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Abstract: Breast cancer presents a substantial health obstacle since it is the most widespread invasive
cancer and the second most common cause of death in women. Prompt identification is essential for
effective intervention, rendering breast cancer screening a critical component of healthcare. Although
mammography is frequently employed for screening purposes, the manual diagnosis performed
by pathologists can be laborious and susceptible to mistakes. Regrettably, the majority of research
prioritizes mass classification over mass localization, resulting in an uneven distribution of attention.
In response to this problem, we suggest a groundbreaking approach that seeks to identify and
pinpoint cancers in breast mammography pictures. This will allow medical experts to identify tumors
more quickly and with greater precision. This paper presents a complex deep convolutional neural
network design that incorporates advanced deep learning techniques such as U-Net and YOLO. The
objective is to enable automatic detection and localization of breast lesions in mammography pictures.
To assess the effectiveness of our model, we carried out a thorough review that included a range of
performance criteria. We specifically evaluated the accuracy, precision, recall, F1-score, ROC curve,
and R-squared error using the publicly available MIAS dataset. Our model performed exceptionally
well, with an accuracy rate of 93.0% and an AUC (area under the curve) of 98.6% for the detection
job. Moreover, for the localization task, our model achieved a remarkably high R-squared value of
97%. These findings highlight that deep learning can boost the efficiency and accuracy of diagnosing
breast cancer. The automation of breast lesion detection and classification offered by our proposed
method bears substantial benefits. By alleviating the workload burden on pathologists, it facilitates
expedited and accurate breast cancer screening processes. As a result, the proposed approach holds
promise for improving healthcare outcomes and bolstering the overall effectiveness of breast cancer
detection and diagnosis.

Keywords: breast cancer detection; breast cancer localization; deep learning; MIAS mammography
dataset; convolution neural network; machine learning

1. Introduction

Breast cancer continues to be the most prevalent disease affecting women in the United
States, with a documented 44,130 cases in 2021 [1]. Furthermore, it is the primary factor
contributing to cancer-related deaths. In order to lessen the severe consequences of this
harmful illness, it is crucial to prioritize frequent mammography exams. These screenings
are extremely important since they have the ability to identify cancerous growths at an early
stage before they have a chance to spread to nearby tissues and organs. Mammography
involves using X-ray imaging to examine changes in breast tissue. Typically, radiologists
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are responsible for diagnosing breast cancer by analyzing aberrant masses and microcal-
cifications [2,3]. The large number of mammograms that radiologists must evaluate on a
daily basis, along with the inherent difficulties in identifying problematic areas, creates a
procedure that is filled with hurdles, high expenses, and the possibility of errors. There-
fore, there is a strong need to develop inventive and sophisticated approaches that can
serve as catalysts for the accurate and exact identification of breast cancer. Convolutional
neural networks (CNN), a type of deep learning, have made significant advancements in
mammography analysis. Recent studies [4] have demonstrated the promising potential
of CNNs in addressing the complexities of this field. Several papers [5–11] have explored
the application of deep learning in mammography analysis. Nevertheless, convolutional
neural networks (CNN) require a significant quantity of training data, which can impose
constraints. Image segmentation is essential for automatically detecting and outlining key
characteristics in medical images, such as tumors, organs, arteries, and cells. U-Net [12], a
convolutional neural network (CNN)-based encoder–decoder network, has gained promi-
nence as a leading segmentation tool and is widely accepted as the standard for medical
image segmentation [13] in the industry. Although U-Net and its derivatives, such as
Connected-UNet [14] and AU-Net [15], have proven to be effective in identifying breast
lumps with limited labeled training data, there are still difficulties in reliably identifying
regions of interest within the image. Within the field of deep learning, there is a widely
recognized and highly regarded strategy called YOLO (You Only Look Once) [16], which
has gained significant attention, especially when used in conjunction with U-Net. The
YOLO system is an object detection system that uses a single convolution neural network
to accurately forecast the bounding boxes and class probabilities of objects in real-time
images. This technique has demonstrated favorable results in various domains, particularly
in the processing of complex medical images. By combining YOLO and U-Net, there is
the potential to develop a very efficient approach for automatically detecting, localizing,
and classifying breast lesions in mammography pictures. We used the downsample part of
the U-Net with modifications for feature extraction from the mammogram image and the
concept of predicting bounding boxes from YOLO for localization. However, instead of
predicting bounding boxes, we predict a circle to better suit the shape of the lesions. The pri-
mary emphasis in breast mammography research using deep learning algorithms has been
on detecting cancer, sometimes neglecting the crucial component of accurately identifying
the location of tumors. Our suggested model improves the precision of localization, giving
medical practitioners more precise data to make informed therapeutic decisions. The model
aims to close this gap and provide a faster and more accurate strategy for detecting tumors
by effectively managing both the tasks of locating and classifying them. Our study method-
ology involves a sequence of crucial steps designed to enhance the current understanding.
Firstly, we conduct a thorough evaluation of the constraints and shortcomings identified in
previous research approaches, which serves as a basis for proposing areas for enhancement.
Afterward, we begin the careful gathering and preparation of the dataset, implementing
strict methods to guarantee the accuracy and reliability of the data. Once we have designed
the blueprint for our cutting-edge architecture, we move on with training the model using a
meticulously chosen dataset, employing advanced techniques to optimize its performance.
In the end, we evaluate the trained model through a comprehensive analysis, meticulously
assessing its capabilities and efficacy, and verifying the precision of our methodology.

2. Literature Review

The area of medical image processing has been much advanced by neural networks
such as CNN and U-Net. Further advancing these advancements are object detection
models like YOLO. In numerous medical image processing applications, such as object
segmentation, detection, and classification, these models have been shown to be highly
effective. Many studies have concentrated on finding and classifying breast masses in mam-
mography pictures. In order to enhance the mass segmentation in these images, researchers
from the University of Nevada have created two improved versions of the Connected-
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UNets architecture: Connected UNets+, which includes residual skip connections, and
Connected UNets++, which incorporates a modified encoder–decoder structure with resid-
ual skip connections [17]. An advanced technology called Mask-CNN (RoIAlign) deep
learning has been developed to automatically detect, segment, and categorize breast lesions
in mammography pictures. This state-of-the-art method was introduced by Jiménez Gaona
et al. [18]. This novel methodology employs a very deep convolutional neural network,
specifically the DenseNet architecture, to carry out classification and extract noteworthy
characteristics. This sophisticated framework precisely detects and separates breast masses,
representing a substantial advancement in the field of medical image processing. The event
detection network (EDEN) [19] has demonstrated superior performance compared to the
most advanced techniques in the field of survival analysis for breast cancer. EDEN, with
a customized loss function and a time-aware long short-term memory network (LSTM),
is capable of accurately labeling disease recurrence based on administrative claims. This
offers medical professionals a potent instrument for prognostic evaluations and tailored
treatment approaches, enhancing patient outcomes.

In ref. [20], Sajid et al. propose a novel approach to mammography breast cancer
classification by combining user-defined features such as local binary patterns and the
histogram of oriented gradients with CNN features. This revolutionary method, which
starts a new era of outstanding medical image analysis, uses deep learning models to
enhance the accuracy and efficacy of recognizing, isolating, and classifying breast masses.
In medical image processing, CNNs, U-Nets, and YOLO are quite important algorithms.
Among the many uses for these advanced models has been the precise identification and
classification of breast masses. They are as helpful for other medical imaging techniques
as mammography, including CT for lung cancer screening and MRI for tumor detection.
With its vast array of advanced deep learning techniques, medical professionals’ abilities
are enhanced and disease detection and patient care are revolutionized.

In this paper [21], a novel approach to mass detection in digital mammograms that
is independent of particular features is presented. This approach represents a significant
change in the field of medical image analysis. This approach utilizes the complete image
data, eliminating the conventional dependence on feature extraction approaches. The study
presents an advanced system that incorporates two support vector machine (SVM) classi-
fiers specifically developed to minimize the occurrence of false positives. The image data
vectors are enhanced using a multi-resolution over-complete wavelet representation. These
enhanced vectors are then inputted into the first support vector machine (SVM) to evaluate
suspicious regions. The second support vector machine (SVM) categorizes the inputs into
areas with masses and areas without masses, significantly decreasing the occurrence of
incorrect identifications. A sophisticated voting system enhances the process of decision
making by identifying areas that require further attention. When evaluated on mammo-
grams from the USF-DDSM database, the suggested technique demonstrates a remarkable
sensitivity rate of 80% and an exceptionally low false positive rate of 1.1 per picture.

Si and Jing [22] have created an advanced computer-aided detection and diagnosis
(CAD) system that has significant potential for detecting and categorizing breast cancer
on a large scale. The system utilizes a twin support vector machine (SVM) classifier and
the dyadic wavelet approach to enhance the quality and diagnostic accuracy of mam-
mography pictures. Through the efficient removal of undesired noise and the use of a
segmentation technique, the region of interest (ROI) is precisely recovered, paving the way
for subsequent research.

It is true that such remarkable performance indicates the possibility of the sug-
gested approach to completely transform the diagnosis and detection of breast cancer.
Eddaoudi et al. [23] presented a support vector machine and texture analysis-based mass
detection approach. Three crucial phases make up the approach, and they all help to cor-
rectly classify ROIs in mammography pictures. In the initial stage, automatic initialization
and contour detection utilizing snakes were employed to effectively delineate and split the
pectoral muscle, a crucial step in isolating the target regions. Subsequently, in the second
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stage, the ROI was further divided using a co-occurrence matrix and maximum threshold-
ing Haralick characteristics. The final stage involved the application of a support vector
machine (SVM) classifier to scrutinize the extracted characteristics and make insightful
determinations regarding their affiliation with either normal or bulk regions. At 77% on
average, the results showed promising performance. Still, the researchers saw significant
improvements when using the classifier to pre-segmented mammograms, achieving an
astounding average rate of 95% accuracy.

The abnormal detection classifier (ADC) is a state-of-the-art two-stage classifier de-
signed by Jen and Yu [24] whose main goal is to identify abnormal mammograms. Un-
derstanding how important precise ROI detection is in mammograms, the researchers
used basic image processing boosting techniques to successfully remove noise, non-breast
regions, and spectral muscle, thus overcoming the obstacles related to ROI identification.
This ground-breaking invention has enormous potential to improve the precision and
effectiveness with which troublesome areas in mammography pictures are identified. Grey-
level quantization was carefully used on all ROIs after the first processing stage to help
recover a small but informative collection of significant features. We carefully assessed the
ADC’s performance with a dataset of 322 photos taken from the MIAS database. The results
showed a remarkable 88% sensitivity and 84% specificity, which highlights the effectiveness
and feasibility of the suggested ADC in precisely identifying and categorizing aberrant
mammograms.

With their groundbreaking work, Ertosun and Rubin [25] presented a state-of-the-
art visual search engine that uses deep learning to identify and localize breast masses in
mammograms. Their technique consists of two essential parts: a highly developed deep
learning classifier intended to precisely divide the whole image into separate mass and
non-mass classes; and a sophisticated deep learning network-based regional probabilistic
approach, which excels in precisely locating the masses within mammography images.
With just an average of 0.9 false positives per image, the scientists claim that their unique
method produces remarkable results. Moreover, when their technique is used for the given
task, they claim an amazing accuracy rate of 85% in mass classification and localization.

In the field of medical image analysis, Jadoon et al. [26] put out a unique CNN-based
method to divide mammograms into three different categories: benign, malignant, and
normal. The discrete wavelet transform-based CNN (CNN-DW) and curvelet transform-
based CNN (CNN-CT) are the two different variants of their novel approach. Especially,
the effectiveness of using CNN features taken from mammograms to identify malignant
diseases is demonstrated by this work. Extensive evaluations of the authors’ suggested
CNN-DW and CNN-CT methods on the IRMA dataset yielded very encouraging results.
Impressively accurate at 81.83%, the CNN-DW method was surpassed by the CNN-CT,
which obtained an even higher accuracy of 83.74%.

These results signal a major development in the field of medical image analysis and
highlight the potential of their CNN-based classification approach as a useful tool in the
early detection and diagnosis of breast cancer. Even with the increasing amount of study
being conducted on breast mammography using deep learning algorithms, there is still
a clear difference in the overemphasis on image categorization rather than precise tumor
location. Effective diagnosis and therapy planning depend on accurate localization; hence,
this attention imbalance frequently results in less-than-ideal therapeutic results. Remark-
ably, earlier studies in this field have focused mostly on cancer diagnosis and have given
far less attention to accurately locating anomalies in mammography pictures. Localization
deserves further attention in order to guarantee the precision and dependability of the diag-
nostic procedure. In our suggested model, we seek to improve mass localization precision,
a crucial step in the diagnostic pipeline, therefore providing medical practitioners with
more accurate and relevant data for improved clinical decision making. Taking care of this
critical gap, our model offers a complete solution for rapid and precise tumor identification
by taking on both localization and classification tasks simultaneously. By means of this



Big Data Cogn. Comput. 2024, 8, 80 5 of 15

all-encompassing strategy, we want to enhance diagnostic effectiveness and efficiency, thus
enhancing patient care and health results.

3. Methodology

This section presents a comprehensive overview of the methodologies and techniques
employed in the present research, encompassing four pivotal subsections: dataset and
preprocessing, model architecture, training, and evaluation metrics. The dataset utilized
in this study was procured from a reputable and dependable source, specifically, https:
//www.kaggle.com, accessed on 31 May 2024. To ascertain the veracity and reliability
of the data, a comprehensive preprocessing phase was rigorously conducted, aimed at
refining and enhancing the dataset’s quality for subsequent analyses. Figure 1 provides a
visual representation of the workflow utilized in our methodology.

Figure 1. A concise visual depiction of the methodology employed in the study.

3.1. Dataset and Preprocessing

In our experimental investigations, we leveraged the publicly accessible Mammo-
graphic Image Analysis Society (MIAS) datasets [27], comprising a total of 330 images that
were thoughtfully categorized into multiple classes. The MIAS dataset, compiled in the late
1980s and early 1990s for research in mammographic image analysis, features images cap-
tured using standard mammography X-ray equipment of that era. The original dimensions
of each image in the dataset were 1024 × 1024 pixels, but for the purpose of consistency and
efficient processing, all images were uniformly resized to 512 × 512 pixels. This resizing
decision aimed to optimize our model’s efficiency by standardizing image dimensions,
which benefits from reduced computational load and faster processing times during both
training and inference stages. Additionally, specific preprocessing techniques were applied

https://www.kaggle.com
https://www.kaggle.com
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to enhance mammographic features, ensuring accurate classification and localization tasks.
To ensure coherence and accuracy in subsequent analyses, we appropriately resized the ‘x’
and ‘y’ image coordinates, along with the radius of the abnormality area outlined in the
labels file. Sample images from the dataset are visually depicted in Figure 2.

Figure 2. Illustrative sample of mammogram image data showcasing the complexity and diversity of
the dataset used in the study. The red circle shows the localization result.

Based on the mammogram scans, the severity of the abnormality present among the
tissues is divided into two classes: benign and malignant. Based on the mammogram
scans, the severity of the abnormality present among the tissues is divided into two classes:
benign and malignant.

The dataset employed in this study exhibits class imbalance (Table 1), wherein certain
classes contain a lesser number of samples compared to others. This imbalance poses a
challenge for machine learning models, as they may exhibit a bias towards the majority
class, compromising the overall performance. To mitigate this issue and enhance the
model’s robustness, data augmentation techniques were diligently applied. These tech-
niques involve the augmentation of the original dataset by performing various operations
such as zoom-in, zoom-out, and flip, thereby increasing the dataset’s size and rebalancing
the class distribution. Through the application of data augmentation, the initial dataset of
330 mammography images was expanded, resulting in a new dataset comprising 750 im-
ages (Figure 3). Of these augmented images, 600 (88%) were designated for the training of
the machine learning model, while the remaining 150 (12%) were reserved for evaluating
its performance during testing.
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Table 1. Dataset details showcasing the number of images per class in the study.

Class Number of Images

Benign 69
Malignant 54
Normal 207
Total 330

Figure 3. Comparison of dataset class ratios before and after augmentation, highlighting the impact
of data augmentation techniques on balancing the distribution of classes within the dataset.

3.2. Model Architecture

The architecture proposed in Figure 4 draws inspiration from two well-established
models, namely U-Net and YOLO. While the downsampling component bears resemblance
to U-Net, it incorporates distinct filters to cater to the specific requirements of the task
at hand. Additionally, the localization section is inspired by YOLO is renowned for its
prowess in object detection. In our approach, we adopt a unique perspective, treating the
entire image as a window for analysis. To facilitate this, the training dataset’s x, y, and
radius values are appropriately transformed. Specifically, we normalize the x, y, and radius
values by dividing them by the image size, which in this case is 512 × 512 pixels.

Figure 4. Model architecture illustrates the proposed model’s intricate structure, with a clear dis-
tinction between the contracting route on the left and the classification and localization segment on
the right.

Upon referring to Figure 4, the intricacies of the network architecture become visually
evident, showcasing a thoughtful division into two distinctive components: the contracting
route on the left and the classification and localization segment on the right. The contracting
route adheres to the well-established blueprint of convolutional neural networks, where a
sequence of two 3 × 3 convolutions is iteratively applied. Subsequent to each convolutional
layer, a rectified linear unit (ReLU) activation function is strategically employed, contribut-
ing to the network’s nonlinear capabilities. A downsampling operation is then executed
using a 2 × 2 max pooling technique with a stride of 2, effectively reducing the spatial di-
mensions of the feature maps. Notably, at each downsampling stage, the number of feature
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channels undergoes a doubling process, fostering the creation of a compacted-height layer
after four iterations.

Subsequent to the stratified layered structure described earlier, the network’s trajectory
progresses into the following key components: the categorization phase and the localization
module. In the classification step, three fully connected layers are adeptly integrated,
orchestrating the intricate interplay of learned features to generate the desired class output,
efficiently identifying the breast mass into one of the defined categories (normal, malignant,
or benign). On the other hand, the localization aspect constitutes a critical element of the
architecture, consisting of four interconnected layers meticulously engineered to yield the
pivotal x, y, and radius coordinates.

The model at hand exhibits a substantial complexity, with a total of 7,904,590 trainable
parameters seamlessly integrated into its design. Notably, the model does not encompass
any non-trainable parameters, indicating a comprehensive reliance on learnable features
and eliminating the need for fixed or static elements. The model’s input size is measured
at 1.00 megabytes, signifying the magnitude of data that it can assimilate and process in a
single instance. The forward/backward pass, on the other hand, is an essential computa-
tional activity for training and optimizing the model; it uses up a lot of resources, with an
estimated size of 108.76 MB. The model’s parameter size, which includes all of the trainable
parameters, is 30.15 megabytes, which is the total amount of RAM used for this purpose.
Consequently, the model’s memory footprint is somewhat large, reaching an estimated
139.91 MB when all of its components are considered. Making educated decisions to im-
prove performance and resource consumption is made possible by these comprehensive
measures, which cover computational complexity and memory requirements. They serve
as important guides for strategic model deployment and optimization.

3.3. Training

The training process of our proposed model involved a number of carefully performed
processes, flawlessly performed on our local computer. In order to obtain the best pos-
sible training performance, we utilized a GTX1050 GPU (NVIDIA Corporation, Dhaka,
Bangladesh) with 4 GB of GPU RAM. This allowed us to take advantage of its strong com-
puting abilities to quickly and effectively optimize our model. The dataset used for training
was carefully divided into two different sets: a training set consisting of 600 photos and a
separate testing set of 150 images. Throughout the training phase, we deliberately utilized a
batch size of 30, a carefully selected decision that expedited the optimization of the model’s
parameters. The model was trained for 300 epochs, a wise choice that allowed sufficient
time for the model to progressively understand and assimilate the complex patterns and
fundamental characteristics present in the training dataset. We established a learning rate
of 2 × 10−5 , which struck a careful equilibrium. This rate allowed the model to make
steady progress in its learning while avoiding any negative effects on its stability during
the training phase. To determine these optimal hyperparameters, such as batch size and
learning rate (alpha), we experimented with various values and found that these specific
settings best fit our model.

Cross Entropy Loss(y, ŷ) = −∑
i

yi log(ŷi) (1)

where y is the true label distribution, ŷ is the predicted label distribution, and i iterates over
all classes.

Mean Squared Error(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

where y is the true label, ŷ is the predicted label, and n is the number of samples.
In the pursuit of optimizing our model’s performance, we judiciously incorporated

two distinct loss functions: the cross-entropy loss Equation (1) and the mean squared
error (MSE) loss Equation (2). Each of these loss functions played a pivotal role in fine-
tuning the model’s classification and localization capabilities, respectively. Subsequently,
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to holistically gauge the model’s overall performance, we summed the individual losses
from the classification and localization components, thus yielding the final composite loss.
Inspired by the principles of YOLO, our model’s localization mechanism approached the
challenge by treating the entire image as a single window. The dataset was prepared to
align with this approach, as the x, y, and radius values were appropriately divided by the
image size of 512 × 512 (512 being the dimension of both height and width).

3.4. Evaluation Metrics

In our endeavor to comprehensively assess the prowess of our proposed model, we
employed a battery of rigorous evaluation metrics, each instrumental in scrutinizing distinct
facets of its performance. These evaluation criteria encompassed accuracy, precision, recall,
F1 score, ROC curve, and R squared error, collectively constituting a comprehensive
assessment toolkit.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Accuracy, a fundamental metric in classification tasks, serves as a pivotal gauge for
assessing the model’s proficiency in accurately predicting both positive and negative events.
The calculation of accuracy Equation (3) involves the formulation of a ratio representing the
total number of accurately predicted instances (both true positives and true negatives) over
the entire dataset’s population. True positives (TP) denote the correctly classified positive
instances, while true negatives (TN) refer to the accurately identified negative instances.
On the other hand, false positives (FP) correspond to the instances falsely classified as
positive, and false negatives (FN) represent the erroneously identified negative instances.

Precision =
TP

TP + FP
(4)

In essence, the precision Equation (4) serves as a powerful measure of the model’s
capability to precisely identify and correctly classify positive instances from the pool of
predicted positive results. By evaluating the precision metric, we gain valuable insights into
the model’s ability to accurately and reliably identify the exact locations of tumors, thus
illuminating its precision in detecting and classifying tumor regions with a high degree
of accuracy.

Recall =
TP

TP + FN
(5)

In the context of our research, recall Equation (5) assumes critical significance as it
specifically plays a pivotal role in assessing the model’s capacity to effectively detect posi-
tive instances. It quantifies the percentage of true positive results that the model correctly
identifies, thereby offering valuable insights into detecting and capturing all tumor regions,
underscoring its accuracy in identifying the presence of tumors in a comprehensive manner.

F1 score = 2 × Precision × Recall
Precision + Recall

(6)

The harmonic mean of recall and precision is the F1 score. Symbolically, the F1 score
Equation (6) is computed as a single statistic that incorporates recall and precision. By
leveraging the F1 score, we gain valuable insights into the trade-offs between recall and
precision, enabling a thorough comparison of various models with varying precision-
recall characteristics.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (7)

The R-squared error Equation (7) calculates the degree to which the expected and
actual values agree. It serves as a critical measure to assess the performance of the regression
model utilized for tumor localization. By evaluating the degree to which the anticipated
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tumor radius values align with the actual ones, the R-squared error provides a valuable
indication of the model’s accuracy in predicting the tumor size.

Confusion Matrix: A confusion matrix is a table that compares a dataset’s antici-
pated and actual values to assess a classification model’s effectiveness. The true positive
rate (TPR) against false positive rate (FPR) trade-off at various categorization levels is
depicted graphically by the receiver operating characteristic (ROC) curve. In our research,
the ROC curve was utilized to assess how well our model performed when applied to
various criteria.

4. Result

To evaluate the effectiveness of our model, we used several evaluation indicators for
both outcomes. In Table 2, we used accuracy, precision, recall, and F1 score as metrics to
evaluate the classification part. We used the R-squared value for the localization result as
the evaluation metric, shown in Table 3. The results of our examination revealed exceptional
performance across all evaluation metrics for the categorization output. The performance
of our model was exceptional, as seen by its high accuracy, precision, recall, and F1 score.
This indicates its ability to accurately classify cases of breast cancer. Likewise, our model
performed exceptionally well in producing accurate localization results, as indicated by
its high R-squared value. This demonstrates the model’s efficacy in accurately identifying
the specific region impacted by cancer in breast images. In addition to the evaluation
measures described earlier, we provided a thorough study of the model’s performance
using a confusion matrix and an ROC curve. The confusion matrix presented a detailed
representation of the quantities of true positive, true negative, false positive, and false
negative samples. The ROC curve allows for a simultaneous evaluation of the true positive
rate and the false positive rate, covering a range of classification criteria. Collectively, these
assessment methods provide more clarity and precision about the resilience and precision
of our model for detecting breast cancer and localizing cancerous areas.

Table 2. Classification results.

Metric Training Data Test Data

Accuracy 99.7% 93.0%
Precision 99.6% 93.2%
Recall 99.9% 94.7%
F1 Score 99.6% 93.2%
AUC 99.9% 96.0%

Table 3. Localization results.

Evaluation Metrics Training Data Test Data

R Squared value 99.1% 97.6%

4.1. Confusion Matrix

According to our model evaluation, we provide the confusion matrix for both our
training and test data in Figure 5. The confusion matrix displays a three-part structure,
where the rows and columns are precisely arranged to represent the three unique classes:
normal, benign, and malignant. More precisely, the initial row and column represent the
normal class, the second row and column represent the benign class, and the third row and
column represent the malignant class.

Our model achieved flawless accuracy in categorizing the normal and malignant
classes for the training data, with only one false positive and no false negatives. Neverthe-
less, it exhibited one incorrect result indicating the innocuous class. The model achieved
high accuracy in classifying all three classes of the test data; however, it did produce some
incorrect positive and negative predictions for the normal and benign classes. Our model
accurately identified 49 images of the normal class, with 4 images incorrectly classified as
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positive and 4 images incorrectly classified as negative. For the benign class, the model
correctly identified 33 images with no false positives or false negatives. Lastly, for the
malignant class, the model correctly identified 49 images, with 1 false positive and 2 false
negatives.

Figure 5. Confusion matrix for the training and test sets.

4.2. ROC Curve

Depicted in Figure 6 is the receiver operating characteristic (ROC) curve, which offers
significant insights regarding the model’s ability to differentiate between the test data.
Through the analysis of area under the curve (AUC) values, it is possible to assess the
efficacy of the model with respect to each class in isolation. The remarkable AUC value of
0.98 for class 0 (normal) indicates that the model possesses a strong capability to accurately
classify normal classes from the other classes. In a similar, the AUC for class 1 (benign) was
an exceptional 0.99, showing the model’s exceptional ability to accurately categorize benign
instances. Moreover, in regard to class 2 (malignant), the model achieved a tremendous
AUC of 0.99, providing additional evidence of its ability to accurately classify malignant
samples. The AUC numbers we obtained show that our model is very good at finding
breast cancer across all three classes, with the malignant class performing the best. Also,
the high AUC values show that our model does a good job of telling the difference between
the rates of true positives and fake positives for each class.

Figure 6. Multi-class ROC curve.
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5. Discussion

A big part of making sure that AI models work well and quickly is testing them.
Researchers and people who use these models can both learn from this process what they
can do better and what they need to change. The more researchers try their models, the
more they learn about how well they work, which helps them figure out how to improve
them. It is very important to look at the models when trying to find and spot breast cancer.
It lets us see how well and consistently our model can find cancerous areas and tell the
difference between cases that are dangerous, cases that are not dangerous, and cases that
are normal.

5.1. Classification

Our main study goal is to divide breast cancer cases into three groups: those that are
cancerous, those that are not cancerous, and those that are normal. We used a wide range
of success metrics, as shown in Table 2, to make this happen. Several metrics were looked
at, and each one gave us information about a different part of the model’s success. Some of
these measures are precision, recall, R-squared, area under the curve (AUC), and accuracy.

The model was tested and found to be very accurate, correctly identifying 93.0% of
breast cancer patients and showing good discriminatory ability with an AUC of 98.6%.
In addition, our model had a high recall of 94.7%, which means it could correctly spot
a lot of breast cancer patients. Also, it shows a precision of 93.2%, which means that it
correctly classified the cases it found. The model was also able to tell the difference between
true positive and fake positive rates, which shows that it can accurately find people with
breast cancer.

During our examination of the confusion matrices for our test data, we observed
instances of both false positives and false negatives in the benign and normal classes. The
malignant class exhibited the highest level of performance, as indicated by the ROC curve,
which demonstrated high levels of sensitivity and specificity for all three classes. The
results indicate that our system has outstanding performance in accurately detecting breast
cancer, a crucial factor for early detection and improved patient outcomes.

Compared to other models, as Table 4 illustrates, our model shows superior accuracy
and AUC. For instance, the method by Eddaoudi et al. [23] achieved an accuracy of 95%,
while our approach achieved 93.0% accuracy and a much higher AUC of 98.6%, indicating
better overall performance. Although Eddaoudi et al.’s method is highly accurate, it
primarily relies on texture features, which may limit its ability to generalize across diverse
datasets. Our model’s higher AUC suggests better overall performance and robustness
due to its ability to extract features using deep learning techniques. The sensitivity of
our model also surpasses that of Jen and Yu [24], which reported 88% sensitivity or recall,
compared to our model’s 94.7%. Furthermore, Jen and Yu’s method focuses on detecting
abnormal mammograms, providing high sensitivity but potentially suffering from higher
false positives due to less specificity. In contrast, our model’s combination of U-Net and
YOLO contributes to more accurate classification and localization, enhancing its practical
applicability in clinical settings.

5.2. Localization

Our model does more than just classification; it also focuses on finding mass areas.
This localization result can help a lot when it comes to making accurate diagnoses and
treatment choices because it helps find specific cancerous spots. The R-squared number
in Table 3 was used to judge how well our model’s localization worked. We were amazed
that our algorithm was able to accurately locate cancerous breast tissue, as shown by its
amazing R-squared value of 97.6%. This good result shows that our model might be useful
for helping doctors give more accurate diagnoses and treatment plans to women with
breast cancer. In the end, our evaluation results show that our model is useful and reliable
for the job of classifying and localizing breast cancer. Our model’s high AUC, precision,
recall, and R-squared value show that it can exactly find breast cancer cases and pinpoint
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areas that are cancerous. These results hold a lot of hope for finding breast cancer early and
giving patients better care, which will ultimately lead to better outcomes.

Table 4. Comparison of our model and other models.

Reference Classification Localization Method

[21] - Sensitivity 80% Support vector machine (SVM)

[22] - Sensitivity 89% Support vector machine (SVM)

[23] Accuracy 95% - Support vector machine (SVM)

[24] Sensitivity 88% Specificity 84% Abnormality detection
classifier (ADC)

[25] Accuracy 85% Sensitivity 85% Deep learning classifier
with regional probabilistic

[26] Accuracy 85% - CNN-DW and CNN-CT

[28] Accuracy 75% - EfficientNet
AUC 83%

[29] Accuracy 88% - Deep CNN

[30] - Sensitivity 88% CNN

Our approach Accuracy 93.0% R-squared value 97.6% Our proposed model
AUC 98.6% Sensitivity 96.81%

Precision 93.2%
Recall 94.7%

Compared to Ertosun and Rubin [25], who achieved 85% sensitivity in localization
using deep learning classifiers, our model’s R-squared value of 97.6% indicates significantly
higher precision in pinpointing cancerous regions. Ertosun and Rubin’s probabilistic
approach is valuable for uncertainty estimation but may not achieve the same precision due
to its probabilistic nature. Additionally, our model’s approach of combining classification
with localization provides a comprehensive solution, as opposed to models like those
proposed by Campanini et al. [21] and Si and Jing [22], which focus mainly on detection
with sensitivity rates of 80% and 89%, respectively. Campanini et al.’s SVM-based approach
is effective but can struggle with feature selection, while Si and Jing’s twin SVM-based CAD
system can be computationally intensive. Our dual-output model offers a more holistic
solution by integrating detection and precise localization, improving overall diagnostic
accuracy and efficiency.

Our model shows promise for finding and localizing breast cancer. Additional stud-
ies could help make it work even better, which could lead to more accurate and useful
diagnoses and treatment plans for people with breast cancer.

6. Limitations and Future Work

Despite our model’s excellent performance in the evaluation, we must consider several
drawbacks. First and foremost, it relies solely on the MIAS dataset, which may limit its
usefulness to larger populations and other imaging settings. Second, for this kind of study,
the sample size of 330 images is somewhat small, which might impact the robustness and
generalizability of the model. Finally, the dataset mostly covers particular geographical
areas, which might affect how well the model works with people with different demo-
graphics or imaging requirements. Future work can utilize larger and more varied datasets
to enhance the model’s validation and clinical situational performance. Creating apps
that support various imaging equipment would expand the model’s applicability and
practicality in real-world situations.
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7. Conclusions

In the end, our study developed a novel and useful model for finding breast cancer
and figuring out where it is located. Our model takes the best parts of two well-known
models—U-Net and YOLO—and blends them into a single, useful output that can be used
in a variety of clinical situations. Our evaluation measures showed that our model was
very good at finding breast cancer and pinpointing where the cancer is. This can help
find the disease earlier, make sure it is correctly diagnosed, and improve patient outcomes.
The good results of our study show that our proposed model has a lot of promise to
improve the accuracy and effectiveness of breast cancer diagnosis and treatment steps. Our
model’s unique dual output can help with planning a test, making plans for surgery, and
giving radiation therapy. Our model can also help find situations where tests might not
be necessary. This means that patients will be less uncomfortable, save money, and feel
less anxious.

Author Contributions: Data curation, A.R. and M.A.; formal analysis, M.Z.B.J.; investigation, M.Z.B.J.;
methodology, M.Z.B.J.; supervision, M.M.R., M.A.A.N., K.D.G., and R.G.; visualization, M.Z.B.J. and
A.R.; writing—original draft, M.Z.B.J.; writing—review and editing, M.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded in part by NSF Grants No. 2306109, and DOEd Grant P116Z220008
(1). Any opinions, findings, and conclusions expressed here are those of the author(s) and do not
reflect the views of the sponsor(s).

Data Availability Statement: The dataset can be accessed on the Kaggle website at https://www.
kaggle.com/datasets/kmader/mias-mammography/data, accessed on 5 January 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics,

2019. CA Cancer J. Clin. 2019, 69, 438–451. [CrossRef] [PubMed]
2. Elter, M.; Horsch, A. CADx of mammographic masses and clustered microcalcifications: A review. Med. Phys. 2009, 36, 2052–2068.

[CrossRef] [PubMed]
3. Jiang, Y.; Nishikawa, R.M.; Schmidt, R.A.; Metz, C.E.; Giger, M.L.; Doi, K. Improving breast cancer diagnosis with computer-aided

diagnosis. Acad. Radiol. 1999, 6, 22–33. [CrossRef] [PubMed]
4. Zaheer, R.; Shaziya, H. GPU-based empirical evaluation of activation functions in convolutional neural networks. In Proceedings

of the 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018;
pp. 769–773.

5. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
6. Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.;

Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer
2019, 119, 11–17. [CrossRef] [PubMed]

7. Assiri, A.S.; Nazir, S.; Velastin, S.A. Breast tumor classification using an ensemble machine learning method. J. Imaging 2020, 6, 39.
[CrossRef] [PubMed]

8. Manickavasagam, R.; Selvan, S.; Selvan, M. CAD system for lung nodule detection using deep learning with CNN. Med. Biol.
Eng. Comput. 2022, 60, 221–228. [CrossRef] [PubMed]

9. Tandon, Y.K.; Bartholmai, B.J.; Koo, C.W. Putting artificial intelligence (AI) on the spot: Machine learning evaluation of pulmonary
nodules. J. Thorac. Dis. 2020, 12, 6954. [CrossRef] [PubMed]

10. Bechelli, S. Computer-Aided Cancer Diagnosis via Machine Learning and Deep Learning: A comparative review. arXiv 2022,
arXiv:2210.11943.

11. Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer diagnosis using deep learning: A bibliographic review. Cancers 2019,
11, 1235. [CrossRef] [PubMed]

12. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

13. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.
A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

14. Baccouche, A.; Garcia-Zapirain, B.; Castillo Olea, C.; Elmaghraby, A.S. Connected-UNets: A deep learning architecture for breast
mass segmentation. NPJ Breast Cancer 2021, 7, 151. [CrossRef] [PubMed]

https://www.kaggle.com/datasets/kmader/mias-mammography/data
https://www.kaggle.com/datasets/kmader/mias-mammography/data
http://doi.org/10.3322/caac.21583
http://www.ncbi.nlm.nih.gov/pubmed/31577379
http://dx.doi.org/10.1118/1.3121511
http://www.ncbi.nlm.nih.gov/pubmed/19610294
http://dx.doi.org/10.1016/S1076-6332(99)80058-0
http://www.ncbi.nlm.nih.gov/pubmed/9891149
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.ejca.2019.05.023
http://www.ncbi.nlm.nih.gov/pubmed/31401469
http://dx.doi.org/10.3390/jimaging6060039
http://www.ncbi.nlm.nih.gov/pubmed/34460585
http://dx.doi.org/10.1007/s11517-021-02462-3
http://www.ncbi.nlm.nih.gov/pubmed/34811644
http://dx.doi.org/10.21037/jtd-2019-cptn-03
http://www.ncbi.nlm.nih.gov/pubmed/33282401
http://dx.doi.org/10.3390/cancers11091235
http://www.ncbi.nlm.nih.gov/pubmed/31450799
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1038/s41523-021-00358-x
http://www.ncbi.nlm.nih.gov/pubmed/34857755


Big Data Cogn. Comput. 2024, 8, 80 15 of 15

15. Sun, H.; Li, C.; Liu, B.; Liu, Z.; Wang, M.; Zheng, H.; Feng, D.D.; Wang, S. AUNet: Attention-guided dense-upsampling networks
for breast mass segmentation in whole mammograms. Phys. Med. Biol. 2020, 65, 055005. [CrossRef] [PubMed]

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

17. Sarker, P.; Sarker, S.; Bebis, G.; Tavakkoli, A. Connectedunets++: Mass segmentation from whole mammographic images.
In Proceedings of the International Symposium on Visual Computing, San Diego, CA, USA, 3–5 October 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 419–430.

18. Jiménez Gaona, Y.; Rodriguez-Alvarez, M.J.; Espino-Morato, H.; Castillo Malla, D.; Lakshminarayanan, V. Densenet for breast
tumor classification in mammographic images. In Proceedings of the International Conference on Bioengineering and Biomedical
Signal and Image Processing, Gran Canaria, Spain, 19–21 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 166–176.

19. Dumas, E.; Hamy, A.S.; Houzard, S.; Hernandez, E.; Toussaint, A.; Guerin, J.; Chanas, L.; de Castelbajac, V.; Saint-Ghislain, M.;
Grandal, B.; et al. EDEN: An Event DEtection Network for the annotation of Breast Cancer recurrences in administrative claims
data. arXiv 2022, arXiv:2211.08077.

20. Sajid, U.; Khan, R.A.; Shah, S.M.; Arif, S. Breast cancer classification using deep learned features boosted with handcrafted
features. Biomed. Signal Process. Control. 2023, 86, 105353. [CrossRef]

21. Campanini, R.; Dongiovanni, D.; Iampieri, E.; Lanconelli, N.; Masotti, M.; Palermo, G.; Riccardi, A.; Roffilli, M. A novel featureless
approach to mass detection in digital mammograms based on support vector machines. Phys. Med. Biol. 2004, 49, 961. [CrossRef]
[PubMed]

22. Si, X.; Jing, L. Mass detection in digital mammograms using twin support vector machine-based CAD system. In Proceedings of
the 2009 WASE International Conference on Information Engineering, Taiyuan, China, 10–11 July 2009; Volume 1, pp. 240–243.

23. Eddaoudi, F.; Regragui, F.; Mahmoudi, A.; Lamouri, N. Masses detection using SVM classifier based on textures analysis. Appl.
Math. Sci. 2011, 5, 367–379.

24. Jen, C.C.; Yu, S.S. Automatic detection of abnormal mammograms in mammographic images. Expert Syst. Appl. 2015,
42, 3048–3055. [CrossRef]

25. Ertosun, M.G.; Rubin, D.L. Probabilistic visual search for masses within mammography images using deep learning. In
Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, 9–12
November 2015; pp. 1310–1315.

26. Jadoon, M.M.; Zhang, Q.; Haq, I.U.; Butt, S.; Jadoon, A. Three-class mammogram classification based on descriptive CNN
features. BioMed Res. Int. 2017, 2017, 3640901. [CrossRef] [PubMed]

27. Suckling, J. The mammographic images analysis society digital mammogram database. In Proceedings of the Exerpta Medica,
International Congress Series, York, UK, 10–12 July 1994; Volume 1069, pp. 375–378.

28. Gengtian, S.; Bing, B.; Guoyou, Z. EfficientNet-Based Deep Learning Approach for Breast Cancer Detection With Mammography
Images. In Proceedings of the 2023 8th International Conference on Computer and Communication Systems (ICCCS), Guangzhou,
China, 21–24 April 2023; pp. 972–977.

29. Nalifabegam, J.; Ganeshbabu, C.; Askarali, N.; Natarajan, A.; Maheshwari, P. Cancer Classification Revolution: Employing
Advanced Deep CNNs for Multi-Class Detection of Breast Irregularities. In Proceedings of the 2023 Third International Conference
on Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 9–10 December 2023; Volume 1, pp. 1–4.

30. Pourasad, Y.; Zarouri, E.; Salemizadeh Parizi, M.; Salih Mohammed, A. Presentation of novel architecture for diagnosis and
identifying breast cancer location based on ultrasound images using machine learning. Diagnostics 2021, 11, 1870. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6560/ab5745
http://www.ncbi.nlm.nih.gov/pubmed/31722327
http://dx.doi.org/10.1016/j.bspc.2023.105353
http://dx.doi.org/10.1088/0031-9155/49/6/007
http://www.ncbi.nlm.nih.gov/pubmed/15104319
http://dx.doi.org/10.1016/j.eswa.2014.11.061
http://dx.doi.org/10.1155/2017/3640901
http://www.ncbi.nlm.nih.gov/pubmed/28191461
http://dx.doi.org/10.3390/diagnostics11101870
http://www.ncbi.nlm.nih.gov/pubmed/34679568

	Introduction
	Literature Review
	Methodology
	Dataset and Preprocessing
	Model Architecture
	Training
	Evaluation Metrics

	Result
	Confusion Matrix
	ROC Curve

	Discussion
	Classification
	Localization

	Limitations and Future Work
	Conclusions
	References

