
Citation: Shi, T.; Wu, R.; Zhou, C.;

Zheng, S.; Meng, Z.; Cui, Z.; Huang, J.;

Ren, C.; Zhao, Z. A Trusted

Supervision Paradigm for

Autonomous Driving Based on

Multimodal Data Authentication. Big

Data Cogn. Comput. 2024, 8, 100.

https://doi.org/10.3390/bdcc8090100

Academic Editor: Moulay A.

Akhloufi

Received: 30 June 2024

Revised: 8 August 2024

Accepted: 24 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

A Trusted Supervision Paradigm for Autonomous Driving Based
on Multimodal Data Authentication
Tianyi Shi 1,†, Ruixiao Wu 1,†, Chuantian Zhou 1, Siyang Zheng 1, Zhu Meng 1 , Zhe Cui 1, Jin Huang 2,3 ,
Changrui Ren 2,3 and Zhicheng Zhao 1,4,*

1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Haidian District,
Beijing 100876, China; sty0622@bupt.edu.cn (T.S.)

2 Beijing Academy of Blockchain and Edge Computing, Haidian District, Beijing 100085, China
3 Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Haidian District,

Beijing 100085, China
4 Beijing Key Laboratory of Network System and Network Culture, Haidian District, Beijing 100876, China
* Correspondence: zhaozc@bupt.edu.cn
† These authors contributed equally to this work.

Abstract: At the current stage of autonomous driving, monitoring the behavior of safety stewards
(drivers) is crucial to establishing liability in the event of an accident. However, there is currently
no method for the quantitative assessment of safety steward behavior that is trusted by multiple
stakeholders. In recent years, deep-learning-based methods can automatically detect abnormal
behaviors with surveillance video, and blockchain as a decentralized and tamper-resistant distributed
ledger technology is very suitable as a tool for providing evidence when determining liability. In this
paper, a trusted supervision paradigm for autonomous driving (TSPAD) based on multimodal data
authentication is proposed. Specifically, this paradigm consists of a deep learning model for driving
abnormal behavior detection based on key frames adaptive selection and a blockchain system for
multimodal data on-chaining and certificate storage. First, the deep-learning-based detection model
enables the quantification of abnormal driving behavior and the selection of key frames. Second,
the key frame selection and image compression coding balance the trade-off between the amount of
information and efficiency in multiparty data sharing. Third, the blockchain-based data encryption
sharing strategy ensures supervision and mutual trust among the regulatory authority, the logistic
platform, and the enterprise in the driving process.

Keywords: autonomous driving; blockchain; abnormal behavior detection; deep learning

1. Introduction

Traffic accidents are one of the major threats to human life. About 1.19 million people
die in road traffic accidents every year according to the World Health Organization. In
particular, with the development of artificial intelligence [1–6], remarkable progress has
been achieved in areas such as image segmentation, classification, and detection. Similarly,
self-driving cars are becoming even more popular [7,8], and safety issues [9,10] caused by
autonomous driving have increasingly attracted the attention of society. Currently, most
self-driving cars are equipped with a safety steward, whose responsibility is to take over
the controlling system when unpredictable problems happen to self-driving systems. A
notification regarding the pilot work on the admission and on-road operation of intelligent
connected vehicles was issued by the Chinese government on 17 November 2023, and it
explicitly emphasizes that autonomous driving systems need to be equipped with safety
steward. The autonomous driving system should possess the capability of monitoring
the safety steward’s behaviors and also be able to identify whether the safety steward is
capable of taking over dynamic driving tasks. Warning signals should be issued when the
safety steward’s capabilities are insufficient to meet the requirements. Therefore, there are
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two important issues that need to be resolved: (1) the safety steward’s behavior detection
while the vehicle is driving, and (2) the liability determination when safety problems occur.

In most autonomous driving scenarios, the supervision of the safety steward relies on
surveillance videos. In recent years, the methods of video analysis based on deep learning
keep appearing. Some of them are used to detect abnormal behavior, which can promptly
alert the safety steward when he (she) is detected to have abnormal behavior. At present,
abnormal behavior detection methods based on deep learning are mainly divided into
two categories: unsupervised [11–13] and supervised [14–17]. Unsupervised methods are
usually used for reconstruction tasks, while supervisory information is used for model
training and selecting samples with poor reconstruction quality as abnormal behavior
samples in inference phase, and supervised methods treat abnormal behavior as one of the
target categories for training.

In terms of the liability determination, electronic evidence preservation can verify the
behavioral trajectory and environmental conditions of autonomous vehicles in the event of
accidents or violations, and then accurately reconstruct the accident scenarios and analyze
liability [18]. Traditional electronic evidence preservation methods often rely on centralized
storage and management institutions, which leads to problems such as data tampering and
high storage costs [19]. To address the problem of data tampering, in this paper, blockchain,
as a decentralized and tamper-resistant distributed ledger technology, is used as a tool
for data storage. Blockchain can record the driving data, sensor data, map data, and even
videos of the safety steward when driving autonomous vehicles. These data can be verified
automatically by smart contracts. For the high storage problem, key frames filtering of
video data and image compression coding strategies are designed to solve this problem.
In order to monitor the abnormal behavior of the safety steward, this paper trains a deep
learning model for abnormal driving behavior detection.

The contributions of this paper can be summarized as follows:

• A trusted supervision paradigm for autonomous driving (TSPAD) based on multi-
modal data authentication is proposed for the timely and intelligent quantification and
recording of the safety steward’s abnormal behavior in autonomous driving. TSPAD
is an innovative framework designed to address the demands of real-world business
scenarios, and its feasibility is thoroughly validated in this paper.

• A encrypted evidence storage method based on dual-chain blockchain architecture
is designed to enhance the sharing efficiency and trustworthiness among multiple
stakeholders. This method integrates a private key chain for secure identity authenti-
cation and a notary chain for reliable data verification, ensuring both data integrity
and privacy protection in distributed environments.

• The abnormal behavior of safety drivers in autonomous driving is quantified and key
frames are extracted through deep learning models. This paper designs a variety of
optional key frames selection strategies to cope with different application scenarios.
For scenarios with high speed requirements, the intermediate frames or random
frames selection strategy is adopted. For scenarios with high accuracy requirements,
the adaptive clustering key frames selection strategy can be utilized.

• An image compression algorithm is employed to alleviate the burden on distributed
storage. In the context of autonomous driving, leveraging the computational power
of hardware, an image compression algorithm accelerated by graphics processing
units (GPUs) is utilized to reduce the burden on distributed storage, while preserving
maximum image details.

2. Related Work
2.1. Blockchain for Traffic Incident and Accident Management

Block4Forensic (B4F) [20] is an innovative framework introduced for securing digital
evidence in vehicle operation scenarios using blockchain technology. The B4F framework
integrates blockchain with Vehicle Public Key Infrastructure (VPKI), fragmented ledgers,
and forensic watchdog protocols to provide a comprehensive solution for forensic analysis.
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Yao, Q. et al. [21] presented a model designed to address challenges such as forensic
data preservation, privacy leaks, and legal accountability in the context of autonomous
vehicle accidents.

As society’s demand for automation increased, machine learning methods were pro-
gressively applied to evidence preservation systems for data analysis and extraction. The
Secure Incident & Evidence Management Framework (SIEMF) [22] introduced a pioneer-
ing integration of deep learning and blockchain technologies for accident prediction and
evidence management within vehicular networks. By employing convolutional neural
networks (CNNs) [23] to analyze continuous data streams instead of merely relying on
snapshot data, the framework enhanced the accuracy of accident risk prediction and the
issuance of timely alerts. Tamper-Proof [24] integrated Internet of Things, artificial in-
telligence (AI), and smart contract technologies, enabling real-time communication and
verification of accident-related videos among autonomous vehicles, and using blockchain
to authenticate the origin and veracity of digital media.

Historically, blockchain was considered unsuitable for storing large media and evi-
dence files [25]. Philip et al. [26] proposed a blockchain-based framework for post-accident
investigations that integrated evidence from nearby vehicles, closed-circuit television, and
other road users. Using the InterPlanetary File System (IPFS) for efficient evidence trans-
mission, this framework aided in investigating the causes and determining responsibilities
in vehicle accidents. Building on the SIEMF framework, the Improved Secure Incident and
Evidence Management Framework (ISIEMF) [27] introduced an approach that employed
long short-term memory (LSTM) [28] networks and Bayesian models to address incident
reporting of internal conflicts within vehicle systems. Additionally, ISIEMF leveraged the
IPFS as a distributed storage solution, enhancing storage efficiency and data integrity.

However, retaining raw data in local file systems increases the risks of tampering and
loss, thus limiting the credibility of blockchain-based evidence preservation systems. This
vulnerability underscores the need for improved security measures to ensure the integrity
and reliability of such systems in handling critical data.

2.2. Abnormal Behavior Detection

At present, abnormal behavior detection methods based on deep learning are mainly
divided into two categories: unsupervised [11–13] and supervised [14–17].

Unsupervised methods usually use other tasks such as reconstruction tasks as the
target tasks to supervise the network to learn normal behavior features. In the inference
phase, if there is a behavior that causes the network to respond abnormally, it is considered
an abnormal behavior. Deepak et al. [12] proposed an unsupervised abnormal behavior
detection framework which was trainable end-to-end. Its residual spatiotemporal autoen-
coder could extract the high-dimensional features of video cases, and the main task of
its method was video reconstruction. In the training phase, the reconstruction loss was
expected to be lower. In the inference phase, if the loss value was larger than a threshold,
it would be judged to be an abnormal sample. Cho et al. [13] suggested that abnormal
behavior was determined by appearance and motion, so they proposed an unsupervised
method that could learn both appearance and motion features by two branches, which
were static flow and dynamic flow. They inputted T/τ frames into the static encoder (T
was the total number of frames of the video case and τ = 4 was the sampling rate) while
they inputted T frames into the dynamic encoder. Fewer frames allowed static flow to
focus on learning the appearance features of objects in the video case. More frames allowed
dynamic flow to learn the changes between two frames and obtain motion features. Similar
to Deepak et al. [12], the main task was reconstruction.

Supervised methods usually treat both abnormal and normal behaviors as different
classification categories. The key frame extractor of Tang et al. [16] was also a prefect
abnormal behavior detector. The purpose of the paper was to train a key frame extractor
unsupervised, but in terms of a video classification task, it could be considered as a super-
vised method. The key frame extractor was divided into two stages. In stage one, the video
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frames were transformed into feature maps through CNN. Then, the model adopted an
algorithm similar to k-means to extract key frames using those feature maps. The clustering
algorithm redefined the calculation method, which could reflect the representative of each
feature map in the video case it belonged to, rather than the traditional calculation of the
sum of the distance. The representative scores were sorted from high to low, and the frames
corresponding to top k scores would be selected to the next stage, which was an extractor
of the temporal feature. In stage two, the key frames were sorted by time order, and were
fed into an LSTM network as a time series. The output of the LSTM was sent to a classifier
for the video classification task. The work of Tan et al. [17] had the ability to deal with
long videos with multiple scenarios and themes. Long videos were cropped into small
video clips according to scenarios and themes by large model TransNetV2 [29]. These video
clips extracted feature maps frame by frame with an image feature extractor. An adaptive
cluster strategy was adopted to select the key frames from each video clip. The number of
cluster centers, in other words, the number of key frames, was not a fixed value but could
change according to different video samples. Obtaining the feature maps of key frames,
the model learned the distributions of different categories of video clips supervised by
classification labels.

Unsupervised methods exhibit strong adaptability across various scenarios. However,
their accuracy tends to be limited. In contrast, supervised methods offer relatively high
accuracy but lack adaptability to diverse scenarios. This paper proposes an abnormal be-
havior detection approach that is suitable for different scenarios. For scenarios demanding
high accuracy, adaptive clustering of frames based on a large visual model is employed.
Conversely, for scenarios prioritizing speed, random frames or center frames are selected.

2.3. Video Coding Standards

The development of video coding standards has spanned several important stages.
In 1988, the H.261 [30] standard was proposed by the International Telecommunication

Union Telecommunication Standardization Sector (ITU-T), aiming to support Integrated
Services Digital Network (ISDN) video telephony and video conferencing applications.
This standard was the first to introduce block motion compensation and discrete cosine
transform (DCT) technology to the video coding field. However, H.261 exhibited limitations
in handling low bit rates and high-motion scenes, which spurred the development of
subsequent standards.

In 1991, the Moving Picture Experts Group (MPEG) of International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) released the
MPEG-1 [31] standard, which aimed at storing and playing video on CDs and digital
cable/satellite televisions. Five years later, the video part of MPEG-2 [32] standard was
proposed. MPEG-2 significantly improved upon MPEG-1 by supporting higher resolutions
and bit rates and introducing variable bit rate (VBR) and layered coding technologies.
Despite its widespread application in digital television and digital video disc (DVD) storage,
MPEG-2’s coding efficiency was insufficient for high-resolution video.

In 1998, the H.264 [33] standard was jointly released by the ISO/IEC Joint Technical
Committee (JTC), which proposed Context-Adaptive Binary Arithmetic Coding (CABAC)
and multireference frame technology. Compared with MPEG-2, H.264 achieved 50% higher
compression efficiency at most, supporting more granular bit rates, resolutions, and frame
rates. This versatility made it widely adopted in high-definition television (HDTV), Blu-ray
discs, and online video streaming. However, the computational complexity and patent fees
of H.264 prompted researchers to continue exploring more efficient coding standards. The
H.265 [34] (also known as high-efficiency video coding, HEVC) standard was introduced
in 2013, incorporating more complex prediction and transformation techniques, such as
coding units (CUs), prediction units (PUs), and transform units (TUs). These advancements
increased compression efficiency by approximately 50% and supported video transmission
up to 8K resolution. These technological improvements made H.265 widely used in 4K
and 8K ultra-high-definition television, video streaming services, and virtual reality (VR).
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Nonetheless, the high computational complexity and patent fee issues of H.265 remain
significant barriers to its widespread adoption.

3. Methods

The framework of TSPAD is illustrated in Figure 1. At the vehicle end, the message
publisher, embedded with an abnormal behavior detection module, detects dangerous
behaviors, such as eating and drinking, working with phone or laptop, reading or writing
magazine or newspaper, watching video and smoking, by the drivers during vehicle
operation in real time. Key frames of surveillance videos are compressed and recorded
in the certification blockchain by smart contracts. The message subscribers, consisting
of logistics platform, enterprises, and regulatory authority, receive real-time updates of
newly generated transactions on the certification chain. The private key chain-based key
distribution mechanism performs identity verification and permission control during data
retrieval. The techniques used in TSPAD will be elaborated in the rest of this section.

Figure 1. Framework of TSPAD based on multimodal data authentication, which illustrates an
anomaly detection module integrated with a dual-chain architecture. TSPAD employs a compact
anomaly detection model to capture key frames and, through feature extraction and a dynamic
selection mechanism, identifies and records potentially abnormal driving behaviors in real time, such
as fatigue driving and reckless driving. Upon detecting such behaviors, the system triggers an alert
and processes the data using video compression techniques to accommodate real-time uploads to the
notary chain. The entire dual-chain architecture comprises a private key chain and a notary chain.
The private key chain is responsible for implementing identity authentication and management,
ensuring data privacy and security, while the notary chain records real-time driving data to guarantee
data integrity and reliability. Blockchain participants such as enterprises, logistics platforms, and
regulatory agencies can access vehicle operation information on the notary chain through subscriber
channels. This capability enables real-time monitoring and management of the transportation process,
thereby enhancing system transparency and security.

As shown in Figure 2, in this section, Section 3.1 designs a blockchain system for
trusted evidence preservation, providing a foundational overview of the entire framework.
This system ensures data integrity and security through a dual-chain architecture and an
evidence notarization process. Section 3.2 focuses on the detection of abnormal driving
behaviors, utilizing a key frame adaptive clustering algorithm to analyze videos and
identify potentially hazardous behaviors during driving. Section 3.3 addresses video
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compression based on intraframe and interframe coding, effectively reducing data volume
and enhancing storage and transmission efficiency through discrete cosine transform and
motion compensation techniques. The abnormal behavior data obtained in Section 3.2
are compressed in Section 3.3 and stored within the blockchain architecture of Section 3.1,
ensuring data security and integrity. Thus, Section 3.2 provides the raw data for processing,
while Section 3.1 offers a trusted platform for data storage and management throughout
the entire process.

Figure 2. The logical structure of the “Methods” section in this paper.

3.1. Design of Blockchain for Trusted Evidence Preservation
3.1.1. Dual-Chain Blockchain Architecture

In the field of modern logistics and autonomous driving, it is crucial for the notariza-
tion of vehicle operation information and driver abnormal behavior detection to ensure
the safe operation of vehicles and the delineation of responsibilities post-accident. These
data are typically characterized by their vast volume, randomness, and dispersion, pos-
ing challenges to traditional notary systems [35]. To address these challenges, this paper
introduces an innovative dual-chain architecture to achieve the reliability and openness
of vehicle operation information while preserving the security and privacy of corporate
cargo information.

The proposed dual-chain architecture, as shown in Figure 3, involves the independent
deployment and governance of a private key chain and a notary chain. Each chain interacts
with blockchain participants, with on-chain data being stored and managed separately,
thus achieving a decoupling of identity management and data notarization functions. The
private key chain is responsible for identity management and data privacy protection,
while the notary chain records real-time electronic evidence generated by the vehicle,
including text and video formats. This design ensures efficient data access and credible
notarization by separating key management from the notarized information. As a result,
enterprises involved in transactions can receive real-time updates on the transportation
status of vehicles and cargo, ensuring data privacy while maintaining the security and
reliability of logistics information. The system’s functionalities are primarily implemented
through the interface of smart contracts, ensuring the automation and transparency of
operations. After the data are encrypted, they are broadcasted to the other nodes through a
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peer-to-peer (P2P) network, and then stored on the chain through a consensus mechanism,
thereby enhancing the security and immutability of the data.

Figure 3. Trusted evidence dual-chain blockchain architecture which illustrates the core components
of the dual-chain blockchain architecture, including foundational components, functional modules,
and core modules. The foundational components at the bottom layer (password vault, message bus,
storage resources, and certificate repository) provide supportive services for the core modules in
the middle section. The private key chain is responsible for user identity authentication, transaction
registration, and private key management, providing foundational support for system security and
privacy protection. The notary chain handles trust proof, message subscription, blockchain manage-
ment, and consensus synchronization, ensuring data authenticity and network synchronization. The
top-level functional modules enable the extension of system functions and service integration through
key distribution, information authentication, and message management. The overall architecture
ensures the credibility of information and the traceability of operations through the combination of
the notary chain and the private key chain.

The private key chain is primarily responsible for recording the details of order trans-
actions between logistics companies and enterprises and storing the encrypted transaction
private keys. Anchoring order transaction information on the blockchain ensures the im-
mutability and high transparency of the information. The transaction private key encrypted
by the enterprise’s or the regulatory authority’s public key is notarized and stored on the
private key chain by a trusted logistics company. Consequently, the involved enterprise
can retrieve the transaction private key from the chain, which enhances the transparency
and reliability of the private key distribution process. The private key distribution enables
user identity verification and authorization when enterprises retrieve transportation infor-
mation. Only the transportation information encrypted by the corresponding transaction
public key can be accessed and decrypted by the enterprise involved in the transaction,
thereby improving the security of the system.

The notary chain is employed to document the vehicle’s operational data, the condition
of the cargo, and videos of abnormal behavior detection of drivers during transportation.
The data uploaded to the chain include information such as timestamps, vehicle iden-
tification numbers, and the original data. Before uploading electronic evidence to the
notary chain, the vehicle encrypts it using the transaction public key, enabling user identity
authentication for enterprises when retrieving transportation information. This mechanism
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ensures the authenticity, integrity, and traceability of transportation information, while also
securing the privacy of corporate cargo information.

This paper adopts a dual-chain architecture based on the following considerations:
(1) The design of the dual-chain architecture enables specialization of chain functions,
facilitating the management and expansion of subsequent notary information services, as
well as the adjustment and modification of user authentication methods. (2) Encrypted
private key information is stored separately in the private key chain, effectively isolating it
from the data on the notary chain, thereby providing higher privacy and security for the
transaction content. (3) The dual-chain architecture enables each chain to select its own
trusted users to join, reducing the opportunities for malicious attacks. (4) The dual-chain
architecture is more applicable to the key distribution mechanism.

3.1.2. Blockchain-Based Evidence Notarization Process

As shown in Figure 4, the dual-chain architecture proposed in this paper consists of
five main processes: (A) transaction initiation, (B) transaction public–private key distribu-
tion, (C) transportation information on-chain, (D) enterprise’s retrieval of transportation
information, and (E) regulatory intervention.

Figure 4. Evidence service model for evidence upload and retrieval.

Transaction initiation. After reaching a transaction agreement off-chain, the enterprise
generates an asymmetric private key SKe and initiates a new transaction with the logistics
platform, transmitting the public key PKe for data encryption to the logistics platform.

Transaction public–private key distribution. Upon receiving this transaction request,
the logistics platform generates a corresponding set of transaction asymmetric keys and a
business transaction ID. The transaction content and the private key SKtx of the asymmetric
keys are encrypted using the public key PKe provided by the enterprise. The encrypted
data are serialized and packaged into a blockchain transaction, which is then uploaded
to the private key chain with the business transaction ID as the blockchain transaction
index. The generated public key PKtx is distributed to the vehicle executing the task to
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encrypt the data recorded during transportation. After SKtx is uploaded to the chain, the
logistics platform returns the business transaction ID to the enterprise, which retrieves
the corresponding block on the private key chain using the business transaction ID and
decrypts the SKtx with its own private key SKe.

Transportation information on-chain. The vehicle computes a hash for the recorded vehicle
driving data or the compressed video of driver’s abnormal behavior. This hash value can
be used to verify whether the data have been tampered with during subsequent evidence
collection. Using a hybrid encryption method, the vehicle generates a symmetric key to
encrypt the data and encrypts the symmetric key with the transaction public key PKtx.
The encrypted data and key are then chained onto the notary chain with the business
transaction ID as the blockchain transaction index. The purpose of this approach is to
leverage the security provided by asymmetric encryption algorithms to safely transmit the
symmetric key and then use the efficiency of symmetric encryption algorithms to encrypt
large amounts of data.

Retrieval of transportation information. The enterprise creates a subscriber channel within
the notary chain through the blockchain’s message subscription mechanism. When a new
transaction is generated, the blockchain sends a notification through the subscriber channel.
Enterprises can retrieve blocks associated with their transactions using the business trans-
action ID and decrypt the symmetric key with the transaction private key SKtx. Through
this approach, enterprises can access real-time information on vehicle operations and
cargo transportation.

Regulatory intervention. The regulatory authority possesses a private asymmetric key
pair. When the regulatory authority needs to access the transportation information of a
particular transaction, it initiates a request to the logistics platform, transmitting its public
key PKr and the business transaction ID to be queried. Upon verifying the digital identity
of the regulatory authority, the logistics platform uses the transmitted public key PKr to
encrypt the transaction private key SKtx. Subsequently, the logistics platform generates a
query ID to serve as the index for the blockchain transaction and uploads the encrypted
transaction private key to the private key chain. Finally, the logistics platform returns the
query ID to the regulatory authority, enabling it to use this ID and its private key SKr to
retrieve the transaction private key from the private key chain, and thereby access the
desired transportation information from the notary chain.

3.2. Abnormal Driving Behavior Detection
3.2.1. Detection Framework Based on Key Frames Adaptive Cluster

The abnormal driving behavior detection framework is shown in Figure 5. Given
a video shot V = {v1, v2, ... , vn}, vi denotes its i-th frame, and n is the total number
of its all frames. The number of frames of video shot is normalized to f using uniform
sampling (n > f ) or interpolation (n < f ) methods before training, so the video shot
becomes V = {v1, v2, ... , v f }. Feeding V into the key frames selection module, key frames
Vk are selected from V. There are three selection strategies that can be used: (1) select
center frame Vk = {v f /2}, (2) randomly select one frame Vk = {vi}, vi ∈ V, and (3) select
adaptive cluster frames Vk = {v1, v2, . . . , vc}. In adaptive cluster frames module, the
image encoder of the Contrastive Language-Image Pre-training [36] (CLIP) model is used to
extract the high-dimensional features of video frames, and each feature has 512 dimensions.
The adaptive cluster algorithm takes these high-dimensional features as the input and
outputs the index of key frames that can represent the semantic of video shot. The adaptive
cluster algorithm has the best performance in all of three strategies, and c frames are
selected from V to form Vk. Feeding Vk to the feature extractor module to obtain the
high-dimensional representations, each representation has 2048 dimensions. Then, the
dynamic selection module selects one frame tensor fi from c representations, which can
use random selection strategy or extract one frame at fixed location. The classifier module
is a multilayer perceptron (MLP) which accepts fi as the input and outputs X ∈ Rn×K,
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where n is the number of samples in one batch and K is the quantity of categories in this
classification task. The loss function is as follows:

Loss = − 1
n

n

∑
i=1

(wi ×
K

∑
j=1

(log(
exij

∑K
i=1 exij

)yij)) (1)

where xij ∈ X and yij ∈ {0, 1} is the j-th category one-hot label of the i-th sample. The

wi =
Nj
N represents the weight of the category, where N is the total number of samples in

the dataset and Nj is the number of samples of the j-th category.

Figure 5. Framework of abnormal driving behavior detection. The dotted box represents 3 different
key frame selection strategies that can be selected in practical applications. The adaptive cluster
strategy has the best performance. The colored cuboids represent the feature tensors of video frames,
and the gray cubes are indexes of key frames. The colorless modules with solid lines are functional
modules of the network, and those with snowflake icons indicate that no training is required. The
original images are samples of the public dataset Drive&Act [37].

3.2.2. Adaptive Cluster Algorithm

Inspired by Tan et al. [17], the adaptive cluster algorithm is adopted to select key frames
from video shot, which is similar to K-means. The algorithm is illustrated in Algorithm 1.
The initial cluster centers are determined by minimizing the center initialization error (CIE):

CIE(M) =
n

∑
k=1

|M|

∑
j=1

( fkj − Cj)
2 , (2)

where fkj represents the feature vector of the k-th frame belonging to the j-th cluster, |M| is
the number of cluster centers (M is the cluster center set), Cj represents the cluster center of
the j-th cluster, and n is the number of frame features of video shot V.

Before adaptive clustering, video frames need to be uniformly clustered into kmax = ⌈
√

n⌉
categories (⌈•⌉ denotes round up), which needs kmax steps. In each step, the CIE values
corresponding to their feature vectors are calculated and then one feature vector with the
minimum CIE is chosen to be a new cluster center and is added to M (M is empty at first).
When the number of cluster centers reaches kmax, the above steps are terminated.

The kmax cluster centers selected at this time may be redundant, which can be deter-
mined as whether the location and number of cluster centers are optimal in the following
ways, using the CCE (center correction error):

CCE =
1
n

n

∑
i=1

o(i)− s(i)
max{s(i), o(i)} , (3)
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where s(i) denotes the average Euclid distance of the frame feature fi to the other features
within the same cluster and o(i) marks the minimum Euclid distance of fi to the other
cluster centers.

The specific method is to merge the two nearest cluster centers each time and calculate
the corresponding CCE value. The merged new cluster center is the mean of all samples
belonging to the original two cluster centers. All CCE values and their corresponding
cluster centers will be recorded, where Ω is responsible for recording the CCE values, and
Φ is responsible for recording the cluster centers. When only one cluster center remains,
the above operation is terminated. Finally, we select the cluster center corresponding to
the largest CCE value (optimal clustering strategy). However, these clustering centers may
not coincide with the real frame features, so the frames closest to the clustering centers are
selected as the actual key frames, and their index is Ai.

Algorithm 1: Adaptive Cluster Algorithm.

Data: Frames’ features F = { f1, f2, ... , fn}, n is the frame number of the shot.
Result: Index of key frames I = {i1, i2, ... , im}, m ≤ kmax, kmax is a

hyper-parameter, which indicates the maximum number of cluster centers.
1 M = {}
2 while |M| ≤ kmax do
3 c = arg min

fi∈F, fi /∈M
CIE(M ∪ { fi}), M = M ∪ {c}

4 end
5 while |C| ≥ 2 do
6 fi, j = arg min

j∈[1,kmax ], fi∈F, fi /∈M
distance(M[j], fi);

7 Cj = Cj ∪ { fi}, C = {C1, C2, ..., Cmax};
8 Ω = {}, Φ = {};
9 Calculate CCE, Ω = Ω ∪ CCE, Φ = Φ ∪ C;

10 j, k = arg min
j∈[1,|M|]

distance(M[j], M[k]);

11 C = {C1, C2, ... , Cj ∪ Ck, ... };
12 Update M;
13 end
14 j = arg max

j∈[1,kmax ]

Ω[j], Ai = Φ[j];

15 Return Index(F, Ai)

3.3. Intra–Intercoding-Based Video Compression

In the CAP (consistency availability partition) tolerance theorem [38], blockchain as
a distributed system sacrifices consistency to meet availability and partition tolerance.
Through consensus algorithms, nodes partially alleviate the difficulty of cluster synchro-
nization in an asynchronously consistent manner. However, challenges persist in low
throughput and high latency in blockchain systems. In the context of automated driving ev-
idence storage, stringent requirements are imposed on the timeliness of data for blockchain
upload to ensure the credibility of evidence. Compressing videos before uploading to
the blockchain while retaining semantic integrity is one feasible solution to address these
issues. This paper adopts the AOMedia Video 1 (AV1) video coder, which combines DCT
and motion compensation techniques, offering an efficient and viable method to reduce
upload time to the blockchain, as illustrated in Figure 6 for the overall architecture.
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Figure 6. Hybrid Coding Architecture. The Hybrid Coding Architecture involves several key compo-
nents and processes. The Encoded Control determines the strategy for encoding and quantization.
Its parameters are output in the form of a Control Vector. The DCT converts the input video signal
from the temporal domain into continuous frequency domain signals. Quantization (Q) maps the
frequency domain signals into a stepped finite field. Its parameters are output as a Q Vector. Intra
Prediction removes spatial redundancy within a single frame. The parameters set for Intra Prediction
can be formulated as an Intra Vector. Motion Estimation and Motion Compensation, which eliminate
temporal redundancy between adjacent frames, output their parameters as Motion Vector. The Loop
Filter reduces block artifacts after quantization. The Decoded Picture Buffer (DPB) stores the decoded
image frames for use in interframe prediction. The Entropy Encoder performs lossless encoding of the
aforementioned parameters, combined with essential reference frames, to produce the compressed
bitstream. The original images are samples of the public dataset Drive&Act [37].

3.3.1. Discrete Cosine Transform

Semantic information in real-world images is usually concentrated in the low-frequency
domain. Human perception of chrominance information exhibits a nonlinear relation-
ship [39], leading to the advantage of selectively reducing high-frequency components
for more efficient encoding with fewer bits by the encoder. DCT [40] serves as the central
module for video compression, responsible for transforming spatial domain image signals
into the frequency domain, which works in conjunction with subsequent quantization and
entropy coding to facilitate lossy compression. The specific formulas for DCT forward and
inverse transforms are as follows:

• Two-dimensional DCT. Let there be an image of size W × H, where f (i, j) represents
the value of the pixel at row i and column j. The image is transformed from the
pixel matrix f (i, j) to the frequency domain matrix F(u, v) after DCT, where u and v
represent the indexes of the horizontal and vertical frequency components, respectively.
The definition of F(u, v) is as follows:

F(u, v) =
2G(u)G(v)√

WH

W−1

∑
i=0

H−1

∑
j=0

cos
[
(2i + 1)uπ

2W

]
cos

[
(2j + 1)vπ

2H

]
f (i, j), (4)

G(x) =

{
1√
2

, x = 0

1 , x ̸= 0
, (5)

where u = {0, 1, 2, · · · , W}, v = {0, 1, 2, · · · , H}.
• Two-dimensional inverse discrete cosine transform (IDCT). The inverse transform

f̃ (i, j) is given by:
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f̃ (i, j) =
W−1

∑
u=0

H−1

∑
v=0

2G(u)G(v)√
WH

cos
[
(2i + 1)uπ

2W

]
cos

[
(2j + 1)vπ

2H

]
F(u, v), (6)

• Matrix formulation of DCT. The DCT formula is characterized by cyclic summation,
which does not effectively harness the efficient matrix computation capabilities of
GPUs. Therefore, the summation formula is often converted into matrix form to
enhance computational efficiency. The specific formula is as follows:

F = M(i, j) · f (i, j) · MT(i, j), (7)

M(i, j) =


1√
L

, i = 0√
2
L · cos (2j+1)·iπ

2L , i > 0
, (8)

where MT(i, j) is transposed matrix of M(i, j), i, j = {0, 1, 2, · · · , L}.

3.3.2. Motion Compensation

Moving objects between consecutive frames can be considered as displacements of
fixed macroblocks. Motion compensation replaces the original pixel information in the
target frame with the displacement vectors of reference frame macroblocks and their
corresponding temporal differences [41]. The process involves three steps:

1. Compare pixel differences between adjacent frames to estimate the direction and size
of macroblock motion;

2. Use the results of motion estimation for inter-frame prediction;
3. Generate the residual output by computing the difference between actual values and

predicted values.

The residual calculation method is as follows:

MAD(i, j) =
1

WmacHmac

Wmac−1

∑
k=0

Hmac−1

∑
l=0

|T(x + k, y + l)− R(x + i + k, y + j + l)|, (9)

where i and j represent the motion vectors, Wmac and Hmac are the width and length of
the macroblock, k and l represent the row and column indexes of the macroblock, x and
y are the coordinates of the top-left corner of the macroblock, T denotes the pixel points
of the target macroblock, and R denotes the pixel points of the reference macroblock
after displacement.

3.3.3. AV1 Hybrid Coding

AV1 adopts a hybrid coding architecture consisting of intraframe coding and inter-
frame coding. The intraframe coding predicts and encodes the feature information of
a single frame image under built-in prediction modes, reducing spatial redundancy by
recording residual information between predicted macroblocks and reference macroblocks.
The specific process is as follows:

1. Segmentation of the single frame image into macroblocks of different sizes;
2. Flexibly selecting from 56 prediction modes based on image texture to obtain in-

traframe prediction signals;
3. Calculating the residual signal by subtracting the predicted macroblocks from the

original macroblocks;
4. Applying cosine Fourier transform and quantization to the residual signal to remove

high-frequency information;
5. Completing lossy compression by inverse processing the processed frequency domain

residual signal;
6. Adding the residual signal to the intraframe prediction signal and using loop filtering

to mitigate block artifacts;
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7. Outputting the result through entropy coding.

The interframe coding reduces temporal redundancy in video frames by recording
the displacements of macroblock vectors and the numerical differences between adjacent
frames. Unlike intraframe coding, it uses interframe motion compensation instead of fixed
prediction modes in the second step.

The AV1 format has introduced several advancements and innovations across its
various submodules, significantly enhancing its performance and efficiency [42]. No-
tably, in the area of macroblock partitioning, the macroblock size has been increased to
128 × 128, while the chroma interframe prediction resolution has been reduced to
2 × 2. In the realm of intraframe prediction, the granularity of angle prediction modes has
been refined to 3 degrees, and specialized encoding tools have been developed for artificial
content. For interframe prediction, the number of reference frames per frame has been in-
creased to 7, and the scope of motion vector searches in both temporal and spatial domains
has been extended through the use of temporal motion field estimation. Collectively, these
improvements enable the AV1 encoder to achieve an average bit rate reduction exceeding
30% compared to its predecessor, the VP9 encoder, under equivalent conditions.

4. Experiment Result
4.1. Dataset

The publicly available dataset Drive&Act [37] was reorganized for the validation of
the method proposed in this paper. The Drive&Act dataset is a multimodal benchmark for
action recognition in automated vehicles. It has 12 h of video data in 29 long sequences,
consisting of 3 modals: near infrared reflectance (NIR), depth, and color data. The dataset is
calibrated camera system with 5 views: center mirror, driver, co-driver, ceiling and steering
wheel. In this paper, the co-driver view color data with task-level labels are adopted.
Task-level label consists of 12 categories of driving behaviors, such as ‘watch video’, ‘eat
drink’, ‘work’, ‘read and write newspapers’, ‘read and write magazine’, ‘put on jacket’,
‘fasten seat belt’, ‘final task’, ‘take off jacket’, ‘put on sunglasses’, ‘take off sunglasses’, and
‘hand over’.

However, there are a lot of mislabeled samples with the task-level labels. As shown
in Figure 7, panels (a) and (c) are the frames of video cases with error (dirty) labels. The
driver in (a) is obviously watching a video, but is labeled ‘eat drink’. Similarly, the person
in (c) is driving normally, while the label is ‘read and write magazine’. The CNN learning
of the true distribution of the dataset will be disturbed by these dirty samples. Thus,
this paper relabels the Drive&Act dataset with task-level labels. A straightforward and
efficient method is employed, which involves reviewing video cases individually, deleting
incorrectly labeled samples, and retaining correctly labeled ones. The video cases like
Figure 7b,d are mostly remained, while (b) is labeled as ‘eat drink’ and (d) is labeled as
‘read write magazine’.

In addition, the categories of ‘put on jacket’ and ‘take off jacket’ are combined into
one category, ‘off on jacket’. The ‘put on sunglasses’ and ‘take off sunglasses’ are also
combined into ‘off on sunglasses’. The new category ‘read write magazine newspaper’
comes from ‘read write magazine’ and ‘read write newspaper’. This paper mainly focuses
on abnormal behaviors during driving, so the ‘final task’ is considered useless and is
removed from the task. After relabeling, the Drive&Act dataset contains seven categories.
To clarify, histograms of the original and relabeled sample categories are shown in Figure 8,
with panel (a) representing the data before relabeling and panel (b) representing the data
after relabeling.
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Figure 7. Comparison between dirty labels and clean labels. In the illustration, panels (a,c) represent
the frames of video cases with dirty labels, while (b,d) are frames of video cases with clean labels.
The original images are samples of the public dataset Drive&Act [37].

Figure 8. Histogram of original labels and relabeled labels of Drive&Act [37] dataset. Panel (a)
represents the histogram of original labels which consists of 12 categories, and panel (b) shows the
relabeled labels histogram, which consists of 7 categories.

4.2. Driving Abnormal Behavior Detection

The samples of Drive&Act dataset belong to 16 different drivers; 3 of these are selected
to be the test dataset, and are never used by the model during the training phase. For
the feature extractor, this paper uses ResNet [1] series (ResNet-18, ResNet-34 and ResNet-
50), lightweight MobileNetV3 [43] series (MobileNetV3-Small, MobileNetV3-Large), and
CLIP [36] as the backbone. The CLIP model is loaded with pretrained parameters before
training, and it is frozen throughout the training process. The experiment results are shown
in Table 1.
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Table 1. Experiments of driving abnormal behavior detection using MobileNet and ResNet as
feature extractor.

Backbone Parameters MP MR MF1 WP WR WF1 Top3

CLIP(Frozen) [36] - 0.458 0.447 0.401 0.652 0.589 0.550 0.860
MBNetV3-S 1 [43] 5 M 0.525 0.489 0.472 0.666 0.535 0.562 0.839
MBNetV3-L 2 [43] 14 M 0.609 0.648 0.570 0.732 0.641 0.642 0.810

ResNet-18 [1] 43 M 0.678 0.722 0.673 0.758 0.736 0.727 0.911
ResNet-34 [1] 82 M 0.640 0.687 0.630 0.789 0.755 0.756 0.895
ResNet-50 [1] 100 M 0.743 0.795 0.754 0.827 0.803 0.805 0.926

1 MBNetV3-S represents MobileNetV3-Small. 2 MBNetV3-L represents MobileNetV3-Large. The bold numbers
represent the optimal values of the indicators.

To explain other evaluation indexes, the meaning of the following parameters must
be understood:

Pi =
TPi

TPi + FPi
, Ri =

TPi
TPi + FNi

, F1i = 2 × Pi × Ri
Pi + Ri

(10)

where TPi represents the number of samples that belong to category i that are classified
correctly, FPi represents the number of samples that belong to category i that are misclassi-
fied into other categories, while FNi represents the number of samples that do not belong
to category i but are classified into category i. Therefore, Pi represents the accuracy rate
of category i, Ri is the recall rate of it, and F1i is a comprehensive evaluation index that
combines Pi and Ri.

In Table 1, MP is the average precision, MR is the average recall, and MF1 is the
average F1 score. All of them treat each category equally and their formulas are as follows:

MP =
1
K

K

∑
i=1

Pi , MR =
1
K

K

∑
i=1

Ri , MF1 =
1
K

K

∑
i=1

F1i , (11)

where K is the number of all categories. Another strategy for evaluation is weighted by
number of samples, which is illustrated by the following:

WP =
ni
N

K

∑
i=1

Pi , WR =
ni
N

K

∑
i=1

Ri , WF1 =
ni
N

K

∑
i=1

F1i , (12)

where N is the total number of all samples, ni is the number of samples belonging to
category i, K is the number of all categories, and Top3 is defined as follows:

Top3 =
Ctop3

N
, (13)

where N is the total number of all samples and Ctop3 is the number of samples where the
correct label is among the top three predicted labels. It can be seen from the experimental
results that the model performance is positively correlated with the number of parameters.

The ablation experiment is shown in Table 2, where ‘Random Frame’ is the strategy
of selecting a frame randomly from the video case, ‘Center Frame’ is selecting the center
frame, and ‘Cluster Frame’ is selecting frames using the adaptive cluster strategy. All
evaluation metrics are consistent with those in Table 1. It can be seen that the adaptive
cluster strategy achieves the best results on most metrics.

Table 3 presents the precision, recall, and F1 score for all categories. The performance
metrics of each category are influenced by the number of samples available. For instance,
the performance of the category of ‘OOS’ is relatively poor due to its limited sample size.
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Table 2. Ablation experiments with different key frame selection methods.

Method MP MR MF1 WP WR WF1 Top3

Random Frame 0.693 0.682 0.678 0.778 0.792 0.780 0.937
Center Frame 0.740 0.776 0.718 0.834 0.797 0.795 0.925
Cluster Frame 0.743 0.795 0.754 0.827 0.803 0.805 0.926

The bold numbers represent the optimal values of the indicators.

Table 3. Performance in different categories by ResNet-50 with adaptive clustering strategy.

Indicators WV ED Work RWMN OOJ FSB OOS

Precision 0.784 0.668 0.982 0.950 0.661 0.812 0.324
Recall 0.909 0.593 0.668 0.915 0.933 0.928 0.571
F1 0.842 0.628 0.795 0.932 0.774 0.866 0.413

WV: watch video. ED: eat drink. RWMN: read write magazine newspaper. OOJ: off on jacket. FSB: fasten seat belt.
OOS: off on sunglasses.

The experimental results of different backbones in Table 1 show the universality for
feature extractors of the proposed method in this paper. The ablation experiment in Table 2
shows that the adaptive clustering strategy has the highest accuracy. From the results of
different abnormal action categories shown in Table 3, it can be seen that the performance
of the few-sample categories needs to be improved.

4.3. Data Compression

This experiment compares the performance of mainstream video encoders in terms of
compression speed, compression ratio, and post-compression quality, aiming to select a
suitable video encoder for automated driving evidence storage scenarios. The experiment
uses a 22-second high-resolution raw video recorded by a static camera, with a resolution
of 7680 × 4320 and a file size of 762 MB. To maintain experimental consistency and fairness,
the constant rate factor (CRF) parameter for all encoders is standardized at 30. The results
are presented in Table 4.

Table 4. Video encoder performance comparison.

Coder Size
(MB)

Compress
Rate

Bit Rate
(KPS)

Coding
Time (s)

Code
Rate

(MB/s)

PSNR
(dB) SSIM

ORIGION 762 1.00 278,171 / / / /

MPEG2 [32] 89.8 8.49 32,750 70.69 10.78 33.601 0.9573

MPEG4 [33] 78 9.77 28,470 71.34 10.68 32.9286 0.9441

H.264_MF [44] 35 21.77 12,789 73.98 10.30 26.1753 0.8605

LIBX265 [34] 6.99 109.01 2415 968.19 0.79 45.3921 0.9812

AV1_NV 4.22 180.57 1533 82.90 9.19 43.3955 0.9769

LIBSVTAV1 7.27 104.81 2645 121.79 6.26 45.9398 0.9825

H.266 [45] 67.19 11.34 100,965 1933 0.63 45.2085 0.9801
The bold numbers represent the optimal values of the indicators.

Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are com-
monly used to evaluate compressed video quality. The PSNR is defined as the ratio of the
maximum value of the signal to the noise power within the reconstructed image or video:

MSE =
1

H × W

H

∑
i=1

W

∑
j=1

(X(i, j)− Y(i, j))2, (14)
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PSNR = 10 log10(
(2α − 1)2

MSE
), (15)

where H and W are the height and width of the images, respectively. i and j represent the
row and column of the image, respectively. X(i, j) and Y(i, j) denote the pixel values at the
i-th row and j-th column of the original and compressed images, respectively. α indicates
the number of color sampling points of the original image. A PSNR value exceeding 40 dB
indicates that the compressed image is nearly indistinguishable from the original.

The SSIM quantitatively evaluates the human visual system’s sensitivity to image
structure from three aspects: luminance, contrast, and structure.

SSIM(x, y) =
(2µxµy + A1)(2σxy + A2)

(µ2
x + µ2

y + A1)(σ2
x + σ2

y + A2)
, (16)

where x and y are the windows of the original image and the compressed image, respec-
tively. µx and µy are the mean values of the images x and y, respectively. σ2

x and σ2
y are the

variances of the images x and y, respectively. σxy is the covariance of the images x and y.
A1 and A2 are small constants added to avoid division by zero. SSIM ∈ [−1, 1]. Once the
index approaches 1, the loss of visual fidelity becomes imperceptible to the human eye.

The PSNR index [46] indicates that the distortion range of all encoding algorithms for
compressed videos falls within an acceptable level (greater than 30 dB). A similar result
can be demonstrated through the SSIM index. MPEG2 exhibits the fastest encoding speed,
but its compression quality is not satisfactory. The H.266 standard announced in 2020 has
not yet reached its expected performance. This discrepancy can be attributed to the nascent
stage of the standard and the lack of comprehensive supporting software toolsets. The
ecosystem surrounding H.266, including encoders, decoders, and optimization tools, is still
under development. AV1_NV requires high-performance GPUs for computational support;
it is well-suited for the high-computational-power hardware environment for autonomous
driving vehicles. In combination with the high-compression-ratio requirements of this
scenario and the patent royalty incurred in encoder usage, this paper selects AV1_NV as
an efficient and economical method for video compression that can achieve a minimum of
99% space savings for the distributed storage system. As shown in Figure 9, the AV1_NV
restores the detailed texture of the image with better performance.

Figure 9. Visual comparison of various video compression algorithms. The original image is a sample
from the public dataset Drive&Act [37].
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4.4. Blockchain Performance Analysis

Experiments are based on deploying a consortium chain on the Chainmaker [47]
blockchain platform. Smart contracts are developed using the Golang language and
deployed in the form of chain codes within the consortium chain. The experimental setup
includes the following components: Ubuntu 20.04, Chainmaker 2.3.3, Docker 26.1.0, Go
1.20.1, running on a computer equipped with a 4.20 GHz Intel Core i7-7700 K CPU and 46 GB
RAM. The Chainmaker network operates through Docker containers, and the consortium
chain is composed of four organizational entities, each consisting of one consensus node
and one sync node, using MySql as the database for storing block transactions.

Due to the evidence chain in the dual-chain blockchain architecture handling the
majority of data interaction tasks in the system, it is necessary to simulate information
evidence and retrieval experiments in a vehicle transportation scenario. This experiment
focuses on performance testing for two interfaces: data uploading for evidence and query-
ing data on the chain. The system’s high availability and stability are evaluated based
on request–response speeds. Within the range of data sizes typically encountered in real-
world scenarios, experiments are conducted to initiate data upload and query requests,
testing and comparing the efficiency of uploading and querying based on the IPFS data
storage method.

Storage and retrieval experiments create three sets of test datasets, ensuring a 100% suc-
cess rate for writes, called by nodes invoking smart contracts. Each experiment is repeated
10 times to average the results, avoiding the occasional nature of experimental results.

As shown in Figure 10, for data sizes of 0.25 MB, 0.5 MB, 1 MB, 2 MB, and 4 MB,
respectively, data are stored in both IPFS and the blockchain, comparing the efficiency of
on-chain and off-chain storage. The results indicate that both blockchain and IPFS storage
times increase with data size, but IPFS storage efficiency is higher than blockchain storage
efficiency, averaging 1.9% higher. Files of sizes 0.25 MB, 0.5 MB, 1 MB, 2 MB, and 4 MB
are queried from both IPFS and blockchain storage. Retrieving data from the blockchain
and IPFS is positively correlated with data size, but IPFS querying efficiency is higher than
blockchain, averaging 46.8% higher.

Figure 10. Comparison of storage (left) and querying (right) efficiency at different data scales.

From the experimental results, it is evident that storing off-chain data based on IPFS
reduces data transmission overhead, effectively improving model scalability and storage
efficiency. However, the proposed method of compressing data before on-chain storage
increases decentralization, effectively preventing data tampering. In practical applications,
since the size of the compressed data transmitted is limited and does not exceed the
maximum data size used in the experiment, the resulting increase in time is within an
acceptable range for the entire framework. Thus, compared to directly uploading data to
the chain, the trade-off between increased trustworthiness in the evidence system and an
acceptable loss in storage efficiency is reasonable.
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4.5. Limitations and Weaknesses

The above experimental results prove the feasibility of TSPAD in practical application
scenarios. However, the paradigm proposed in this paper still has some limitations and
shortcomings. The following part analyzes the three important technologies of TSPAD,
respectively, including on-chain evidence storage, abnormal behavior detection, and im-
age compression.

For the on-chain evidence storage module, although the experiment compared the
storage and querying efficiency of IPFS and blockchain, it may not have fully considered the
variations under different network conditions or in large-scale application scenarios. While
the dual-chain architecture (notary chain and private key chain) improves security and
privacy, it also introduces complexity, increasing the design and maintenance costs of the
system. This complexity limits the generalizability of the approach in practical applications.

In the abnormal behavior detection module, the strategy of adaptive clustering to
select key frames meets the requirements for high precision, but the inference speed of the
clustering algorithm is slow. Especially for high-frame-rate video streams, the speed drops
significantly. In subsequent research, the focus will be on improving the processing speed
of the clustering algorithm without losing precision.

The image compression experiments compare between the performance of seven
video encoders under controlled variables. For a more comprehensive evaluation of the
compression performance of video compression algorithms across different scenarios,
future studies could compare the compression ratios and image quality of encoders at
varying resolutions and bit rates.

5. Conclusions

Currently, there is a lack of a mature and reliable information security mechanism for
evidence preservation regarding the liability division of autonomous driving accidents.
This deficiency not only compromises the timely recording of data but also undermines
the security, transparency, and privacy of information preservation. Even if information is
recorded, it is susceptible to unauthorized access and tampering. This paper proposes a
TSPAD framework for managing evidence of driver abnormal behavior. In this framework,
multimodal data undergo compression algorithms to significantly reduce storage space,
while compressed data are certified on the blockchain without relying on local storage.
The design of a dual blockchain ensures efficient data access and trustworthy certification,
separating key management from certification information storage. The backend can
receive vehicle and cargo transport information while ensuring data privacy, balancing
information security and reliability.
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