiently, these heuristics
significantly reduce the time and effort needed for task completion, thus enhancing the
overall system efficiency. Lastly, the pillar of satisfaction focuses on the comfort and
positive experiences users derive from interacting with the system. Heuristics like aesthetic
and minimalist design, effective help and documentation, and user autonomy are crucial.
They ensure the interface is functional, enjoyable, and intuitive, promoting increased user
engagement and satisfaction. Table 2 illustrates the relationship between each heuristic
and the usability components defined by the ISO standards.

Table 2. Granollers’ heuristics mapped to ISO 9241-11 usability components.

Heuristic Effectiveness Efficiency Satisfaction

Visibility and system
state

Enhances task
accuracy by
informing users of
system status.

Reduces time spent
understanding
system state.

Increases user
confidence by
providing clarity.

Connection with the
real world

Improves task
understanding
through familiar
concepts.

Speeds up task
performance by
reducing cognitive
load.

Enhances comfort
using familiar
metaphors.

User control and
freedom

Improves task
accuracy by allowing
error correction.

Reduces effort
through efficient task
recovery.

Enhances user
satisfaction by
providing control
options.

Consistency and
standards

Maintains task
accuracy through
uniform interactions.

Increases efficiency
by reducing learning
time.

Provides a
predictable and
satisfying user
experience.
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Table 2. Cont.

Heuristic Effectiveness Efficiency Satisfaction

Recognition rather
than memory

Minimizes reliance
on memory,
improving task
accuracy.

Enhances efficiency
by providing cues
and reminders.

Reduces user
frustration,
enhancing
satisfaction.

Flexibility and
efficiency

Supports accurate
task performance for
all user levels.

Provides experienced
users with shortcuts
to enhance efficiency.

Accommodates
diverse user skills,
increasing
satisfaction.

Help users recognize,
diagnose, and
recover from errors

Improves accuracy
through effective
error management.

Decreases time and
effort in error
recovery.

Provides a safety net
that enhances user
satisfaction.

Error prevention
Prevents potential
errors, improving
accuracy.

Enhances efficiency
by reducing error
correction needs.

Improves user
experience by
minimizing
disruptions.

Aesthetic and
minimalist design

Focuses user
attention on essential
tasks.

Streamlines
interactions,
improving efficiency.

Delivers an appealing
environment that
enhances satisfaction.

Help and
documentation

Assists users with
completing tasks
correctly.

Decreases time spent
seeking assistance,
boosting efficiency.

Increases user
satisfaction with
accessible support.

Save the state and
protect the work

Preserves user
progress, enhancing
accuracy.

Reduces time redoing
tasks, improving
efficiency.

Protects user effort,
increasing
satisfaction.

Color and readability
Improves accuracy by
enhancing content
clarity.

Lowers effort
required for content
comprehension.

Provides a visually
accessible interface
that increases
satisfaction.

Autonomy

Allows
personalization,
improving task
relevance and
accuracy.

Enhances efficiency
by tailoring the
system to user
preferences.

Enhances satisfaction
through personalized
interaction.

Defaults

Provides reliable
starting points,
enhancing task
accuracy.

Reduces initial setup
time, improving
efficiency.

Increases satisfaction
with dependable
system behaviors.

Latency reduction
Provides immediate
feedback, ensuring
task accuracy.

Reduces waiting
times, significantly
improving efficiency.

Boosts satisfaction
with a responsive
system.

The methodology we adopted in this study introduces a weighted heuristic evaluation
approach for usability assessment. This approach refines the original method proposed
by Granollers. The Granollers approach estimates a usability score or usability percentage
(UP) considering Equation (1). Here, ni is the number of questions in the ith heuristic,
and valueij is the value assigned to the jth question of the ith heuristic. The values are
assigned based on a predefined response scale: “Yes” = 1.0, “Neither Yes, nor No” = 0.5,
and “No” = 0.0. NAi, NPi, and WRi are the counts of non-quantitative responses “Not
Applicable”, “Not a Problem”, and “Impossible to Check” for the ith heuristic, respectively.

UP =
∑15

i=1 ∑ni
j=1 valueij

∑15
i=1 ni − (NAi + NPi + WRi)

(1)
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We now calculate the usability percentage using Formula (2) to relate the usability
percentage calculation with each heuristic’s relevance. In this case, we add the parameter
wi as the weight or relevance of each heuristic during the assessment (3). Originally, this
parameter represented the proportion of questions per heuristic to the total available ques-
tions, meaning that regardless of the systems or intention for assessment, all the heuristics
had a predefined relevance based on the number of questions. In addition, analyzing each
heuristic’s component alone requires guaranteeing at least one value in each heuristic (see
Equation (4)). In this sense, the original approach encounters challenges: it may not align
with the relevance of heuristics in specific systems. For example, Table 3 shows the relative
relevance of each heuristic based on the number of questions or analysis over the general
software evaluation; the wi in this table corresponds with the number of questions in each
heuristic divided by the total number of questions. Moreover, this approach can lead to
indeterminate calculations when the number of non-applicable responses equals the total
questions in a heuristic.

We propose a revised approach whereby wi is determined based on the heuristic’s
relevance to the specific system under evaluation rather than the mere quantity of questions
to address these issues. This adjustment ensures a more accurate usability score, recognizing
the varied importance of heuristics and preventing misleading evaluations. For instance,
a low value in a low-weighted heuristic does not generate an alarm. Still, a low value
in a high-weighted heuristic encourages the software development team to prioritize
improvements. This more granular approach facilitates the identification of critical usability
issues, enabling developers to allocate resources effectively during software improvement
sessions. It allows prioritization of aspects that significantly impact user satisfaction
and operational efficiency, optimizing the development process and enhancing end-user
engagement with the software.

UP =
15

∑
i=1

wi Heuristici (2)

15

∑
i=1

wi = 1 (3)

Heuristici =


∑

ni
j=1 valueij

ni−(NAi+NPi+WRi)
, if ni − (NAi + NPi + WRi) ̸= 0

0, otherwise
(4)

Table 3. Equivalent weights in the Granollers approach.

Heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wi[%] 8.33 6.67 5.00 10.00 8.33 10.00 6.67 5.00 6.67 8.33 5.00 6.67 5.00 5.00 3.33

3.2. Analytical Hierarchical Process

In the domain of heuristic UI assessment, usability experts can use the analytic hier-
archy process to determine the relative importance of different usability heuristics. This
method excels when experts apply it to grade and prioritize criteria based on their pro-
fessional judgment due to its simplicity, efficiency, and safety [82]. AHP is widely used
in multiple-criteria decision making, with applications in planning, selecting alternatives,
resource allocation, conflict resolution, and optimization [83]. AHP’s structured approach
breaks down the evaluation into a hierarchy, from the overarching goal of obtaining a
usability score to application contexts such as apps, websites, or software. Experts must
construct a pairwise comparison matrix for each heuristic criterion, with each element aij
indicating the relative importance of the ith heuristic over the jth using the Saaty scale [24].
This matrix is reciprocal, where aij = 1

aji
, generating the matrix A that relates the rela-
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tive weight wi or relevance of the ith characteristic as see in Equation (5). The principal
eigenvector w corresponding to the largest eigenvalue λmax is computed to calculate the
weights, which determine the priorities. A consistency check ensures the reliability of these
comparisons, using a consistency ratio (hereafter CR) to compare the matrix’s consistency
index (henceforth CI) against an ideal index derived from a random matrix (see (7)). If the
CR is below 0.1, the weights are consistent; this concept is relevant during comparison
processes because the utility theory requires a consistency comparison [84]. The resulting
eigenvector provides the weighted priorities for the usability heuristics, reflecting the
aggregated expert opinion on the importance of each usability heuristic.

A =


1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

. . .
...

1
a1n

1
a2n

· · · 1

 =


1 w1

w2
· · · w1

wnw2
w1

1 · · · w2
wn

...
...

. . .
...

wn
w1

wn
w2

· · · 1

, w =


w1
w2
...

wn

 (5)

A × w = λmax × w (6)

CR =
CI
RI

, CI =
λmax − n

n − 1
, RI =

1.98 × (n − 2)
n

(7)

We seamlessly integrated the hierarchical analysis process into our modified heuristic
evaluation method (Appendix A). The Usability Testing Leader, an expert in usability
testing, determines the relevance of each heuristic through a systematic pairwise analysis.
This process occurs independently of the evaluators tasked with assessing the software, thus
maintaining an unbiased approach. Unaware of the Usability Testing Leader’s weighting
decisions, the evaluators focus solely on their usability assessment tasks. This dual-process
approach ensures the evaluations are objective and reflect the software’s inherent usability
features. To implement this modified evaluation method, we chose Python for its versatility
and robustness, particularly for the computation of the heuristic weights. The evaluators,
on the other hand, conducted their assessments using tools that are universally accessible
and user-friendly, such as Excel or online forms. This choice of software facilitated ease of
use and widespread applicability. The last step is multiplying the evaluators’ scores by the
respective weights in Python. This approach allows for a nuanced analysis that considers
the individual scores and the adjusted significance of each heuristic element.

• Input: Pairwise comparison matrices for criteria and alternatives.
• Output: Priority vector (weights) for criteria and alternatives.
• For each pairwise comparison matrix:

– Normalize the matrix by column.
– Compute the principal eigenvector to determine weights.
– Calculate the consistency ratio.
– If CR is less than 0.1:

* Accept the weights.

– Else:

* Re-evaluate comparisons.

• Show the weights for final decision making.

3.3. Simulation

We designed a simulation framework to evaluate the performance of our modified
AHP algorithm over 10,000 iterations. The aim was to analyze the algorithm’s ability
to enhance consistency and reduce the number of comparisons using the transitivity
property. In each simulation, a virtual decision maker initiates the process with the first
criterion and randomly selects a value from the Saaty scale. The decision maker then
chooses a set of criteria for comparison, ranging from one to the entire remaining set.
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Upon selecting multiple criteria, the algorithm applies the transitivity property to reduce
the number of direct comparisons needed, thereby excluding those criteria from future
selections. The simulation repeats this process until all necessary comparisons end. This
methodology aims to understand the algorithm’s efficiency in reducing comparisons and
improving consistency in decision-making scenarios. Additionally, the experiment records
the computing time, the number of comparisons made, and the consistency index for
each simulation. The primary objectives are to assess the algorithm’s impact on reducing
the number of necessary comparisons and improving the consistency of the pairwise
comparison matrix.

3.4. Data Acquisition

Data for this study were meticulously gathered through a series of structured heuristic
UI assessments, this time within the controlled environment of a European usability re-
search center in 2021. The evaluators, seven engineers who had completed doctoral studies
in engineering and informatics and had extensive experience in heuristic UI assessment,
had previously worked with the Granollers test. These evaluators offered their services
voluntarily through an academic agreement, and we respected good research practices
through a consent form. Each evaluator operated independently, without interaction or
knowledge of the contributions of other evaluators. This independence ensured that the
assessment remained unbiased. Additionally, the evaluators were unaware of the weights
assigned to their evaluations, minimizing potential biases (i.e., blind review). Their exper-
tise brought depth to the analysis, providing a professional perspective on the usability of
a sophisticated web application under examination.

Significantly, the Usability Testing Leader, who took part in the analytical assessment,
directed the process while setting weights according to their expert understanding of the
software’s usability needs. As a result of this pragmatic approach, the evaluations offered
theoretical insights and practical implications for software development. Regarding data
transparency, our research subscribes to an open-data policy, with all related materials,
methodologies, and datasets available for replication and further investigation. Researchers
and practitioners interested in these data can access the RUXAILAB (Remote User eX-
perience Artificial Intelligence LAB. https://github.com/ruxailab. Last access: 6 June
2024), a remote usability lab based on artificial intelligence to perform usability testing and
experiments and host the datasets. The Usability Testing Leader and evaluators confined
their activities to the typical scope of an educational environment. Since the research
focused on the evaluation process rather than the participants, and the evaluators were
also researchers benefiting from the activity in their corresponding research, there was no
need for ethical approval, aligning with established ethical research standards when the
investigation involves no human beings.

4. Results
4.1. Algorithm for Pairwise Comparison

The Python script introduces a tailored algorithm for decision making using the AHP
to evaluate complex scenarios with multiple criteria, like selecting heuristics. Despite its
apparent quadratic worst-case complexity, the algorithm significantly aims to streamline the
decision-making process. This efficiency stems from a strategic approach to collecting user
inputs for pairwise comparisons. Traditional AHP requires N ∗ (N − 1)/2 comparisons
(with N as the number of criteria), but this algorithm cleverly reduces this number. It
directs the decision maker to evaluate the relative importance of one criterion against
others. For example, it might ask, “Select an option for comparisons involving Heuristic
one (Cost) against the remaining criteria”. When a user chooses a value from Saaty’s scale,
like “Equal Importance”, the algorithm asks which criteria are of this importance level
compared to cost.

The brilliance of this method is in its use of the transitive nature of comparisons [85].
When a user categorizes multiple criteria as equally important to a specific criterion, the

https://github.com/ruxailab
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algorithm automatically applies the same level to those grouped criteria, thus increasing
the matrix’s consistency as an effort to avoid posterior comparison corrections. This smart
approach can significantly reduce the necessary number of comparisons. In a practical
scenario, for a set like Granollers’ heuristics with 105 pairwise comparisons, this reduction
could bring the number down to as low as one if all heuristics are considered equally
important. This decrease transforms what could be a cumbersome and lengthy task into a
far more manageable one, enhancing the algorithm’s effectiveness in situations with a large
set of criteria (a common challenge in those AHPs with a large number of criteria [75]).

We conducted a simulation analysis to evaluate how varying the group size m influ-
ences the reduction in the number of necessary comparisons when employing the pairwise
comparison algorithm for decision making using the AHP. We adjusted the number of
criteria N and the group size m across a broad range, from 2 to 30 for N and from 1 to N
for m, to understand their impact on the efficiency of the decision-making process. Figure 1
showcases the number of comparisons the algorithm requires for each combination of N
and m. In this model, the algorithm selects a random comparison value between 1 and
9 for each group to ensure a sufficient range of available numbers during the simulation.
This approach circumvents limitations that might arise from the more restricted Saaty scale,
which typically uses integer values and may not provide enough gradations for larger N
values, such as 30 with m = 1, where 29 distinct values would be necessary. Figure 1 high-
lights how flexibility in scale values can aid with accommodating the extensive variability
in group sizes and criteria numbers, potentially optimizing the process by reducing the
overall number of comparisons needed for large-scale decision-making scenarios.

Figure 1. Meshgrid of number of comparisons by N and m.

Based on the results of Figure 1, we can assess the number of comparisons using
the equation N(N−1)

2m , which estimates the expected total number of comparisons in an
AHP matrix. This estimate assumes that m, the average number of grouped selections per
criterion, enables efficient coverage of all necessary comparisons, distributing the decision-
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making burden across fewer manual inputs. Each selection combines multiple criteria,
assuming they share the same relative importance, thus amplifying the impact of each user
interaction. However, in practical scenarios, m varies significantly based on the Usability
Testing Leader’s judgment and the specific context of the decision-making process. The
Usability Testing Leader (UTL) must determine which criteria are similar enough to be
grouped, which is a decision shaped by their knowledge, experience, and the nuances of the
problem addressed. Consequently, the actual number of interactions—and, therefore, the
efficiency of the grouping—can fluctuate. Some criteria may not align neatly with others,
necessitating more distinct comparisons, while others may easily grouped, decreasing the
number of necessary interactions.

Algorithm Performance

In this study, we ran 10,000 simulations using our algorithm with randomly assigned
comparison values. We focused on evaluating our assignation method’s consistency ratio
compared to theoretical expectations of random assignments. Our results in Figure 2
reveal a notable and expected trend: the consistency ratio improves with fewer assign-
ments. This pattern underscores the robustness of our approach, especially considering a
random assignment methodology. Furthermore, our algorithm’s efficiency is evident in
its requirement of only a maximum of 38 comparisons: a significant reduction from the
105 comparisons necessary for a complete pairwise evaluation. This performance is also
clear in computation time, with a maximum of 0.14 s, an average of 0.022 s, and a standard
deviation of 0.005 s. This improved efficiency does not compromise the accuracy of the
evaluations but assists the decision maker with creating a safe comparison, avoiding a
long and cumbersome experience. This efficacy is evidenced by generating 858 cases that
achieved satisfactory consistency (values below the threshold of 0.1).

Figure 2. Consistency ratio boxplot by number of pairwise comparisons.

An intriguing aspect of our findings is the role of single comparisons in achieving
higher consistency. The algorithm’s effectiveness is most pronounced when it employs just
one comparison, using the transitivity property to infer additional comparisons. Figure 3
depicts that instances with only one comparison account for 6.83% of all cases. Our
analysis, detailed in Figure 4, also shows that the algorithm maintains consistency in
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scenarios with up to 15 comparisons. Despite the lower overall consistency rate (under 9%
of the 10,000 simulations), our method significantly outperforms random assignment, with
a maximum consistency ratio of approximately 1.59. In comparison, our approach achieved
a maximum consistency ratio of 0.88 and an average of 0.39, highlighting its reliability and
potential application in heuristic UI assessment within the HCI field with a high-dimension
set of criteria.

Figure 3. Frequency of pairwise comparisons.

Figure 4. Frequency distribution of the number of pairwise comparisons with acceptable consistency.
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4.2. Weighted Heuristic Application

After testing the algorithm, we applied the AHP to the UTL to streamline the appli-
cation process. Our findings demonstrate a more streamlined and consistent weighting
process. The UTL adeptly sets weights based on a discerning evaluation of each heuris-
tic’s comparative relevance for a specific website. We significantly reduced the required
comparisons—from the exhaustive 105 to a more manageable 30—thereby simplifying
the evaluative experience. (Table 4 shows the final results.) Considering the equation
N(N−1)

2m for estimating the total number of comparisons, the average group size during this
experiment was m = 2.98, while the expected number with m = 3 was 35, indicating a
successful approach. We provide detailed comparisons to generate the weights as follows:

• H1 Comparisons

– H1 vs. H5: H1 and H5 are considered to have equal importance.
– H1 vs. H2, H4, H9, H12, H13: H1 is moderately more important than H2, H4, H9,

H12, and H13.
– H1 vs. H3, H6, H7, H8: H1 is strongly more important than H3, H6, H7, and H8.
– H1 vs. H10, H11, H14, H15: H1 is very strongly more important than H10, H11,

H14, and H15.

• H2 Comparisons

– H2 vs. H5: H2 is moderately less important than H5.
– H2 vs. H9, H12, H13: H2 has equal importance compared to H9, H12, and H13.
– H2 vs. H3, H4, H6, H7, H8: H2 is moderately more important than H3, H4, H6,

H7, and H8.
– H2 vs. H10, H11, H14, H15: H2 is strongly more important than H10, H11, H14,

and H15.

• H3 Comparisons

– H3 vs. H5: H3 is very strongly less important than H5.
– H3 vs. H4, H9, H12, H13: H3 has equal importance compared to H4, H9, H12,

and H13.
– H3 vs. H6, H7, H8: H3 is moderately more important than H6, H7, and H8.
– H3 vs. H10, H11, H14, H15: H3 is strongly more important than H10, H11, H14,

and H15.

• H4 Comparisons

– H4 vs. H5: H4 is moderately less important than H5.
– H4 vs. H6, H7, H8: H4 has equal importance compared to H6, H7, and H8.
– H4 vs. H10, H11, H14, H15: H4 is moderately more important than H10, H11,

H14, and H15.

• H5 Comparisons

– H5 vs. H9, H12, H13: H5 is moderately more important than H9, H12, and H13.
– H5 vs. H6, H7, H8: H5 is strongly more important than H6, H7, and H8.
– H5 vs. H10, H11, H14, H15: H5 is very strongly more important than H10, H11,

H14, and H15.

• H6 Comparisons

– H6 vs. H9, H12, H13: H6 is moderately less important than H9, H12, and H13.
– H6 vs. H10, H11, H14, H15: H6 is strongly more important than H10, H11, H14,

and H15.

• H7 Comparisons

– H7 vs. H9, H12, H13: H7 is moderately less important than H9, H12, and H13.
– H7 vs. H10, H11, H14, H15: H7 is strongly more important than H10, H11, H14,

and H15.

• H8 Comparisons
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– H8 vs. H9, H12, H13: H8 is moderately less important than H9, H12, and H13.
– H8 vs. H10, H11, H14, H15: H8 is strongly more important than H10, H11, H14,

and H15.

• H9 Comparisons

– H9 vs. H10, H11, H14, H15: H9 is strongly more important than H10, H11, H14,
and H15.

• H10 Comparisons

– H10 vs. H11, H14, H15: H10 has equal importance compared to H11, H14, and
H15.

– H10 vs. H12, H13: H10 is strongly less important than H12 and H13.

• H11 Comparisons

– H11 vs. H12, H13: H11 is strongly less important than H12 and H13.

• H12 Comparisons

– H12 vs. H14, H15: H12 is strongly more important than H14 and H15.

• H13 Comparisons

– H13 vs. H14, H15: H13 is strongly more important than H14 and H15.

The AHP analysis produced promising results, indicating a max eigenvalue of 15.97
and a set of normalized weights spanning a diverse range (see Table 5). The Usability
Testing Leader’s expert judgment determined the weights, which indicate varying degrees
of importance for each heuristic, ranging from approximately 18.06% for the most significant
to 1.45% for the least. This methodology provides a nuanced view of heuristic relevance
without dependence on the number of components in each heuristic. The consistency ratio,
which measures the reliability of pairwise comparisons, is 0.044, which is well within the
acceptable threshold, thus confirming the assessment’s consistency.

Table 4. Comparison matrix using the algorithm to enhance consistency.

Heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00 3.00 5.00 3.00 1.00 5.00 5.00 5.00 3.00 7.00 7.00 3.00 3.00 7.00 7.00
2 0.33 1.00 3.00 3.00 0.33 3.00 3.00 3.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00
3 0.2 0.33 1.00 1.00 0.14 3.00 3.00 3.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00
4 0.33 0.33 1.00 1.00 0.33 1.00 1.00 1.00 1.00 3.00 3.00 1.00 1.00 3.00 3.00
5 1.00 3.00 7.00 3.00 1.00 5.00 5.00 5.00 3.00 7.00 7.00 3.00 3.00 7.00 7.00
6 0.2 0.33 0.33 1.00 0.20 1.00 1.00 1.00 0.33 5.00 5.00 0.33 0.33 5.00 5.00
7 0.2 0.33 0.33 1.00 0.20 1.00 1.00 1.00 0.33 5.00 5.00 0.33 0.33 5.00 5.00
8 0.2 0.33 0.33 1.00 0.20 1.00 1.00 1.00 0.33 5.00 5.00 0.33 0.33 5.00 5.00
9 0.33 1.00 1.00 1.00 0.33 3.00 3.00 3.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00

10 0.14 0.20 0.20 0.33 0.14 0.20 0.20 0.20 0.20 1.00 1.00 0.20 0.20 1.00 1.00
11 0.14 0.20 0.20 0.33 0.14 0.20 0.20 0.20 0.20 1.00 1.00 0.20 0.20 1.00 1.00
12 0.33 1.00 1.00 1.00 0.33 3.00 3.00 3.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00
13 0.33 1.00 1.00 1.00 0.33 3.00 3.00 3.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00
14 0.14 0.20 0.20 0.33 0.14 0.20 0.20 0.20 0.20 1.00 1.00 0.20 0.20 1.00 1.00
15 0.14 0.20 0.20 0.33 0.14 0.20 0.20 0.20 0.20 1.00 1.00 0.20 0.20 1.00 1.00

Table 5. Weights obtained by the UTL using the algorithm to enhance comparison consistency.

Heuristici

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wi[%] 18.06 9.26 6.99 5.06 18.96 4.21 4.21 4.21 7.74 1.45 1.45 7.75 7.75 1.45 1.45
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In parallel, experts analyzed the heuristics and valued them using Granollers instru-
ment [55]. Table 6 details the evaluators’ scores, illuminating the practical application of
these heuristics (Figure 4 presents a summary for each heuristic). The presence of zeros
in the scores indicates instances where evaluators deemed certain heuristics inapplicable,
reflecting their professional judgment. Such agreements and differences are crucial as
they affirm the heuristic evaluation process’s robustness, ensuring alignment in the overall
system usability assessment even when subjective judgments vary. A key point to highlight
is that the value in each heuristic depends on the number of questions in that evaluation
component, necessitating standardization to make a clearer and more in-depth comparison
between heuristic values.

Table 6. Evaluation results: score by heuristic.

Evaluator

Heuristic 1 2 3 4 5 6 7

H1 5.0 5.0 4.0 4.5 4.0 5.0 4.0
H2 3.0 2.0 4.0 4.0 3.5 4.0 2.0
H3 3.0 2.0 3.0 2.0 2.0 1.0 1.5
H4 5.0 4.0 5.0 5.5 3.5 4.0 3.5
H5 5.0 4.0 4.0 5.0 5.0 5.0 4.0
H6 5.0 3.0 3.0 6.0 3.0 5.0 3.0
H7 3.0 3.0 0.0 0.0 2.0 2.0 4.0
H8 2.0 2.0 2.0 0.0 2.0 2.0 1.0
H9 4.0 3.0 4.0 3.0 4.0 4.0 1.0
H10 0.0 0.0 0.0 0.0 0.5 0.0 0.0
H11 2.0 0.0 0.0 1.0 1.0 0.0 0.0
H12 4.0 3.0 2.5 4.0 4.0 2.0 2.0
H13 2.0 2.5 2.0 3.0 3.0 3.0 2.0
H14 0.0 0.0 0.0 2.0 1.0 0.0 2.0
H15 1.0 1.0 0.0 0.0 1.0 0.0 0.0

According to Table 6, “Visibility of system status” (H1) and “Recognition rather than
recall” (H5) received high average scores, indicating the system excels at keeping users
informed and minimizing memory load. These aspects are crucial for an intuitive user ex-
perience, ensuring users can easily understand the system’s status and navigate effortlessly
without relying heavily on memory. Conversely, evaluators assigned low average scores
to “Help and documentation” (H10) and “Latency reduction” (H15), suggesting significant
areas for improvement. “Help and documentation” is essential for guiding users, and its
low score shows potential difficulties in accessing necessary support. Similarly, “Latency
reduction” aims to minimize delays and provide timely feedback, which are critical for
maintaining user engagement and satisfaction.

The standard deviations in Table 7 reflect variability in scores, highlighting differing
perceptions among evaluators. For instance, “Flexibility and efficiency” (H6) and “Help
users recognize, diagnose, and recover from errors” (H7) showed higher standard devi-
ations, indicating varied experiences with the system’s efficiency features. Meanwhile,
“Help and documentation” (H10) has a low value, indicating consensus between evaluators.
However, it is important to keep in mind that Granoller’s heuristics set contains different
numbers of items per heuristic, and its quantification depends on the number of items, so
to make a more proper comparison, it is crucial to standardize the values; in this case, we
implemented the min–max scaler to compare the results properly. Those final calculations
appear in Table 8 and Figure 5.
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Figure 5. Radar plot with the normalized average in each heuristic.

Table 7. Summary statistics for heuristic evaluations.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15

count 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
mean 4.50 3.21 2.07 4.36 4.57 4.00 2.00 1.57 3.29 0.07 0.57 3.07 2.50 0.71 0.43
std 0.50 0.91 0.73 0.80 0.54 1.29 1.53 0.79 1.11 0.19 0.79 0.93 0.50 0.95 0.54
min 4.00 2.00 1.00 3.50 4.00 3.00 0.00 0.00 1.00 0.00 0.00 2.00 2.00 0.00 0.00
25% 4.00 2.50 1.75 3.75 4.00 3.00 1.00 1.50 3.00 0.00 0.00 2.25 2.00 0.00 0.00
50% 4.50 3.50 2.00 4.00 5.00 3.00 2.00 2.00 4.00 0.00 0.00 3.00 2.50 0.00 0.00
75% 5.00 4.00 2.50 5.00 5.00 5.00 3.00 2.00 4.00 0.00 1.00 4.00 3.00 1.50 1.00
max 5.00 4.00 3.00 5.50 5.00 6.00 4.00 2.00 4.00 0.50 2.00 4.00 3.00 2.00 1.00
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Table 8. Summary statistics for heuristic evaluations after normalization.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15

count 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
mean 0.50 0.61 0.54 0.43 0.57 0.33 0.50 0.79 0.76 0.14 0.29 0.54 0.50 0.36 0.43
std 0.50 0.45 0.37 0.40 0.53 0.43 0.38 0.39 0.37 0.38 0.39 0.47 0.50 0.48 0.53
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.25 0.38 0.13 0.00 0.00 0.25 0.75 0.67 0.00 0.00 0.13 0.00 0.00 0.00
50% 0.50 0.75 0.50 0.25 1.00 0.00 0.50 1.00 1.00 0.00 0.00 0.50 0.50 0.00 0.00
75% 1.00 1.00 0.75 0.75 1.00 0.67 0.75 1.00 1.00 0.00 0.50 1.00 1.00 0.75 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The normalized results in Figure 5 facilitate an overview of the software performance.
The software delivers commendable performance in several key usability domains, which
could indicate a user-centric design philosophy. The high “Visibility and System State”
and “Connection with the Real World” scores demonstrate the software’s robustness in
providing users with clear feedback and employing user-friendly language that aligns with
real-world conventions. This alignment likely enhances user engagement and reduces
the cognitive load required to interact with the software. The moderate-to-high “User
Control and Freedom” and “Consistency and Standards” scores reflect a system that
respects user agency, offering control through undo/redo functionalities and maintaining
a consistent interface that adheres to recognized standards. These aspects foster user
confidence and facilitate a smooth learning curve. However, the software’s usability suffers
from its moderate “Recognition Rather than Memory” score, where there is room for
improvement to reduce reliance on user memory. Integrating a more intuitive design will
further streamline user interactions. In “Flexibility and Efficiency”, the software excels,
suggesting it allows expert users to operate more efficiently, possibly through customizable
shortcuts or adaptive interfaces.

This flexibility marks mature software design, catering to a broad user base with
varied expertise. The lower scores in “Help Users Recognize, Diagnose, and Recover
from Errors” and “Error Prevention” underscore critical areas of concern. Clarifying error
messages and incorporating preventative measures could reduce user frustration and boost
productivity. Addressing these issues should be a priority to enhance error management
and build a more resilient system. While not alarming, the moderate score in “Aesthetic and
Minimalist Design” indicates that developers could further refine the software’s design to
eliminate superfluous elements, thereby adhering to minimalist design principles to create
a more focused user experience. A significant usability shortcoming emerges from the low
score in “Help and Documentation”, indicating that the help resources may be inadequate.
Improving help systems is crucial for user support, especially when users face challenges
or learn new features. The low scores in “Save the State” and “Protect the Work through
Latency Reduction” signify systemic usability challenges that demand immediate attention.
The software’s evident deficiencies in preserving user states, optimizing readability through
color usage, enabling user autonomy, setting effective defaults, and minimizing latency
could be addressed to substantially improve the overall user experience.

After establishing the weights, we computed the usability percentages using Gra-
nollers’ traditional method, subsequently labeled as “Traditional” in our analysis. We then
applied our modified algorithm, referred to as “Modified”. Figure 6 illustrates these out-
comes, presenting paired usability scores from seven evaluators. The y-axis on the boxplot
indicates the usability scores obtained under both scenarios: the Traditional approach and
the Modified one. The boxplot delineates the trends and distributions of scores, while
the connecting lines illustrate the shifts based on the weights applied in our enhanced
calculations. Although usability percentages occasionally decrease with the new algorithm,
the general trend shows an elevation in the overall usability score from 78.12% to 80.97%.
Remarkably, variability also diminishes, with the standard deviation decreasing from 8.94%
to 6.61%. This improvement results from our methodology’s strategic deprioritization of
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heuristics, which showed significant expert disagreement, thus refining their relevance
through the UTL pairwise comparison.

Figure 6. Paired boxplot of usability percentages.

Considering the modified approach, an overview of the relevance of each heuristic
appears in Figure 7. As a result of the UTL analysis, the modified set prioritizes “Visibility
and System State” and “Connection with the Real World”, as evidenced by their substantial
positive differences. This finding highlights that these heuristics have high standardized
values and low deviations, indicating a consensus among evaluators. These heuristics
are crucial for an intuitive usable user interface, suggesting the new system effectively
communicates with users and aligns with their expectations. The high standardized scores
for the first heuristics, while having relatively low deviations, confirm their successful
implementation and the system’s enhanced usability. The new evaluation system de-
emphasizes heuristics like “Help and Documentation” and “Latency Reduction”, as they
have low standardized scores and negative differences. Without prior prioritization by the
UTL, the low values with low deviations could fail to indicate areas needing development to
meet user needs comprehensively. However, the significant negative deviation suggests that
those areas are not a priority for improvement. “Autonomy”, despite a high standardized
score and low deviation among evaluators, is considered less critical in the new system’s
weight set. This result suggests a shift in focus or a different usability strategy adopted by
the developers, implying no need for improvements. However, this component is not as
relevant as other heuristics. Heuristics with low values and negative differences—such as
“Error Prevention”, “Aesthetic and Minimalist Design”, and others—indicate these areas
are less relevant in the new approach. This shift calls for careful consideration to ensure
it aligns with the overall goals of the software and user expectations; that is, software
engineers should prioritize those components for future enhancements to increase the
overall system’s usability.
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Figure 7. Barplot assorted for the major difference between Traditional and Modified weights. (a) Dif-
ference between both methods, (b) standardized average score in each heuristic, and (c) standardized
deviation standard.

5. Discussion

The pursuit of standardization in usability testing methodologies, considering the di-
versity of heuristic evaluations reported in the literature [5,30,32,35,45,55,60,86–91], under-
scores a pivotal aim of this research. This study aims to standardize the assessment process,
especially for emerging mixed-method scenarios, by focusing on a core set of heuristics [55]
applicable across various usability tests. By pinpointing significant areas for improvement
in our case study, we identified heuristics that scored low in evaluations despite their
high importance. This discrepancy signals a critical need for targeted enhancements to
improve the system’s usability. By leveraging tailored algorithms that employ transitive
properties for pairwise comparison, we substantially decreased the necessary comparisons,
streamlining the evaluation process in those frameworks with many criteria. This method
simplifies the evaluation process and significantly contributes to the accuracy of usability
heuristic test results. Integrating the analytic hierarchy process and a customized algorithm
using transitive features enhances the precision of prioritizing heuristics.

Comparing user perception-based methods like the SUS [53] and the technology ac-
ceptance model [31] with expert-driven heuristic evaluations [13,30,32], we find that expert
evaluations offer a broader perspective by incorporating detailed analyses and guiding
questions about the system. This depth of insight is instrumental in addressing nuanced
usability components that non-expert assessments might overlook [19]. Prioritizing heuris-
tics based on their relevance, as determined by the Usability Testing Leader, instead of the
number of items in each heuristic as identified in the literature enhances the efficiency and
focus of the assessment process [8,18,54]. This approach ensures that evaluators concentrate
on the most critical aspects early on, reducing the risk of fatigue and potential bias towards
the end of the evaluation. Despite heuristics being mental shortcuts, there are approaches
in the literature to quantify usability to make it comparable as a strategy to record software
quality and then make improvements [41,74]. Quantifying user experiences and usability
is challenging due to inherent biases, regardless of the approach [8]. Prioritizing heuristics
can help software developers focus on enhancing specific components to improve overall
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quality [21]. Moreover, using a consistent heuristic order during evaluation can reduce
biases [22]. However, considering the dynamic nature of a software development project
and its relationship with the life-cycle phases [25], the UTL must consider which heuristics
are relevant in each phase and how the prioritization impacts future phases.

This study advances the theoretical foundations of usability testing by standardizing
the evaluation process across different methodologies and scenarios. It offers a structured
approach that addresses inconsistencies in current practices and contributes to theoretical
advancements in computing [63–67], especially when facing instruments with diverse
numbers of items per construct [69,70]. Practically, this method facilitates the adoption of
mixed-method approaches, expanding the applicability and relevance of heuristic eval-
uations in the evolving landscape of human–computer interaction [56]. Developing a
pre-configured set of weights for various software families or technologies will further
facilitate usability testing. Implementing this method requires additional expertise and
training to be applied effectively. Relying on expert judgments may limit the inclusiveness
of the usability testing process, potentially overlooking diverse user perspectives. The
model application requires assumptions that do not always meet, such as the incidence or
relationship between criteria in their components [80]. These limitations might affect the
generalizability of our findings and the inclusivity of the usability testing process. However,
ongoing support and training for usability professionals, as well as modifications to the
strategy to estimate weights, are essential to mitigate these effects.

Future research should explore more inclusive methods that integrate diverse user
perspectives into the heuristic evaluation process. Studies could also investigate the
long-term impact of standardized evaluation on software quality and user satisfaction.
Future studies could address the limitations identified by incorporating additional training
programs for usability professionals and developing more inclusive evaluation frameworks.
We chose AHP because it is a useful approach for prioritization based on natural language
and does not require data assumptions like those needed for correlational models such as
factor analysis, and models that depend on this fundamental approach include confirmatory
factor analysis and structural equation modeling [82,83]. In addition, heuristics do not
consider subcriteria, we assume independence between criteria, and we prioritize aspects
for improvement rather than comparing alternatives. So we assume that the UTL has
accepted the decoupling of UI heuristics. However, if relationships between criteria exist,
future research must modify the comparison matrix and implement other approaches, such
as the analytical network process [80]. It is important to note that choosing a multicriteria
method can impact the research methodology. In this study, we selected the method based
on expertise and the problem’s characteristics, which align with the UTL. Evidence of this
is the multicriteria selection process [75]. However, there are always biases in the method,
scope, and assumptions, so carefully consider the method selected is crucial.

Another relevant modification in this work is the tailored algorithm for pairwise
comparison implementing transitivity properties as an alternative to dealing with the
exponential number of comparisons as the number of criteria increases: a flaw of the AHP.
The tailored algorithm might focus on UTL’s subjectivity to achieve a more consistent
matrix, but it is a variation of the general methodology developed by Saaty [24]. In future
works, the UTL can apply traditional AHP until it obtains a consistent pairwise matrix
or can multiply the comparison matrix with the eigenvector of the highest value and
normalize the data for consistency based on expert suggestions without implementing
the tailored algorithm to avoid that possible bias. This step does not change the primary
goal of quantifying and prioritizing heuristics during evaluation. In our case, we have
only one hierarchy level, so transitivity does not affect the relative importance of criteria.
Future works considering the relationship between subcriteria must pay attention to those
relationships and be careful about the transitivity implementation. Practitioners must care-
fully implement AHP for weighted UI assessment, considering all assumptions regarding
transitivity and emergent bias. Finally, this approach does not focus on the traditional
comparison of alternatives. Still, it aims to provide a framework for better understanding
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software quality improvements based on heuristic UI assessment. It generates a score to
generate a baseline for comparison before and after software improvements. This score
must be carefully interpreted by software developers considering the life-cycle phase of
software development.

6. Conclusions

This study advances the field of human–computer interaction by introducing a stan-
dardized approach to heuristic UI assessment in usability testing. We significantly stream-
line the evaluation process by integrating the analytic hierarchy process and a tailored
algorithm that employs transitive properties for pairwise comparison. This method not
only simplifies the complexity and workload associated with the traditional prioritization
process but also improves the accuracy and relevance of the usability heuristic testing
results. By prioritizing heuristics based on their importance as determined by the Usability
Testing Leader rather than merely depending on the number of items, scale, or heuristics,
our approach ensures evaluations focus on the most critical usability aspects from the
start. Furthermore, our approach addresses the challenges associated with traditional
usability assessments, such as biases introduced by varying scales and the exhaustive
nature of numerous comparisons. The findings from this study highlight the importance
of expert-driven evaluations for gaining a thorough understanding of usability, offering a
wider perspective than user-perception-based methods like the questionnaire approach.
By incorporating these expert-driven methodologies, we provide a robust framework that
can be adapted and extended in future research to enhance the precision and efficiency of
usability testing across diverse applications.
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UI User Interface
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Appendix A. Tailored Algorithm for AHP
def calculate_eigen(matrix):

eigenvalues, eigenvectors = np.linalg.eig(matrix)
max_eigenvalue = np.max(eigenvalues)
max_eigenvector = eigenvectors[:, np.argmax(eigenvalues)]

# Normalize the eigenvector to get the weights
normalized_weights = max_eigenvector / np.sum(max_eigenvector)

# Calculate the consistency index (CI)
n = matrix.shape[0]
CI = (max_eigenvalue - n) / (n - 1)

# Random consistency index (RI), values depend on matrix size
RI_dict = {1: 0, 2: 0, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 7: 1.32,

8: 1.41, 9: 1.45, 10: 1.49, 11: 1.52, 12: 1.54, 13: 1.56,
14: 1.58, 15: 1.59, 16: 1.60, 17: 1.61,18: 1.62, 19: 1.63,
20: 1.64, 21: 1.65, 22: 1.66, 23: 1.67, 24: 1.68, 25: 1.69,
26: 1.70, 27: 1.71, 28: 1.72, 29: 1.73, 30: 1.74}

RI = RI_dict.get(n, 1.49) # 1.49 is an average fallback value

# Calculate the consistency ratio (CR)
CR = CI / RI

consistency_interpretation =
(‘‘Consistent because CR is lower than 0.1’’) if CR <= 0.1 ...
else ‘‘Inconsistent because CR is greater than CR’’

return max_eigenvalue, normalized_weights.real, ...
CR, consistency_interpretation

def initialize_ahp_matrix(df, column_name):
categories = df[column_name].tolist()
n = len(categories)

# Initialize a zero matrix of dimensions n x n
ahp_matrix = np.zeros((n, n))
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# Create a labeled DataFrame to hold the AHP matrix
ahp_df = pd.DataFrame(ahp_matrix, index=categories, columns=categories)

return ahp_df

def generate_saaty_scale_with_explanations():
return {

‘Equal Importance’: 1,
‘Moderate Importance’: 3,
‘Strong Importance’: 5,
‘Very Strong Importance’: 7,
‘Extreme Importance’: 9,
‘Moderately Less Important’: 1/3,
‘Strongly Less Important’: 1/5,
‘Very Strongly Less Important’: 1/7,
‘Extremely Less Important’: 1/9

}

def fill_ahp_matrix(ahp_df, row_name, col_names, comparison):
saaty_scale = generate_saaty_scale_with_explanations()
if comparison in saaty_scale:

value = saaty_scale[comparison]
for col_name in col_names:

ahp_df.loc[row_name, col_name] = value
ahp_df.loc[col_name, row_name] = 1 / value

else:
print(‘‘Invalid comparison description. ...
Please select one from Saaty’s scale.’’)

return ahp_df

def populate_ahp_matrix(ahp_df):
saaty_scale_dict = {i+1: option for I, ...
option in enumerate(generate_saaty_scale_with_explanations().keys())}

for row in ahp_df.index:
temp_saaty_scale_dict = saaty_scale_dict.copy()

criteria_dict = {i+1: col for i, col in enumerate(ahp_df.columns) ...
if col != row and ahp_df.loc[row, col] == 0}
temp_criteria_dict = criteria_dict.copy()

while temp_criteria_dict:
print(f‘‘\nSelect an option for comparisons involving {row} ...
against remaining criteria:’’)

# Show available Saaty’s scale options
for num, option in temp_saaty_scale_dict.items():

print(f‘‘Saaty {num}. {option}’’)

# Show remaining criteria mapped to numbers
for num, criteria in temp_criteria_dict.items():

print(f‘‘Criteria {num}. {criteria}’’)

saaty_selection = int(input(‘‘Enter the number of your Saaty ...
scale selection: ’’))
selected_comparison = temp_saaty_scale_dict[saaty_selection]

print(f‘‘Indicate all criteria from the list above that have ...
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‘{selected_comparison}’ when compared to {row}. ...
Separate multiple criteria by comma.’’)
relevant_cols_numbers = input().split(’,’)
relevant_cols = [temp_criteria_dict[int(num.strip())] ...
for num in relevant_cols_numbers]

ahp_df = fill_ahp_matrix(ahp_df, row, relevant_cols, ...
selected_comparison)

# Pre-fill for transitive relations, i.e., if A = B and ...
A = C, then B = C
if selected_comparison == ’Equal Importance’:

for i in range(len(relevant_cols)):
for j in range(i+1, len(relevant_cols)):

ahp_df.loc[relevant_cols[i], relevant_cols[j]] = 1
ahp_df.loc[relevant_cols[j], relevant_cols[i]] = 1

# Update temp_criteria_dict to remove selected items
temp_criteria_dict = {num: col for num, col in ...
temp_criteria_dict.items() if col not in relevant_cols}

# Update temp_saaty_scale_dict to exclude the selected comparison
del temp_saaty_scale_dict[saaty_selection]

# Set diagonal elements to 1
np.fill_diagonal(ahp_df.values, 1)

return ahp_df
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