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Abstract: The manufacturing industry is skill-intensive and plays a pivotal role in South Africa’s
economy, reflecting the nation’s progress and development. The advent of technology has initiated a
transformative era within the manufacturing sector. Workforce skills are at the heart of ensuring the
sustained growth of the industry. This study delves into the skill-related aspects of the occupational
landscape of the South African manufacturing sector, with a particular focus on two important
manufacturing sectors: the food and beverage manufacturing (FoodBev) sector and the chemical
manufacturing (CHIETA) sector. Leveraging the forecasting prowess of Autoregressive Integrated
Moving Average (ARIMA), this paper outlines a sectorial occupational forecasting modeling exercise
to reveal which job roles are poised for expansion and which are expected to decline. The approach
predicted future skills’ demand 80% accuracy for 473 out of 713 (66%) occupations for FoodBev
and 474 out of 522 (91%) for CHIETA. These insights are invaluable for industry stakeholders and
educational institutions, providing guidance to support the sector’s growth in an era marked by
technological advancement.
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1. Introduction

The manufacturing industry stands as an undeniable backbone in South Africa’s
economic framework, not merely serving as a gauge of the nation’s progress but also as
a driving force behind its economic prosperity. Of these industries, the food and bever-
age manufacturing (FoodBev) sector plays an especially pivotal role, ensuring that South
African households enjoy a consistent supply of a diverse range of sustenance. Its impact
extends well beyond the nation’s borders, substantially contributing to exports and fortify-
ing foreign profits. The chemical manufacturing (CHIETA) sector provides the essential
foundation for various industries, including agriculture, mining, and pharmaceuticals,
enabling the production of a wide array of crucial goods, from fertilizers to life-saving
medications. These vital sectors have not been immune to the transformative wave brought
by the recent advent of the 4th industrial revolution. Within this profound shift, the skills
of the workforce have risen to prominence as a critical determinant for the industry’s sus-
tained growth. Understanding the current scarcity of specific occupations and forecasting
those set to flourish in the future holds great significance in the manufacturing sector. The
overall purpose of forecasting is to conclude what occupations will be required by the
labor market on the selected horizon in a given sector [1]. The availability of employment
forecasts serves as an invaluable early-warning system for potential skill and job shortages,
offering the manufacturing sector and its associated training providers the opportunity to
adjust the supply of skills required to fulfill certain occupations. This proactive approach
can help mitigate the detrimental effects of skill shortages and ensure a more robust and
resilient manufacturing industry in South Africa.

Anticipating the changes in occupation demand has proven to be a formidable chal-
lenge, given its dependence on an array of factors, including technological advancements,
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shifts in industrial structure, and fluctuations in economic activity [2]. Numerous ap-
proaches have emerged over time to address the complex task of forecasting employment
rates. Early research predominantly favored quantitative methods, primarily because the
provision of quantitative results was deemed essential to meet the needs of potential users
of the forecasts [3]. The availability of data is a critical factor in the accuracy of quantitative
forecasting techniques [4]. Naturally, the complexity of the forecasting problem influences
the technique selected. In instances where the available data are insufficient to support
these quantitative methodologies, alternative approaches have come to the fore. Techniques
such as the Delphi method [5], harnessing the collective expertise of industry profession-
als [3], along with qualitative surveys and interviews [6], offer valuable qualitative insights.
Additionally, literature review [7] and content analysis [8] have been adopted to extract
information from existing sources. While these non-quantitative approaches provide useful
supplementary insights, they are generally seen as complements to, rather than substitutes
for, fully fledged quantitative-based projections.

Historically, South Africa has seen limited attempts in occupational forecasting, often
reliant on qualitative labor market assessments due to constraints in data quality and avail-
ability [3,9,10]. In the early 2000s, the Human Sciences Research Council (HSRC) conducted
occupational forecasts [9,10]. As noted in [3], these studies were heavily limited by data
availability; hence, they were restricted to a qualitative assessment. A transformative shift
emerged with the introduction of the Sector Skills Plan (SSP) framework by the Sector
Education and Training Authorities (SETAs) in 2015. The SSP framework mandated SETAs
to produce documents outlining skills, employment profiles, and training interventions
within their corresponding economic sectors, drawing data primarily from the Work Skills
Plan (WSP). Under this framework, businesses affiliated with SETAs must submit WSPs,
creating a rich data repository encompassing occupational profiles, skill demands, short-
ages, and training initiatives. SETAs manage the WSPs from the businesses within their
jurisdiction, offering a comprehensive snapshot of employment within specific economic
sectors, such as FoodBev and CHIETA manufacturing sectors. Leveraging this extensive
and invaluable dataset opens the door for the development of a quantitative forecasting
model—an unexplored territory within South Africa’s forecasting landscape to date.

Globally, sectoral bodies have been established to promote skills’ development. Coun-
tries such as Canada, the USA, and New Zealand have sectoral bodies that conduct occu-
pational forecasting using Manpower Requirements Approach (MRA)-based forecasting
techniques. These projections form the basis for the countries’ decision-making process for
strategic workforce development [1,11]. While the SETAs perform significant work in skills’
development, they do not have a model in place for occupational forecasting. This study
aims to fill this gap by developing an occupational forecasting model. Using the WSP data
provided by FoodBev and CHIETA, this study employs the ARIMA forecasting model to
explore the occupational landscape within the two SETAs.

The study offers several key contributions. Firstly, it introduces a robust forecasting
model tailored to the South African context, addressing a critical gap in the current skill
development framework of the SETAs. Second, the study offers a methodological contribu-
tion by demonstrating the application of ARIMA in occupational forecasting, which can be
adapted and applied to other SETAs. By achieving these aims, the study seeks to provide
actionable insights that can guide strategic workforce planning in South Africa, ensuring
that the workforce is well equipped to thrive under the current industrial revolution.

2. Literature Review
2.1. Manufacturing and Technology with Dependency on Skills

Industry 4.0 is driving the digitization of the manufacturing sector, leading the devel-
opment of smart products, machines, processes, and factories [12]. This transformation
involves the application of cyber physical systems (CPS), supported by technologies such
as internet of things, big data, cloud computing, and additive manufacturing technologies,
to name a few. The integration of these novel technologies is reshaping the manufacturing
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landscape, altering processes, skill requirements, and occupational profiles needed to per-
form tasks [13]. Ref. [14] highlighted that the previous industrial revolutions significantly
altered occupational profiles, transforming employee roles and necessary skills. The dis-
ruptive impact of Industry 4.0 resulted in work processes undergoing significant changes,
necessitating an adjustment to how work is performed [15]. Ref. [16] further highlighted
that technology will significantly transform employees’ work profiles. The future factory
will feature a significant presence of collaborative robotics capable of interacting with
humans in the workplace. This suggests that, while the extent of automation will differ
across various occupations, its impact will be widespread [17]. In such situations, humans
will need to acquire logical skills that complement advanced robots [18]. The literature
consistently indicates that there will be an increase in automation and advanced robotics
taking over routine and repetitive tasks. The work in [19] examined which occupations are
susceptible to automation. A total of 702 occupations were examined and 47% of jobs were
classified as highly susceptible to automation, particularly those that include repetitive
tasks. Ref. [20] highlighted that the decreasing employment rate in the manufacturing
industry is due to the reduction in routine jobs. Manufacturing occupations typically
involve tasks that follow a clearly defined repetitive process, which can now be encoded
into a software program and, therefore, executed by a computer [21].

In contrast, Ref. [22] suggests that the rising automation should not be viewed as
a threat but rather as an opportunity: workers will be liberated from repetitive tasks to
focus on areas where they can add significant value. This perspective suggests that new
technologies could have a positive impact on employment by creating demand for a wide
range of skills, including those needed for managing Industry 4.0 technologies. Building
on this idea, Ref. [23] proposed three main outcomes of technological innovation: skills
that compete with automation will be reduced, skills that complement automation will
increase, and finally, skills where machines fall short will increase.

Considering these transformative shifts and the anticipated change in skill demands,
the necessity of forecasting occupations becomes evident. Forecasts serve as a strategic
tool, offering insights into the evolving job landscape, informing workforce planning, and
preparing individuals and industries for the skills essential in a technologically evolv-
ing world.

2.2. Occupational Forecasting—International Perspective

A wide range of techniques for skills and occupational forecasting have been explored
worldwide. However, current efforts in this field remain heavily constrained by data
limitations. The feasibility of different forecasting methods is largely dependent on the
data infrastructure available in each country. Nations such as the USA, Canada, and
European countries have been in the arena of occupational forecasts for several decades.
Their advanced analyses are supported by significant investments in data gathering and
modeling capabilities. Large databases have been established over the years, and this
significantly aids in building robust and more informed forecasting models.

In the USA, the Bureau of Labor Statistics (BLS) has been a key player in occupational
projections since the 1940s, employing an elaborate methodology based on industry-specific
occupational requirements [24]. The BLS derives its projections from the basic model, where
occupational requirements are estimated for each industry based on projected output
growth, growth in labor productivity, and the occupational composition of each industry.
These requirements are then aggregated to produce occupational requirements for the
economy as a whole. This methodology has been continually refined by researchers [25–27]
over the years. Alongside the BLS, the O*NET database, characterized by standardized
occupation descriptors, is a valuable resource updated regularly from input across vari-
ous occupations. Utilizing data from both BLS and O*NET, Ref. [28] employed machine
learning models to predict growing and declining occupations with increased precision,
demonstrating the potential of these rich databases in enhancing forecasting accuracy.
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In the European context, the European Centre for the Development of Vocational Train-
ing (CEDEFOP) plays a significant role in developing occupational forecasts for individual
countries and groups of countries within the European Union [29,30]. The CEDEFOP skills
forecast provides quantitative estimates for future employment trends across different
economic sectors and occupational groups. The adoption of the International Standard
Classification of Occupations (ISCO) in continental Europe has facilitated inter-country
comparisons and alignment of forecasting outcomes across various European nations. This
standardized classification framework has allowed researchers to transcend national bound-
aries, enabling comprehensive assessments and cross-country analyses of occupational
forecasts, fostering a unified approach to understanding future occupational trends within
the region.

In the last 30 years, the Canadian Occupational Projection System (COPS) has been
employed in Canada to produce a 10-year labor market forecast every 2 years [11]. The esti-
mation of occupational supply by COPS involves a synthesis of projections for immigrants,
graduates, dropouts, and re-entrants, coupled with forecasts for labor force participation
rates. Through the combination and scrutiny of these demand and supply projections by
occupations, the COPS model discerns whether the future labor market is in balance or if
certain occupations will encounter shortages or surpluses.

2.3. Occupational Forecasting—Local Perspective

The landscape of advanced occupational forecasting in South Africa is a work in
progress, yet it has seen notable attempts to predict the future labor market. In 1999, the
Human Sciences Research Council (HSRC) conducted extensive research of South African
labor market trends, analyzing formal employment within eight economic sectors over a
five-year period, excluding the agricultural sector [9]. This comprehensive study predicted
future demand for various employment roles. The research initially involved a survey
of 273 companies to collect data on current employment, projected supply, skill demand,
and anticipated shifts in future skill requirements, culminating in the development of a
comprehensive demand forecasting model for 1998 to 2003.

Subsequently, in 2001, a commissioned study by the European Union, the Department
of Labor, and the Department of Trade and Industry aimed to investigate critical skill
shortages and expedite skills’ development [3]. This multifaceted study utilized a blend of
qualitative, quantitative, and meta-analytical techniques. The results revealed a significant
increase in High-Level Human Resource (HLHR) occupations in the South African labor
market, particularly from 1965 to 1994. This growth was especially notable in occupations
such as engineers, accountants, managers, and IT-related roles.

In 2003, Ref. [10] extended the previous research in [9], providing updated labor
market projections for certain occupations from 2001 to 2006. Their approach involved
using a labor demand model to estimate new positions resulting from sectoral growth
and a distinct “replacement demand” model to determine demand due to retirements,
emigration, and inter-occupational mobility. Interestingly, even in occupations projected to
experience substantial declines in employment levels, the need to train new individuals
was emphasized to maintain the existing stock of skills at required levels.

Table 1 provides a summary of the international occupation models discussed in the
previous section along with local forecasting initiatives. A critical and apparent distinction
is that South Africa has seen limited forecasting initiatives. The HSRC has contributed
mostly to this; however, the availability of quality employment data has seen their efforts
not progress. One can notice that in the global landscape, projections are continuous, and
this is due to the data infrastructures that have been put in place, allowing the development
of robust forecasting models.

Previous studies attempting to forecast changing occupational demands in South
Africa have consistently highlighted concerns regarding data availability and quality [3].
The restricted access to reliable data has posed a significant challenge in formulating an
effective occupational model for South Africa. However, a breakthrough arrived with the
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introduction of the Skills Sector Planning framework by Sector Education and Training
Authorities (SETAs) in 2015, marking a crucial step forward in addressing the limitations
of data availability and quality that have hampered forecasting initiatives. The primary
objective of all 21 SETAs in South Africa is to facilitate skills’ development by establishing
a spectrum of learning programs, such as learnerships, skills programs, internships, and
other strategic learning initiatives. Each SETA is entrusted with developing skills in the
specific economic sector it serves. Leveraging the Skills Sector Planning (SSP) framework,
SETAs are mandated to produce annual reports detailing employment profiles, skills
deficits, and strategic training interventions. These reports draw from the Work Skills
Plan (WSP) submitted by businesses to the respective SETAs they are associated with. The
employment data encapsulated within the WSP reflect a substantial portion of the overall
employment within the economic sector, rendering it a viable source for constructing a
rudimentary occupational model. In this context, this research aims to explore predictive
analytics techniques utilizing data from two SETAs, FoodBev and CHIETA. The objective
is to develop a forecasting model, capitalizing on the data reservoirs provided by the
two SETAs.

Table 1. Summary of occupational forecasting models.

Country Model/Study Capabilities/Description

USA Bureau of Labor Statistics
(BLS)

Long-term occupational projections
and comprehensive economic sector
analysis.

European Union CEDEFOP
Skills forecast with quantitative
estimates and cross-country analysis of
occupational trends.

Canada Canadian Occupational
Projection System (COPS)

Ten-year labor market forecasts every
two years. Projects labor supply and
demand in order to balance potential
occupational shortages or surpluses.

South Africa Human Sciences Research
Council (HSRC)—1999

Analyzed formal employment trends in
eight sectors over five years and
developed a demand forecasting model
for 1998–2003.

South Africa

EU, Department of Labor
(South Africa), and
Department of Trade and
Industry—2001

Investigated critical skill shortages and
skills’ development using qualitative,
quantitative, and meta-analytical
techniques.

South Africa Updated HSRC study from
1999 to 2003

Provided updated labor market
projections using labor demand and
replacement models.

2.4. Forecasting Techniques

Forecasting future employment trends in the labor market is a critical task, facilitated
by the application of predictive analytics. This section explores commonly used algorithms
for time series predictions using historical data. When deciding on a method for time series
forecasting, careful consideration of the characteristics of the dataset and the forecasting
horizon becomes imperative. Notable algorithms include autoregressive integrated moving
average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), long
short-term memory (LSTM), and random forest. Because each of these methods has spe-
cific advantages and disadvantages, the applicability of a given option depends on the
properties of the data and the inherent nature of the prediction problem. Several time
series forecasting studies have been carried out, in which researchers compare different
approaches to determine which is best appropriate in a given situation. The study in [31]
examined and contrasted three models’ modeling and predicting capabilities in relation
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to seasonal artificial neural network (SANN), SARIMA, and ARIMA models. In another
study [32], the observed error between the ARIMA and the more complex SARIMA meth-
ods suggests that the performance of the two methods is nearly comparable. Additionally,
while recognizing the trade-off between algorithmic accuracy, complexity, and computing
speed, the authors of [33] demonstrated random forest’s greater performance over ARIMA.
In another study [34], random forests were identified as the top choice, whereas ARIMA
also performed well. Ref. [35] noted that optimal model selection is influenced by fore-
cast horizon, as different horizons are associated with varying data distributions. While
researchers suggest different models, the prediction context and characteristic of the data
stand as vital considerations. It is essential to understand these factors before selecting the
most suitable forecasting model.

Among the numerous methodologies tested in various fields, the frequently used
ARIMA model remains a favored option, especially for forecasting unemployment and
employment rates [36–38]. Studies have illustrated its high precision, as evidenced by
studies such as [39], which investigated labor market wage forecasting using advanced
ARIMA functions. This indicates that, with proper settings, the ARIMA model can produce
favorable outcomes in many circumstances. In [40], aimed at predicting the number
of available occupations in the Russian arctic zone, exponential smoothing and neural
networks were used. The study concluded that the ARIMA model demonstrated the
greatest precision compared to the three other models tested. In other domains of time
series forecasting, machine learning is often employed in complex areas where several
challenging factors are present, as seen in energy demand forecasting studies [41,42].
There is a prevailing trend toward using deep learning models as forecasting problems
become more challenging, despite the challenges of effectiveness and reproducibility that
come with such models [43]. Recurrent neural networks with long-term dependency
management capabilities, such as LSTM, show promise in predicting complex patterns. A
recent study [44] highlighted the potential of AutoML in predictive analytics, demonstrating
its efficacy in comparison to conventional ensemble learning methods and k-nearest oracle-
AutoML models for predicting student dropouts in Sub-Saharan African countries. This
underscores the trend toward using automated and hybrid approaches in forecasting,
which can enhance predictive accuracy. However, autoregressive models are still the most
popular when it comes to labor market forecasting [45]. In summary, it is important to
consider different approaches to forecasting, including hybrid methods, machine learning
methods, and traditional methods, such as ARIMA, to gain a better understanding of labor
market forecasting and enhance the predictive accuracy of the forecasting problem.

3. Theoretical Framework

In the mid-twentieth century, a pivotal shift in decision systems research marked the
beginning of a comprehensive exploration into decision-making processes, encompassing
both human- and machine-driven choices, endowed with formidable predictive capabil-
ities [46]. This era of inquiry laid the groundwork for understanding decision systems
in the broader context of people, processes, systems, and data. Recent years have seen a
remarkable convergence of advances in analytics, big data, machine learning, and data
science to help navigate the intricacies of decision-making [47]. In this landscape, the promi-
nence of data-driven decision-making (DDDM) has soared. Data-driven decision-making
describes the methodical gathering, analyzing, examining, and interpreting of data to make
well-informed judgments, which is performed by applying analytics or machine learning
methodologies and techniques [48]. This approach stands as a beacon for delivering more
informed and high-quality decisions by harmonizing the intuition and experience of hu-
man decision-makers with the analytical power of data. Scholars [46,47] have championed
DDDM as a transformative solution, ushering in an era where rational choices are guided
by a synergy of human expertise and data-driven analyses, promising superior outcomes.
The implementation of data-driven frameworks for demand forecasting, as highlighted
in [49], showcases the precision and adaptability of DDDM methodologies in practical
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scenarios. The work in [50], where agent-based modeling was utilized for forecasting
emerging infectious diseases, further exemplified how data-driven simulations can en-
hance public health strategies and decisions on emerging diseases. Additionally, the review
of data-driven techniques in [51] underscores the versatility of data-driven techniques
across various sectors.

The transformative impact of data-driven decision-making extends to the enhancement
of decision quality, a concept elaborated in [52]. Through a deeper understanding of
data, analytics, variable relationships, and resulting information, decision-makers are
empowered to make more informed and higher-quality decisions. Analytics focus on
atomic decisions, such as prioritization, classification, association, and filtering, producing
outputs that serve as invaluable input for decision-makers. The newfound information
and relationships, when acted upon, contribute to the enhancement of rational choices that
align with overarching goals and yield positive outcomes [46].

In terms of forecasting occupations in the manufacturing sector, the data-driven
decision-making (DDDM) theory appears as an optimal and relevant paradigm. This
framework, by emphasizing informed decision-making grounded in data and analytics,
contributes to the strategic alignment of skill development initiatives, thus optimizing the
outcomes of training, education, and workforce planning in the manufacturing sector.

4. Materials and Methods

In selecting an appropriate theoretical lens for this study, the data-driven decision-
making (DDDM) theory emerged as a fitting choice. Esteemed by various researchers in
educational systems, DDDM has proven instrumental in enhancing educational strategies
for the future [46,52]. Positioned as a foundational framework, DDDM will aid SETAs and
associated stakeholders in making well-informed decisions concerning talent acquisition,
skill development, and resource allocation. This contribution, in turn, shapes optimized
workforce planning strategies. For instance, the theory plays a pivotal role in preventing
resource inefficiencies by avoiding an oversupply of skilled individuals, which might
result from overestimating the demand for certain roles. Conversely, underestimating
demand could lead to skill shortages, impacting productivity and innovation within the
sector. The significance of DDDM becomes apparent in its profound influence on strategic
planning [47]. The application of analytical models and tools, methodologically described
in this section, enables accurate demand predictions while minimizing errors.

According to [47], DDDM is based on five main elements, as shown in Figure 1. Data
and analytics belong to the modern theory of decision-making, while the last three elements
belong to the classical theory of decision-making.
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4.1. Data

The foundational element involved the collection of occupational data pertinent to
the FoodBev and CHIETA, spanning from 2016 to 2023. These data were sourced from
the Work Skills Plan (WSP) and Annual Training Reports (ATRs). Both sectors maintain
a robust data collection system, obliging firms to submit individual employee records as
part of their mandatory grant applications (WSP and ATR). Impressively, the return rates
for this data collection are exceptionally high, with the inclusion of employees from WSP
submissions representing approximately 85% of the workforce in each sector.

The occupational data, spanning from 2016 to 2022 for FoodBev and from 2016 to
2023 for CHIETA, were obtained from the respective WSP data submissions in Excel 2016
workbooks. Before forecasting, thorough data-processing was essential. Each year’s WSP
data were assessed, reporting the number of employees with unique identifiers. The em-
ployee unique identifiers are a strict requirement for WSP submission; hence, no null values
were identified. The unique identifiers were used to eliminate duplicates, which often
occurred when large companies and their subsidiaries submitted overlapping employee
information. After identifying and removing duplicates, missing values in categories such
as OFO (Organizing Framework for Occupations) codes, which are used for aggregating
employment numbers in each occupation, were assessed. The percentage of missing data
was assessed, which was found to be low and completely random. To ensure the missing
data did not affect the forecast, the Multiple Imputation by Chained Equations (MICE)
technique was employed. After assessing the missing values, the quality and consistency
of the data were assessed using the linear mixed-effects model. The cleaned data were
then exported to a SQL database to handle future scalability and to leverage the powerful
querying capabilities for complex data manipulations and aggregation. Occupations were
aggregated using OFO codes. Employment numbers with significant inconsistencies, such
as sudden unexplained changes from very low to very high, were identified and removed
to prevent inaccurate predictions. The final dataset included 713 for FoodBev and 522
for CHIETA.

4.2. Analytics

The study employed a rigorous analytical approach grounded in ARIMA models and
the Box–Jenkins methodology. The selection of ARIMA models for occupational forecasting
was grounded in their adeptness at handling time series data, a characteristic prevalent in
workforce trends [36]. ARIMA’s capacity to capture sequential dependencies and explicitly
model seasonality aligns well with the nuanced nature of occupational data, where past job
counts and seasonal variations significantly influence future trends [36].

The Box–Jenkins methodology, rooted in time series analysis, has gained prominence
for its effectiveness in modeling and forecasting economic variables [36]. In the realm of
labor economics, where understanding and predicting workforce dynamics is crucial, the
application of this methodology holds significant potential. The Box–Jenkins methodology,
pioneered by George Box and Gwilym Jenkins, stands as a pivotal approach in time
series analysis, and within this framework, the autoregressive integrated moving average
(ARIMA) model with parameters (p, d, q) has emerged as a versatile and widely applied
tool [53].

The ARIMA model encompasses three key components: (1) The autoregressive (AR)
component, denoted as p, which captures the linear relationship between the current
observation and its past values, (2) the integrated (I) component, denoted as d, signifying
the number of different operations required for achieving stationarity, and (3) the moving
average (MA) component, denoted as q, which models the dependency between the current
observation and residual errors from a moving average model.

Achieving stationarity is crucial in time series analysis, as a stationary time series is
one whose properties do not depend on the time at which the series was observed. Time
series with trends or seasonality are not stationary, and this can be addressed through dif-
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ferent operations. The methodology involves a systematic process of model identification,
estimation, and diagnostic checking.

The first step of the ARIMA process involved the identification of the model order (p,
d, q) through the analysis of autocorrelation and partial autocorrelation functions, which
extended to the application of statistical tests, such as the Augmented Dickey–Fuller (ADF)
test to assess stationarity and the Ljung–Box test to detect residual autocorrelation.

The autoregressive model of order p can be expressed by Equation (1), as follows:

Yt = a + B1Yt−1 + B2Yt−2 + · · ·+ BpYt−p + εt, (1)

where:

Yt = the time series,
a, Bi = coefficients,
εt = white noise.

Autoregressive models showcase their adaptability by effectively handling a wide
range of time series patterns. The versatility of these models is highlighted, as different
parameter values lead to the emergence of distinct and discernible patterns in the data.

On the other hand, a moving average model of order q is represented by Equation (2),
as follows:

Yt = a + εt + c1 εt−1 + c2εt−2 + · · ·+ cqεt−q, (2)

where (Y t) is the time series a constant (a) plus the moving average of current and previous
white noise error (εt).

Moving average models enhance their forecasting capabilities by incorporating past
forecast errors in a regression-like model. This utilization of historical forecast errors
contributes to the model’s effectiveness in predicting future values [37]. Once the model
order has been identified, involving the determination of values for p, d, and q, the next step
is to estimate the parameters a, Bi, and ci from Equations (1) and (2). The estimation of the
ARIMA model was performed using maximum likelihood estimation (MLE), a technique
aiming to find parameter values that maximize the likelihood of obtaining the observed
data. MLE is akin to the least squares estimates used in regression models, minimizing the
sum of squared errors, as illustrated by Equation (3):

∑T
t=1 ϵ2

t (3)

Notably, ARIMA models are more complicated to estimate compared to regression
models, and different software tools may yield slightly different results due to varying
estimation methods and optimization algorithms. During the estimation process, the re-
ported log likelihood of the data represents the logarithm of the probability of the observed
data arising from the estimated model. In addition to MLE, Akaike’s Information Criterion
(AIC) plays a pivotal role in determining the order of an ARIMA model. Analogous to its
utility in selecting predictors for regression, AIC is calculated via Equation (4) as:

AIC = −2log(L) + 2(p + q + k + 1) (4)

where L denotes the likelihood of the data, and k = 1 if c ̸= 0 and k = 0 if c = 0.
The last term in parentheses corresponds to the total number of parameters in the model,
including σ2, the variance of the residuals. For ARIMA models, a corrected version of
AIC is used, denoted as AICc. Minimizing AIC, AICc, or BIC leads to obtaining well-fitted
models. Subsequently, the diagnostic checking phase ensures the model’s adequacy by
examining residuals for autocorrelation and normality. Finally, the forecasting step utilizes
the estimated model to predict future values.
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4.2.1. Model Validation

As a preliminary assessment before the final forecasting, the accuracy of the model
was tested. The available data served as a reference for gauging the model’s accuracy.
This iterative refinement process continued until the optimal (p, d, q) ARIMA parameters
were identified, ensuring a high level of accuracy before proceeding to forecast. Figure 2
illustrates the step-by-step process followed to select the most optimal (p, d, q) parameters.
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After the initial data pre-processing described earlier, the data were converted to a time
series format suitable for ARIMA modeling. This step is crucial, as ARIMA models require
data to be in a sequential, time-dependent format. Following this, a stationarity check was
performed using the Augmented Dickey–Fuller unit root test, to determine if differencing
was needed. This led to the identification of the value of d to make the series stationary.
Initial values for the autoregressive (p) and moving average (q) were then estimated using
information criteria, specifically the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). Several initial models were fitted, each representing unique
configurations. The model with the smallest AIC value in this exploration was designated
as the current model, guiding subsequent adjustments.
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Subsequently, a grid search was performed over a range of potential values for p and
q. This exhaustive search helped identify the combinations that yielded the best model
fit. Model evaluation followed, where the fitted models were evaluated using AIC/BIC to
compare their relative quality, aiming to select the model with the lowest AIC/BIC value.
From the evaluated models, the one with the lowest AIC/BIC was chosen in the model
fitting and selection step, ensuring that the selected model was the best fit for the data.
Model diagnostics were then performed by checking the residuals of the selected model
to ensure they resembled white noise, indicating no patterns, autocorrelations, or trends,
thus validating the model’s adequacy. Finally, the selected ARIMA model was used for
forecasting and further analysis, providing the most accurate predictions based on the
obtained data.

4.2.2. Accuracy

The key factor for evaluating a forecasting model is accuracy, which is often the
primary challenge in time series forecasting [54]. This is because it measures the level
of agreement between actual and predicted values, showing the variance between them.
There are several accuracy measures available for time series forecasts, such as absolute
percentage error (APE), mean absolute error percentage (MAPE), and root mean squared
percentage error (RMSPE). In this study, MAPE was the chosen accuracy measure. MAPE
is preferred to RMSPE because it is scale-dependent and easier to interpret [55]. The MAPE
was calculated by taking the sum of the absolute errors for each time period, divided by
the actual value of that period, and then dividing by the number of periods, which resulted
in a mean value that was converted into a percentage:

MAPE =
∑N

t−1

∣∣∣ Et
Yt

∣∣∣
N

× 100 (5)

A MAPE of less than 10% is considered highly accurate forecasting, 10–20% is con-
sidered good, 20–50% is considered reasonable, and above 50% is considered inaccurate
forecasting [56]. Ex-post forecasting was performed using the available data minus one
year for comparison. To enhance the decision-making process for necessary interventions
based on projected results, final projections were only made for occupations with a MAPE
of less than 20%, which is considered good forecasting.

4.3. Decision-Making Process, Decision-Maker, and Decision

Following the outcomes and analyses of the forecasting, the responsibility shifts to
the decision-maker, in this case, the SETAs. The decision-maker is tasked with establishing
a structured procedure or intervention protocol based on the insights gained from the
forecasting model. It is crucial to note that while this work focuses on the first two elements,
the final three are left to the discretion and expertise of the SETAs. This approach ensures a
collaborative and adaptive decision-making process, aligning with the principles of DDDM
and allowing SETAs to tailor interventions based on the unique demands of their sectors.

To enhance the presentation of forecast results, an interactive interface was developed
using the Shiny package and R. This approach, rooted in data-driven decision-making
(DDDM) principles, ensures an efficient and user-friendly platform for synthesizing out-
comes to facilitate better decision-making. Within the Shiny interface, users can dynamically
fine-tune ARIMA model parameters using interactive widgets, fostering adaptability and
enabling a comprehensive exploration of the forecasting results. Chan et al. [57] empha-
sized that data visualization is a critical element in the DDDM framework. In DDDM, the
effectiveness of the decision can either get better or suffer depending on the integrity of the
data and the method used for analysis [52]. However, the decision quality is not only based
on analysis, but also significantly affected by the data visualization [58]. This integration of
technology not only aligns with DDDM principles but also elevates the user experience,
promoting a more intuitive and informed interaction with the forecast results.
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4.4. Methodology Summative

The methodology, as illustrated in Figure 3, commenced with a crucial data handling
phase, which involved data pre-processing aimed at refining extensive datasets to en-
sure data readiness and accuracy for subsequent analysis. This step involved meticulous
cleaning, transformation, and structuring of occupational data, preparing it for integration
into the Microsoft SQL database. Once curated, the data were loaded into the designated
database, establishing a strong foundation for subsequent analytical steps. The subse-
quent analytical phase involved a pivotal connection between the SQL database and R,
the programming tool employed in this study. This connection serves as the backbone
for occupational analysis and the user interface created using the Shiny package. Em-
ploying R programming, the ARIMA model was applied to the data retrieved from the
SQL server. To validate the model’s accuracy, it was employed to forecast values already
available, enabling performance evaluation. Following model evaluation, actual forecasting
was executed. Finally, to streamline the decision-making process for SETAs, the analysis
results were presented in a web platform using the Shiny package. Within the R Shiny
environment, the interface was intuitively designed, equipping users with user-friendly
tools for interactive exploration of datasets. Leveraging the R Shiny interactive features,
users can effortlessly visualize intricate trends, delve into historical patterns, and engage in
forecast analyses.
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Figure 3. Methodology flow diagram.

5. Results
5.1. Pre-Processing

To ensure accurate forecasting, data pre-processing was essential to maintain data
quality. The first step involved assessing missing values. Figure 4 (percentage of missing
values) displays the proportion of missing values for each year in the dataset. The years
2016–2023 all showed relatively low percentages of missing data, with 2016 having ~3% of
missing values. The remaining years exhibited low levels of missingness, indicating that the
dataset was largely complete. Figure 4 (missing values in rows) further illustrates the miss-
ing data across rows. The plot illustrates that the missing data were scattered sporadically
across different rows rather than being concentrated in specific areas. The sporadic pattern
suggests that the missingness is likely to be Missing Completely at Random (MCAR).

This analysis indicated that the data were mostly complete, with only a small per-
centage of missing values. The sporadic and low-level missing data were likely MCAR,
reducing the likelihood of bias in the predictions. However, to ensure accuracy and ro-
bustness, Multiple Imputation by Chained Equations (MICE) was employed, a method
recommended to handle missing values [59]. This approach preserves statistical properties
of the data by creating multiple imputations and combining them to form a complete
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dataset. By using MICE, the small amount of missing data was effectively addressed,
ensuring that the data remined robust for forecasting.
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Figure 4. Missing values.

To assess the quality and consistency of the data from WSP and ATR, a linear mixed-
effects model was employed, the result is illustrated in Table 2. This model is particularly
suitable for the dataset, as it accounts for both fixed effects, such as year, and random
effects, such as occupation codes, thereby capturing the inherent variability across different
occupation codes over time [60]. The fixed effect of year had an estimated coefficient of
1.156, suggesting a slight upward trend in values over the years. However, this effect was
not statistically significant (p-value = 0.365), indicating that the year-to-year variations were
not substantial. The random intercept for occupation codes showed a variance of 409,995
with a standard deviation of 640.3, reflecting considerable variability among different
occupation codes. Additionally, the residual variance was 39,653 with a standard deviation
of 199.1, indicating the variability within each occupation code over time. The overall
model fit, as indicated by the REML criterion, was satisfactory. The scaled residuals, which
ranged from −14.7970 to 15.9067, mostly clustered around zero, further suggesting a good
fit for most data points.

Table 2. Linear mixed effects.

Value

Predictors Estimates CI p

(Intercept) −2090.81 7142.37–2960.74 0.417
Random Effects
σ2 39,653.36
τ 00 occupation code 409,995.13
N occupation code 595

Observations 4673
Marginal R2/Conditional R2 0.000/0.912
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5.2. Trends

The advent of Industry 4.0 has had a huge impact on the manufacturing sector, not only
in South Africa but around the world [12]. The impact of technology in the South African
manufacturing sector is reflected in the employment trends within technology-centric and
non-technology-centric roles, as illustrated in Tables 3 and 4. These tables combine employ-
ment data from the chemical and FoodBev sectors up to 2022, as this is the year for which
FoodBev data were available. For the purposes of this analysis, ’technology-centric’ jobs
refer to jobs that necessitate some understanding of technology, encompassing software,
digital systems, and specialized tools. These roles are fundamentally propelled by ongoing
technological advancements, demanding expertise in areas such as computer science, pro-
gramming, and digital infrastructure [19]. The trends in these tables provide an overview
of how the South African manufacturing sector is responding to technological changes.

Table 3. Technology-centric jobs.

Occupation 2016 2017 2018 2019 2020 2021 2022

Data Management Manager 197 183 240 256 466 537 607
Information Technology Manager 109 119 87 107 127 170 156
Business Administrator 107 251 352 189 154 594 482
Software Architect 26 31 34 38 57 86 125
Engineering Planner 661 742 514 635 895 1079 1013
Data Capturer 190 192 129 196 188 212 206
Computer Analyst 169 187 172 159 221 492 499
Communications Analyst (Computers) 65 82 107 100 186 107 116

Table 4. Non-technology-centric jobs.

Occupation 2016 2017 2018 2019 2020 2021 2022

Procurement Administrator 800 740 772 820 595 575 594
Administration Clerk/Officer 3051 4707 3273 3073 2949 3126 2723
Call Center Customer Service Representative 203 295 195 240 54 52 29
Pay Clerk 208 190 186 177 168 183 174
Aisle Controller 1361 1629 1299 1307 1152 1090 1008
Delivery Clerk 2131 2833 2844 2453 1901 1982 1758
Manufacturing Store person 1868 1655 1848 1629 1398 1536 1749
Front-End-Loader Driver 488 108 101 474 230 197 136
Front Desk Coordinator 567 521 569 512 511 450 429
Regulatory Affairs Administrator 505 564 461 491 390 402 519

In line with prevalent literature [15,19,61] highlighting occupations such as software
developers and ICT-related roles as pivotal in the era of Industry 4.0, a careful selection of
these roles is presented as ’technology-centric’ jobs in Table 3. Conversely, drawing from
sources such as McKinsey [62], which underscore the transformation of roles involving
physical labor and data collection in the advent of Industry 4.0, Table 4 features a curated
compilation of these non-technology-centric jobs. This categorization aims to offer a distinct
insight into the contrasting employment trajectories shaped by the influence of technology
across diverse occupational domains.

The patterns within these technology-centric roles unveil a dynamic narrative of
evolution and adaptation, directly correlated with the sweeping digitization across in-
dustries. Notably, roles such as Data Management Manager and Information Technology
Manager experienced a pronounced surge in demand post-2019, signifying an accelerated
growth phase within these areas. Contrasting this, the trajectory of Business Administrator
positions showcased erratic fluctuations, possibly reflecting the changing demands and
evolving responsibilities within administrative domains amidst digital transformation.
Within this tech landscape, the ascent of Software Architect roles remained consistent,
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albeit moderate, reflecting the steady but progressive nature of this specialized field. En-
gineering Planner positions, on the other hand, depicted a robust and consistent growth
pattern, highlighting a substantial demand for specialized technical expertise. However,
the trends observed in Data Capturer roles displayed more volatile fluctuations, indicating
a potentially more sensitive response to digital advancements. Amidst these fluctuations,
Computer Analyst roles exhibited a moderate trajectory, marked by occasional peaks, while
Communications Analyst (Computers) positions portrayed a blend of stability and sporadic
growth. Overall, these trends collectively depicted a landscape deeply influenced by the
pervasive digitization across industries, emphasizing the critical need for evolving skill
sets aligned with technological advancements, steering the course of these occupations’
growth and prominence.

Looking at the occupations shown in Table 4, it is evident that these non-technological
jobs experienced a downward trend in demand over the observed period. The observed
decline in job roles such as Procurement Administrator/Coordinator/Officer, Administra-
tion Clerk/Officer, and Call Center Customer Service Representative (outbound) can be
attributed to the transformative influence of technology on job functions. Advancements in
automated procurement systems, streamlined administrative processes, and AI-driven cus-
tomer service platforms have likely led to the diminishing need for these specific positions.
The consistent downtrend in roles such as Pay Clerk indicates a shift toward more efficient
payroll systems or automation in financial record-keeping. The decreasing demand for
Aisle Controllers, Delivery Clerks, and Manufacturing Store Persons might be a conse-
quence of supply chain innovations and automated warehousing systems, which reduce the
requirement for manual inventory management and logistics handling. Similarly, roles such
as Front-End-Loader Driver and Front Desk Coordinator may be impacted by technologi-
cal advancements, such as self-service kiosks and digital reception systems, streamlining
operations and minimizing manual involvement. The fluctuating yet declining trend in
Regulatory Affairs Administrator positions may reflect digital regulatory platforms or
more efficient compliance technologies, reducing the need for extensive manual regulatory
oversight. Overall, these declining trends in job roles highlight the evolution of industries,
with technology serving as a catalyst for optimizing processes, reducing manual tasks, and
reshaping job demands. These observations are consistent with those of the authors of [18],
who suggested that the advent of Industry 4.0 in South Africa will most likely decrease
manual and repetitive jobs that can be easily automated. This is not only particular to the
South African labor market, but it is observed all around the world. More specifically, it
is anticipated that the advent of Industry 4.0 would result in the decline of low-skilled
laborers and growth of high-skilled laborers [12].

Figure 3 illustrates the decline in low-skilled workers. The education level classification
system according to the SETAs Skills Sector Plan (SSP) framework encompasses five distinct
levels, as shown in Figure 5. Levels 0–1 represent individuals with no formal education or
some basic schooling without a high school certificate, categorized as unskilled workers
according to the South African Qualification Authority (SAQA). Individuals in levels 2–4
either have obtained their high school certificates or acquired basic training from Technical
and Vocational Education and Training (TVET) institutes, earning national certificates:
vocational (NCV) 1–3 certifications, and are considered semi-skilled. Level 5 represents
individuals who have attained their high school certificates and pursued further tertiary
education, ranging from NCV 4–6 to doctoral degrees, all categorized as skilled workers.

The labor force in South Africa is predominantly composed of semi-skilled workers,
with a majority possessing NQF level 4, indicating that they either have attained their high
school certificates or NCV-3 certificates. A significant decline in NQF level 0 (no schooling)
was observed between 2019 and 2022, accompanied by an increase in NQF level 1 (some
basic education), suggesting a positive trend toward skill enhancement in the labor force.
The decline and increase were observed between levels 2 and 3, with level 2 decreasing
while level 3 increased, suggesting some sort of skills enhancement in the manufacturing
sector. A concerning trend regarding skilled workers at level 5 was observed. The observed
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decline raises concern for the South African labor market, indicating potential challenges in
retaining highly skilled individuals. Notably, the downward trend in the number of skilled
workers was after 2020, which could be attributed to the implementation of remote work
during the COVID-19 pandemic.
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Figure 5. Educational levels of employees in the chemical sector 2019–2022.

Data visualization is a critical aspect of data-driven decision-making. Utilizing the
Shiny package with the R programming language, an occupational analysis interface, as
illustrated in Figure 6, was developed. This interface serves as an interactive platform
for decision-makers to visualize the occupational trends in the sector. On the left side in
the interface (indicated by the dotted box), there is an option to “select specialization”,
allowing users to visualize trends for specific occupations. Figure 6 shows snippets of these
occupational trends for different occupations. The interface features multiple tabs: a trend
tab, correlations tab, and a forecast tab.

The occupational analysis interface stands as a ‘tangible’ manifestation of the ARIMA
model applied in this work, delivering an interactive and research-oriented platform for
time series analysis and forecasting. Rooted in the insights of [63], the interface emphasizes
the importance of interactive web-based data visualization, ensuring a user-friendly and
research-centric experience. This design choice resonates with the work of the authors
of [64], who underscored the importance of graphical exploration in understanding time
series data. The authors of [65] argued that effective time series visualization is crucial
for uncovering patterns, and the chosen representation facilitates a clear examination of
temporal trends. Furthermore, the emphasis on identifying patterns, such as growth or
decline, within the trend tab echoes the advice in [66]. The authors stressed the importance
of recognizing and interpreting patterns as a foundational step in decision-making. The
trend tab, therefore, serves as a practical implementation of this advice, providing users
with a clear and accessible tool to identify and comprehend temporal trends within the
manufacturing sector.
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5.3. Forecasts

The preceding section provided an overview of the employment trends in the man-
ufacturing sector. The subsequent section shifts the focus toward predictive analytics
using the ARIMA model. Using the historical employment data from the two sectors,
projections one year into the future were conducted. The FoodBev and CHIETA datasets
were forecasted separately due to different data lengths, with the FoodBev data spanning
seven years (2016–2022) and the chemical sector spanning eight years (2016–2023). Before
computing the actual projections, a preliminary forecast was performed using the available
data, excluding the most recent year, to assess the accuracy of the model. Table 3 illustrates
selected results for the chemical sector. The mean average percentage error (MAPE) was
used to compare the predicted value and the actual value in order to evaluate the accuracy
of the model.

The model’s performance can be summarized as follows:

1. The FoodBev dataset consisted of 713 occupations, of which 473 (66%) were predicted
with 80% and above accuracy.

2. The chemical sector consisted of 522 occupations, of which 474 (91%) were predicted
with 80% and above accuracy.

The preliminary projections proved the model to be reliable. Furthermore, it is discern-
able that the model’s performance improved with increased data availability, as indicated
by the improved accuracy in the chemical sector projections, which had more data than the
FoodBev sector. This outcome suggests the potential for enhanced accuracy with the inclu-
sion of additional data for the excluded years in the preliminary projections. To enhance
the decision-making process in terms of required interventions in response to the projected
result, the final projections were only performed for occupations with a MAPE of no more
than 20%, as shown in the MAPE column of Table 3. The threshold was implemented to
ensure a high level of confidence in the accuracy and reliability of the projected results.

The forecasting results for the chemical sector, as shown in Table 5, provided insightful
projections. Occupations with the most employees, such as Sales Representatives (Medical
and Pharmaceuticals), Chemistry Technician, Chemical Plant Controller, and Chemical
Engineering Technician, which are critical roles in the chemical sector, were projected to
increase significantly in 2024. Some of the technology-centric roles, which were noted in
Table 3, such as Database Manager and Database Designer and Administrator, were also
expected to grow, and their projected increase was substantial.

The forecast tab within the occupational analysis interface is depicted in Figure 7.
Complementing the trend tab showcased in Figure 6, this forecast tab stands as a pivotal
component of the tangible artifact resulting from this work. By offering a visual represen-
tation of the forecasted results shown in Table 3, it empowers end-users to delve deeper
into the intricacies of the projected occupational landscape. The quality of the decisions
when using DDDM is largely affected by visualization [58]. This enhanced understanding
facilitates informed decision-making, enabling stakeholders to discern and implement
critical interventions in response to the forecasted demands. Ultimately, the occupational
analysis interface serves as a cornerstone for proactive planning and strategic initiatives
geared toward addressing the evolving needs of the manufacturing sector workforce.

The main objective of this study was to address the absence of forecasting methods
within the South African manufacturing sector. In this work, a forecasting framework
that produced reasonably reliable results was developed. Additionally, an occupational
analysis interface was created, aligning with the principles of data-driven decision-making.
The integration of this interface ensured that the forecasting framework was not only a
theoretical model but also a practical tool that can significantly aid the manufacturing
sector in addressing the skill demands.
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Table 5. Forecast results for the chemical sector.

Occupation Title 2016 1017 2018 2019 2020 2021 2022 2023 Predicted 2023 MAPE 2024 Forecast

General Manager Public Service 17 6 6 40 19 23 63 46 40 13.32904 48
Trade Union Representative 29 37 48 37 19 38 31 28 26 8.013044 29
Human Resource Manager 358 310 341 344 421 453 434 452 388 14.1828 466
Business Training Manager 267 301 464 238 137 128 133 93 79 14.90708 96
Chief Information Officer 92 132 133 132 91 58 62 43 38 11.90166 46
ICT Project Manager 50 61 53 71 61 53 46 49 42 14.2755 50
Data Management Manager 25 20 24 25 70 84 83 76 64 15.46296 79
Financial Markets Business Manager 15 6 8 4 13 19 13 17 15 13.43848 18
Laboratory Manager 202 173 232 274 288 295 302 278 249 10.42141 284
Operations Manager (Non-Manufacturing) 106 154 179 81 178 238 210 183 157 14.32432 187
Importer or Exporter 67 46 58 54 47 53 65 39 35 10.43915 40
Retail Manager (General) 116 121 100 143 146 85 78 179 155 13.24364 184
Manufacture Research Chemist 50 79 87 72 112 100 70 119 103 13.55225 125
Retail Pharmacist 215 211 267 232 39 40 83 285 264 7.345125 298
Market Research Analyst 331 312 242 247 192 256 231 117 103 12.37104 123
Communication Coordinator 175 214 157 214 111 77 123 76 66 12.84006 78
Sales Representative—Medical and Pharmaceutical 2739 2668 2727 2595 2008 2620 2220 1838 1586 13.73677 1879
ICT Systems Analyst 164 179 172 159 221 492 499 493 411 16.57107 503
Database Designer and Administrator 110 67 78 70 107 118 548 126 110 12.42141 129
Librarian 14 20 33 36 15 15 17 15 13 13.0528 16
Information Services Manager 176 252 148 142 60 46 40 51 44 14.00231 54
Technical Director 24 208 28 32 19 17 24 22 19 11.84977 23
Chemistry Technician 2627 2737 2973 3552 2004 1996 2186 2306 1993 13.59102 2383
Radiation Control Technician 20 55 50 55 49 59 15 48 41 13.62571 51
Electrical Engineering Technician 293 405 536 551 264 286 398 486 420 13.59831 502
Mechanical Engineering Technician 665 522 434 451 483 587 730 768 665 13.42468 791
Pressure Equipment Inspector 110 58 73 74 96 82 115 92 78 15.21263 97
Chemical Engineering Technician 272 217 155 211 366 469 563 721 607 15.76788 760
Draughtsperson 141 169 248 192 172 174 162 153 132 13.60677 159
Water Plant Operator 28 46 72 29 39 36 37 77 67 12.89806 80
Chemical Plant Controller 5800 5818 5280 3458 5010 5290 5214 5347 4737 11.41503 5655
Gas or Petroleum Controller 1318 1164 1046 1637 607 627 907 523 450 14.05107 541
Manufacturing Production Technicians 66 95 275 247 669 768 468 442 399 9.622997 463
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Table 5. Cont.

Occupation Title 2016 1017 2018 2019 2020 2021 2022 2023 Predicted 2023 MAPE 2024 Forecast

Health Technical Support Officer 4 13 3 2 31 43 52 19 16 13.17975 20
Sales Representative—Building and Plumbing Supply 82 3 36 61 49 100 50 60 50 16.22182 62
Sales Representative—Personal and Household Goods 191 384 197 380 314 680 489 157 138 12.38791 163
Commercial Services Sales Agent 14 8 19 15 25 11 31 51 44 12.84063 52
Manufacturer’s Representative 28 10 10 14 57 5 15 40 34 14.67164 41
Chemical Sales Representative 1101 1091 937 874 751 667 822 955 816 14.54156 988
Property Manager 21 22 56 64 17 12 14 15 13 14.4805 16
Sales Representative—Business Services 137 493 361 440 476 134 374 228 208 8.785947 234
Waste Material Sorter and Classifier 1 3 12 8 6 2 2 99 84 14.70158 104
Handyperson 467 630 331 3333 1159 2299 719 571 485 14.97975 603
Chemical Mixer 291 195 310 211 1114 596 169 155 129 16.48581 158
Local Authority Manager 11 6 7 4 25 46 6 37 32 12.56638 38
Internal Audit Manager 23 18 15 19 38 22 26 31 27 11.98061 32
Recruitment Manager 10 13 15 19 11 9 9 12 10 13.03594 12
Quality Systems Manager 470 354 329 330 382 324 255 234 197 15.81662 242
Construction Site Manager 73 56 54 39 52 45 43 61 55 9.414381 62
Information Technology Manager 70 75 58 76 127 170 156 120 108 9.865707 123
Facilities Manager 104 109 104 89 89 94 85 206 183 11.03695 215
Electrical Specifications Writer 15 11 15 19 16 9 13 6 5 14.37255 6
Architect 1 6 11 4 9 2 8 7 6 13.74234 7



Big Data Cogn. Comput. 2024, 8, 101 22 of 27Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 23 of 28 
 

 
subplot 1 Subplot 2 

  
Figure 7. Cont.



Big Data Cogn. Comput. 2024, 8, 101 23 of 27Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 24 of 28 
 

 
Subplot 3 Subplot 4 

Figure 7. Forecast tab.: The blue region in the plot represents the prediction interval boundaries for the forecasted values, specifically encompassing the 50% and 
95% prediction intervals, with a central dot marking the point forecast, which is the ARIMA model's estimate for the expected value. The ACF and PACF plots 
(blue dotted lines) illustrate the autocorrelation function and partial autocorrelation function of the residuals, which are crucial for diagnosing the fit of the ARIMA 
model by showing the correlation of residuals at different lags. The yellow curve (subplot 2 and 4) represents a normal distribution, which indicates how the 
residuals (the differences between observed and predicted values) are distributed around the zero mean. 

Figure 7. Forecast tab.: The blue region in the plot represents the prediction interval boundaries for the forecasted values, specifically encompassing the 50% and
95% prediction intervals, with a central dot marking the point forecast, which is the ARIMA model’s estimate for the expected value. The ACF and PACF plots (blue
dotted lines) illustrate the autocorrelation function and partial autocorrelation function of the residuals, which are crucial for diagnosing the fit of the ARIMA model
by showing the correlation of residuals at different lags. The yellow curve (subplot 2 and 4) represents a normal distribution, which indicates how the residuals (the
differences between observed and predicted values) are distributed around the zero mean.
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6. Conclusions

As one of the cornerstones of the nation’s economic growth, particularly in the context
of Industry 4.0, the manufacturing sector faces transformative shifts. Technological ad-
vancements not only necessitate the acquisition of new skills but also signal changes in the
profiles of existing occupations. Consequently, the need to anticipate and forecast future
occupational demands within the manufacturing sector becomes increasingly evident.
Through the application of the ARIMA model, a widely used tool in occupational forecast-
ing, this study has provided valuable insights into the evolving employment landscape.
By employing analytical tools, the research has paved the way for informed, data-driven
decision-making and proactive skills planning for the manufacturing sector. The ARIMA
model was applied to occupational data from the FoodBev and the chemical manufacturing
sectors. The FoodBev dataset, spanning seven years (2016–2022), served to demonstrate the
utility of the ARIMA model, while the eight-year (2016–2023) dataset from the chemical in-
dustry was utilized for the final projections. The validation step revealed a clear correlation
between data volume and predictive accuracy, with the model accurately predicting 67%
of the occupations with 80% accuracy in the shorter FoodBev dataset, and an impressive
91% of occupations with similar accuracy in the larger chemical sector dataset. These
findings are in line with existing literature, such as [31], which emphasized the importance
of data volume in enhancing predictive accuracy. The final projections focused solely on
the chemical sector dataset, projecting occupational demand for the year 2024. The results
indicated a notable increase in demand for traditional roles in the chemical sector, and a
smaller demand for the technology-centric occupational profiles. This contrast suggests
that the sector is not replacing the old with new, but gradually integrating new into the
sector. Beyond the forecasting efforts, an occupational analysis interface was developed.
This interface serves as a vital tool for end-users, providing them with a detailed and graph-
ical view of the projected results. This is a global practice by sectoral bodies that conduct
skills and occupational forecasts, such as BLS and CEDEFOP, who have online interactive
graphics to view occupational trends. By offering enhanced visibility into the projected
occupational demands, this interface empowers decision-makers to formulate targeted
skills interventions and strategies, effectively aligning with the anticipated industry needs.

While this study has demonstrated the utility of the ARIMA model in labor market
forecasts, several limitations must be acknowledged. Firstly, the data used were specific to
FoodBev and CHIETA, potentially limiting the generalizability of the findings across other
sectors. Additionally, while ARIMA is powerful, it has limitations in capturing seasonal
effects [31,32]. Sectors with seasonal employment patterns, such as hospitality and tourism,
may benefit more from the Seasonal ARIMA (SARIMA) model [56]. Lastly, the accuracy
of the forecasts is strongly dependent on the data quality and volume, as evidenced by
the contrast in accuracy for FoodBev and CHIETA, posing a challenge for sectors with less
historical data.

7. Practical Implications

The study is significant from a practical perspective, as it addressed the current lack of
forecasting models within the manufacturing sector. The developed model, demonstrating
reasonable accuracy, along with the occupational interface can be adopted immediately
to drive data-driven decision-making in the sector. With the accuracy presented for the
CHIETA, the forecasting results have been incorporated into the Skills Sector Plan report for
2024. This alerts policymakers and stakeholders within the chemical sector who can lever-
age these insights for targeted skills’ development and strategic workforce development,
enhancing the sector’s competitiveness and resilience in the future.

8. Future Work

The scope of this study can be expanded beyond the manufacturing sector to include
other sectors as well. Future enhancements to the forecasting framework can incorporate
factors such as technological advancements and economic influences on demand and
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supply, similar to forecasting frameworks used in other developing countries. By doing
so, the framework can be more robust and versatile, providing more comprehensive and
accurate predictions across various sectors.
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