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Abstract: The detection and identification of defects in transmission lines using computer vision
techniques is essential for maintaining the safety and reliability of power supply systems. However,
existing training methods for transmission line defect detection models predominantly rely on single-
node training, potentially limiting the enhancement of detection accuracy. To tackle this issue, this
paper proposes a server-side adaptive parameter aggregation algorithm based on multi-method
fusion (SAPAA-MMF) and formulates the corresponding objective function. Within the federated
learning framework proposed in this paper, each client executes distributed synchronous training in
alignment with the fundamental process of federated learning. The hierarchical difference between
the global model, aggregated using the improved joint mean algorithm, and the global model from
the previous iteration is computed and utilized as the pseudo-gradient for the adaptive aggregation
algorithm. This enables the adaptive aggregation to produce a new global model with improved
performance. To evaluate the potential of SAPAA-MMF, comprehensive experiments were conducted
on five datasets, involving comparisons with several algorithms. The experimental results are
analyzed independently for both the server and client sides. The findings indicate that SAPAA-MMF
outperforms existing federated learning algorithms on both the server and client sides.

Keywords: federated learning; defect detection; multi-method fusion; attention mechanism

1. Introduction

Ensuring a stable power supply through the power grid is a crucial factor in main-
taining quality of life and the seamless functioning of society. Timely detection of faults
and defects in transmission lines is essential for maintaining the stability of power system
operations. Consequently, transmission line defect detection has emerged as a research
hotspot, garnering significant attention from both academia and the power industry, and
has been extensively studied by numerous scholars.

In recent years, the rapid advancement of deep learning has prompted researchers
to employ it for object detection, leading to the development of numerous deep learning-
based object detection algorithms. For insulator defect detection, Miao et al. [1] employed
transfer learning strategies, utilizing the COCO (Common Objects in Context) pre-trained
model for domain adaptation to construct a Single Shot MultiBox Detector (SSD) model that
incorporates various insulator types using diverse backgrounds. Zhao et al. [2] proposed an
improved insulator detection method based on Faster R-CNN, fine-tuning the model and
introducing an enhanced anchor box generation technique to improve detection precision
and significantly enhance performance in handling occlusion. Feng et al. [3] introduced an
automatic insulator detection approach utilizing the YOLOv5x object detection model in
combination with the K-means algorithm. This approach optimizes model performance,
facilitating the rapid and accurate detection and localization of targets in images. For
detecting foreign objects in bird nests, Ju et al. [4] proposed a real-time bird nest detection
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approach leveraging the spatial relationship between bird nests and tower poles. This
approach employs SSD as the detector and utilizes deep neural networks to establish the
spatial relationship between tower poles and bird nests. By leveraging tower pole detection
results to refine bird nest detection, this approach enhances both the accuracy and efficiency
of bird nest identification.

Although the aforementioned detection models have achieved considerable success in
identifying defects in transmission lines, their training methodologies primarily rely on
single-node systems. Training defect detection models on a single node restricts effective
data sharing and connectivity, hindering comprehensive integration and analysis of data
from diverse environments. This, in turn, affects the diversity and generalization capabili-
ties of transmission line defect detection models. Furthermore, single-node training raises
concerns regarding privacy security and the inability to handle large-scale data [5]. In 2016,
Google Research introduced the concept of federated learning to enhance privacy protec-
tion and address the challenge of data silos [6]. The primary goal of federated learning
is to enable model training without centrally storing or transmitting raw data. Due to its
superior performance and enhanced security compared to traditional distributed machine
learning, federated learning has rapidly become a prominent paradigm in the field [7].
Hong et al. [8] proposed a joint adversarial debiasing method that allows users to opt out
of the debiasing session based on privacy or computational cost concerns without accessing
sensitive group information. This method addresses the issue of model bias and unfairness
arising from the heterogeneity of user data in federated learning. Karimireddy et al. [9] pro-
posed the stochastic control averaging algorithm, which utilizes control variables to reduce
drift between clients during local updates, thereby addressing the issues of unstable and
slow model convergence. Yuan et al. [10] proposed the joint pairwise averaging algorithm,
which overcomes the limitations of traditional averaging by introducing an innovative
server-side pairwise averaging procedure. This approach effectively improves convergence
speed and optimization in federated learning tasks involving non-smooth regularization
terms. Traditional federated learning algorithms have achieved progress by optimizing
parameter aggregation and improving communication efficiency, but the aggregated global
model continues to suffer from poor performance and generalization. Most traditional
federated learning algorithms optimize parameter aggregation from a single perspective,
overlooking the complementary advantages of integrating different algorithms, which
limits model performance.

To tackle these challenges, this paper introduces a Server-side Adaptive Parameter
Aggregation Algorithm Based on Multi-method Fusion (SAPAA-MMF). This approach
takes into account data silos, privacy security, and hardware performance issues inherent
in defect detection tasks dependent on single-node training models. The study constructs
a transmission line defect detection network utilizing the single-stage object detection
algorithm SSD as the client model for local training within a federated learning framework.
By leveraging the complementarity of algorithms, the adaptive aggregation algorithm
FedAdam [11] serves as the base algorithm, which is combined with the improved federated
averaging algorithm FedAvg [11] to enhance server-side parameter aggregation in federated
learning. This approach yields a more effective global model.

• The SAPAA-MMF method integrates various algorithms by utilizing the average
model variance as the pseudo-gradient for adaptive aggregation. This approach
addresses the limitations of previous single-parameter aggregation algorithms, which
often struggled to ensure both the convergence and stability of the global model. By
leveraging the average model variance, SAPAA-MMF enables a more robust and stable
parameter aggregation process, resulting in enhanced performance and generalization
of the global model in federated learning scenarios.

• In this paper, we propose a weight balancing method that comprehensively considers
factors such as client-side local data distribution and data quality in the aggregation
process. This method ensures that different training nodes or devices can contribute
effectively to the global model, thereby maximizing the advantages of various al-
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gorithms. By accounting for the variability in local data and the quality of client
contributions, the weight balancing method improves the aggregation process, result-
ing in a more accurate and robust global model in federated learning.

• The SAPAA-MMF method proposed in this paper significantly improves defect
detection in transmission lines. Extensive experiments against several state-of-the-art
methods demonstrate the effectiveness and superiority of SAPAA-MMF. The results
indicate that SAPAA-MMF outperforms existing methods by providing more accurate
and reliable defect detection, thereby confirming its potential and advantages in
practical applications.

2. Related Work
2.1. Defect Detection

In the traditional field of image processing research, researchers mainly use artificially
designed feature extraction algorithms to build models for visual characteristics such as
color and morphological edges, aiming to effectively distinguish key objects from complex
background environments, performing various defect detection tasks accordingly. Wu
et al. [12] proposed a new active contour model, which uses a semi-local operator to ex-
tract texture features, defines a new function to handle texture inhomogeneity, and uses a
fast dual form to make contour evolution more efficient. The model can extract uneven
insulators from aerial images and overcome the recognition difficulties caused by texture
inhomogeneity. Using only a single feature cannot significantly improve the detection
effect. Therefore, Wang et al. [13] proposed a recognition method that integrates the shape,
color, and texture information of insulators. First, parallel line features are perceived from
different directions as candidate features of the insulators. Then, the candidate region is
expanded and semantic analysis is performed using local binary patterns to identify the
insulator region. Finally, the main color component analysis is used to compensate for
the insulator region, the region is adaptively divided according to the average distance,
the texture feature changes are analyzed, and the insulator shedding defect is detected.
Considering that image noise can also affect the detection results, Yan et al. [14] proposed
a maximum inter-class variance algorithm based on morphological methods, designed
a new filtering method to remove tiny noise according to the characteristics of power lines,
and successfully identified the redundant materials on the power lines by comparing the
number of local maxima in the measured power lines and Hough transfer accumulators
through the Hough transform feature. Chen et al. [15] addressed the limitations of tra-
ditional pavement defect detection methods by proposing MANet, a multi-scale mobile
attention-based network that integrates multi-scale convolutions and hybrid attention
mechanisms to enhance feature extraction and improve the accuracy of pavement defect
detection. Yu et al. [16] addressed the limitations of using methods like graph convolu-
tional networks (GCN) by constructing high-quality graphs with multi-source sensors and
utilizing a two-stage framework for fault diagnosis, thereby enhancing the robustness of
fault diagnosis.

Although the above algorithms have achieved some results, they have limitations in
feature acquisition and real-time performance, which limits the accuracy and efficiency of
detection. In recent years, with the rapid development of deep learning [17], researchers
have adopted deep learning for target detection, and many deep learning-based target
detection algorithms have emerged. The target detection algorithm based on deep learning
has achieved good results in image feature extraction and complex and diverse image
features. This type of algorithm can automatically identify the features in an image and
overcomes the shortcomings of traditional algorithms. In insulator defect detection, Miao
et al. [1] borrowed the transfer learning strategy, made domain adaptability adjustments
through the COCO (Common Objects in Context) pre-trained model, and constructed an
SSD (Single Shot MultiBox Detector) detection model that includes multiple insulator types
using multivariate backgrounds. On this basis, the initial model is fine-tuned using training
data from specific insulator samples and their complex application scenarios to accurately
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identify insulators. Zhao et al. [2] proposed an insulator detection method based on an
improved Faster R-CNN. By fine-tuning the Faster R-CNN model and using an improved
anchor box generation method, the accuracy of insulator detection is improved while
significant improvements are made in handling occlusion. Feng et al. [3] proposed an
automatic insulator detection method based on the YOLOv5x target detection model. This
method combines the YOLOv5x model and the K-Means algorithm to achieve the purpose
of automatically identifying insulator defects. The performance of the model is optimized
by K-means clustering. The YOLOv5x model can quickly and accurately detect and locate
targets in the image. In the defect detection of bird nest foreign bodies, Ju et al. [4] proposed
a real-time bird nest detection method based on the relationship with the tower pole. This
method uses SSD as a detector, uses a deep neural network to establish the relationship
between the tower pole and the bird nest, and uses the tower pole detection results to
correct the bird nest detection effect, thereby improving the accuracy and efficiency of bird
nest detection. Li et al. [18] proposed an automatic detection method for bird nests in power
transmission lines based on Faster R-CNN. By magnifying the bird nest image, it not only
solves the problem of insufficient training samples and overfitting of the neural network
classifier, but also has a good bird nest target detection effect in complex environments.
Li et al. [19] addressed the limitations of traditional PV panel defect detection methods
by incorporating Ghost convolution with BottleneckCSP and a tiny target prediction head
into YOLOv5, significantly enhancing detection accuracy and speed for multiscale PV
panel defects. Wang et al. [20] addressed the limitations of traditional road defect detection
methods by enhancing YOLOv8 with BiFPN and LSK-attention mechanisms, improving
both detection accuracy and model efficiency for real-time applications.

Although the aforementioned detection models have achieved good results in identify-
ing defects in transmission lines, their training methods are primarily based on single nodes.
However, in practical applications, transmission lines are widely distributed, and defect
data is dispersed across equipment or systems in different regions. The single-node training
method for defect detection models leads to a lack of effective sharing and connection
between data, preventing comprehensive integration and analysis of data from different
environments, thus affecting the data diversity and generalization ability of transmission
line defect detection models. Additionally, there are issues related to privacy security and
the inability to train large-scale data on a single node.

2.2. Federated Learning

The goal of federated learning is to build a global model by aggregating local updates
from multiple clients to adapt to the overall data distribution. The client shares global
model parameters with other clients during local training, and the server aggregates local
updates to form a global model.

McMahan et al. [6] were the first to propose the concept of federated learning. In
response to the needs of massive data training and privacy and security protection, they
advocated distributing training data to mobile devices and using local calculated updates
for shared model learning. They proposed a practical method for deep network federated
learning based on the average iteration model, and the global model was obtained by
calculating the mean of the parameters. Blanchard et al. [21] proposed the Krum aggrega-
tion algorithm, the core idea of which is to judge the abnormal behavior of nodes based
on the similarity between weights, identify abnormal nodes by calculating the distance
between weights, and exclude these abnormal nodes to obtain a reliable aggregation result.
Yin et al. [22] proposed a robust distributed gradient descent algorithm based on median
and truncated mean operations, which enables the algorithm to better solve the Byzantine
problem [22] and has good robustness. Pan et al. [23] started by reducing the frequency of
federated learning communication, and optimized the balance between local updates and
global parameter aggregation by intelligently selecting the number of local updates from
the client, thereby reducing the communication frequency between the client and the server.
Li et al. [24] added a proximal term to the loss function of the client model to penalize any
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client model that deviates too much from the global model, so as to prevent the client model
from deviating too much from the global model and ensure the convergence of the global
model. Li et al. [25] proposed model contrast federated learning by using improved cross
entropy loss to perform local optimization and solve the inconsistency problem between
foreground and background and by using the similarity between model representations
to correct the local training of each party. Zhu et al. [26] proposed a data-free knowledge
distillation method to solve heterogeneous federated learning. This method integrates
client information without using actual data by training a lightweight generator on the
server side and then broadcasting it to the client, adjusting the client’s training process.
Reddi et al. [11] proposed an adaptively optimized federated learning algorithm, combined
with an adaptive optimization strategy, to achieve effective learning and optimization of the
global model on the server side, thereby improving the performance of federated learning.
Fallah et al. [27] proposed combining federated learning algorithms with a model-agnostic
meta-learning framework. In this approach, models are initialized via meta-learning, and
clients perform one or more gradient descent steps on their local datasets to adapt the
models. This method retains the advantages of the federated learning architecture while
providing more personalized models for each client. Li et al. [28] proposed a private
model inheritance scheme that fuses a client’s historical personalized models to guide
the subsequent personalized adaptation of the global model, effectively leveraging prior
personalized results. Chen et al. [29] proposed a trunk patch-based federated learning
architecture, where the shared trunk refines the common knowledge of all participants,
and the private patch serves as a compact and efficient module to retain each partici-
pant’s domain-specific information, thereby improving model performance. Niu et al. [30]
proposed an activation function-based regularizer to correct the gradient of category em-
beddings by accurately injecting cross-client gradient terms, starting from backpropagation
for gradient correction. Collins et al. [31] proposed shared feature representations with
local head learning algorithms, which utilize the computational power of distributed clients
to perform multiple rounds of local low-dimensional parameter updates. This approach
addresses the issues of learning inefficiency and limited model generalization caused by
data heterogeneity in federated learning. Shen et al. [32] proposed a novel federated learn-
ing paradigm called joint mutual learning to address the issue of data heterogeneity. This
paradigm allows each client to independently train personalized models and obtain local
models for similar but distinct tasks through collaborative training. Additionally, it enables
clients to design customized models for different scenarios and tasks. Shi et al. [33] investi-
gated the challenge of balancing generalization and personalization in blended learning
and proposed the personalized joint upper confidence bound algorithm. This algorithm
optimally selects the exploration length to balance learning a local model with providing
global information for the blended learning objective.

The federated learning algorithm has made some achievements in terms of parameter
aggregation effect and communication efficiency, but the aggregated global model still has
problems such as poor model performance and the generalization effect. Most traditional
federated learning algorithms only optimize the parameter aggregation effect from a single
perspective, ignoring the complementary advantages of different algorithm fusions, which
limits the model performance. Starting from the perspective of multi-method fusion,
this paper makes full use of the complementary advantages of different algorithms and
designs a multi-method fusion adaptive aggregation parameter algorithm to improve the
performance and generalization ability of the global model.

3. Proposed Method

This section is organized into subsections and offers a comprehensive description
of the proposed SAPAA-MMF structure, the objective function, and the specific design
elements. Additionally, it presents the pseudo-code along with an analysis of the model’s
time and space complexity.
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3.1. Overall Algorithm Architecture

The SAPAA-MMF algorithm is designed to ensure that the global model aggregated
by the server demonstrates robust performance and generalization capabilities. This
paper leverages the complementary strengths of algorithms by integrating the improved
joint mean algorithm with the adaptive aggregation algorithm. By combining the broad
applicability and high performance of the joint mean algorithm with the adaptability
and stability of the adaptive aggregation algorithm, the SAPAA-MMF algorithm further
improves the performance and generalization capabilities of the global model. The overall
architecture of SAPAA-MMF is depicted in Figure 1.

dataset 𝐷1 dataset 𝐷2 dataset 𝐷3 dataset 𝐷𝑘

···

···

train train train train
client-side

Adaptive 

aggregation

Server-side

𝑤𝑡+1

∆t,1 ∆t,2 ∆t,n··· ∆𝑡

mt

vt

client1 client2 client3 client𝑘

step1 step2

Figure 1. Architecture diagram of server-side adaptive parameter aggregation algorithm based on
multi-method fusion.

The SAPAA-MMF algorithm operates within the federated learning framework de-
veloped in this study. As illustrated in Figure 1, each client utilizes its local dataset to
perform distributed synchronous training, adhering to the standard federated learning
process. After each training round, the aggregated global model is disseminated to the
clients as updated model parameters, and iterative training continues until the termination
condition is satisfied. During server-side aggregation, the hierarchical difference between
the global model aggregated by the improved joint mean algorithm and the global model
from the previous round is calculated. This difference is utilized as the pseudo-gradient
for the adaptive aggregation algorithm, enabling it to generate a new global model with
improved performance.

3.2. Objective Function

The local client device in federated learning is responsible solely for storing and
processing data. Under this condition, it uploads the client model parameters to the server,
which aggregates them to generate a single global model parameter w. In this distributed
setting, the global optimization problem involves finding the set of parameters w that
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minimizes the average loss across all client devices participating in the training process.
Thus, the global optimal objective function F(w) on the server side can be expressed as

min
w

F(w) =
1
K

K

∑
k=1

Fk(w). (1)

Here, K represents the total number of client devices participating in the joint training and
Fk(w) denotes the local objective function of the k-th client, which is expressed as

Fk(w) =
1
nk

∑
i∈dk

fi(w). (2)

Here, dk represents the local dataset of the k-th client device, nk indicates the size of the
k-th client’s data, and fi(w) refers to the loss value of the local client defect detection model
SSD on sample i. The corresponding loss function f (w) is expressed as

f (w) =
1
N
(Lcon f (w, x, c) + λLloc(w, x, l, g)), (3)

where x is the matching indicator variable, c is the confidence score of each category
predicted by the network, l is the offset of each default box predicted by the network
relative to its original shape, and g represents the parameters of the real box, including
the center coordinates (cx, cy), width (w), and height (h). N is the number of default
boxes corresponding to the matched real box, Lcon f is the classification loss, Lloc is the
positioning loss, and λ is a hyperparameter that balances the weights between classification
and positioning losses. Lcon f and Lloc are calculated using Equation (4) and Equation (6),
respectively. In Equation (3),

Lcon f (w, x, c) = −
N

∑
i∈Pos

xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log
(

ĉ0
i

)
, (4)

where xp
ij = {1, 0} indicates whether the i-th default box matches the real bounding box of

category p. In Equation (4),

ĉp
i =

exp
(

cp
i

)
∑p exp

(
cp

i

) (5)

indicates the probability that the i-th default box belongs to category p.

Lloc(w, x, l, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

x f
ij smoothL1

(
lm
i − ĝm

j

)
, (6)

where x f
ij = {1, 0} indicates whether the i-th default box matches the j-th real bounding

box. In Equation (6), smoothL1(·) is the smooth L1 loss function used to calculate the
difference in positional parameters between the bounding box predicted by the network
and the real bounding box.

3.3. Algorithm Principle

The SAPAA-MMF algorithm integrates two algorithms to fully leverage the com-
plementary strengths of different approaches, thereby enhancing the performance of the
global model. This process is divided into two stages of aggregation. In the first stage, an
improved joint mean algorithm is used for aggregation, followed by the calculation of
hierarchical differences between the aggregated global model and the previous round’s
global model. The objective is to leverage the adaptability and strong performance of the
improved joint mean algorithm, fully accounting for the differences in client data and
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local training states, to obtain a high-performance one-stage global model. In the second
stage, the hierarchical model differences from the first stage serve as pseudo-gradients
for adaptive aggregation. The aim is to exploit the strong convergence and stability of
adaptive aggregation algorithms to further enhance the stability and performance of the
global model. Due to the use of joint mean and adaptive aggregation algorithms in multi-
method fusion, this section primarily provides a detailed introduction and analysis of the
joint mean algorithm, adaptive aggregation algorithm, and server-side adaptive parameter
aggregation algorithm used in multi-method fusion.

3.3.1. Joint Mean Algorithm

McMahan et al. [6] proposed the joint mean algorithm FedAvg, applicable to hori-
zontal federated learning. This algorithm accounts for the influence of data samples on
aggregation performance, adapts to various environments, and fully utilizes the computing
resources of diverse devices. By aggregating multiple local models, this algorithm enhances
the model’s generalization ability and improves its robustness.

In the FedAvg algorithm, the server aggregates the model parameters uploaded by
the clients, while the clients train the model on their local datasets. The detailed training
process is as follows: First, the server initiates the global model’s initialization process
and distributes the initialized model to various clients. Then, the server and clients jointly
enter the iterative training stage. In the t + 1 round of federated learning, the server selects
K clients from all available clients for local model training and sends the aggregated global
model wt from the t-th round to the selected clients. After receiving the global model, the
clients train on their local datasets according to Equation (7). Finally, after local training,
the local model parameters wk

t+1 are generated as follows:

wk
t+1 = wk

t − ηgk. (7)

Here, η represents the learning rate, and gk denotes the model gradient. After all client mod-
els complete training, the model parameters are uploaded to the server, which aggregates
the parameters from each client model according to

wt+1 =
K

∑
k=1

nk
n
· wk

t+1. (8)

Here, n represents the total number of client samples and nk denotes the number of samples
for the k-th client. After server-side aggregation, a global model is generated and distributed
to each client for subsequent rounds of training until the model converges or meets the
termination condition.

3.3.2. Adaptive Aggregation Algorithm

The FedAdam algorithm, proposed by Reddi et al. [11], is a federated learning algo-
rithm. It is an improved federated learning algorithm that utilizes the Adam optimizer [34]
within the federated learning framework. It primarily addresses the issues of slow con-
vergence, low accuracy, and poor stability encountered by traditional federated learning
algorithms during model training.

The FedAdam algorithm is adapted from the Adam algorithm framework to accommo-
date the unique characteristics of federated learning. This algorithm retains the concept of
adaptive learning rates from the Adam algorithm, dynamically adjusting the learning rate
through first-order and second-order moment estimations to accelerate model convergence
and improve stability. The formula for calculating the first-order moment in the FedAdam
algorithm is:

mt = β1mt−1 + (1− β1)∆t (9)

Here, t denotes the training round and β1 represents the decay rate of first-order moment
estimation. First-order moment estimation simulates the effect of momentum, helping to
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stabilize model parameter updates. Here, ∆t represents the model pseudo-gradient. In the
FedAdam algorithm, the average model difference for each client is computed as:

∆k
t = wk

t − wt. (10)

Here, ∆k
t represents the difference between the k-th client and the global model wt in round

t. Based on the above equation, the average model difference ∆t can be obtained as:

∆t =
1
|K|

K

∑
i=1

∆k
t . (11)

The calculation formula for second-order moment estimation in the FedAdam algorithm is:

vt = β2vt−1 + (1− β2)(∆t)
2. (12)

Here, β2 represents the decay rate of second-order moment estimation. By incorporating
second-order moment estimation, the algorithm can more flexibly respond to gradient
changes in the parameter space. In some cases, gradients can undergo significant changes,
and second-order moment estimation captures this trend, facilitating learning rate adjust-
ments and enhancing the algorithm’s robustness.

Finally, the formula for updating the model parameters is

wt+1 = wt +
σmt√
vt + τ

. (13)

Here, σ represents the learning rate, controlling the magnitude of parameter updates, while
τ is a small constant added for numerical stability to prevent division by zero.

3.3.3. A Server-Side Adaptive Parameter Aggregation Algorithm for Multi-Method Fusion

The first two sections provide a comprehensive introduction to the core concepts of
the FedAvg and FedAdam algorithms. The FedAvg algorithm primarily addresses data
distribution differences, offering strong effectiveness and adaptability, while the FedAdam
algorithm focuses on improving model convergence speed and stability. Therefore, this
paper posits that integrating these two algorithms can harness their complementary
strengths, further enhancing the effectiveness of federated learning.

This paper proposes a server-side adaptive parameter aggregation algorithm, SAPAA-
MMF, based on multi-method fusion. In the adaptive aggregation algorithm FedAdam, the
pseudo-gradient ∆t is calculated by averaging model differences, as shown in Equations (10)
and (11). This paper posits that using average model differences as pseudo-gradients for
adaptive aggregation overlooks the impact of client data samples on the global model.
Since the number of data samples is a key factor in determining the contribution of each
client, overlooking client data samples can result in weight allocation bias. For instance,
clients with a large number of data samples may be undervalued, while clients with
fewer data samples may be overvalued, leading to weight bias that can affect the accuracy
of model training. Furthermore, overlooking client data samples can also diminish the
model’s generalization ability. The diversity of data samples is crucial to the model’s
generalization ability, and neglecting this factor may lead to poor model performance on
new data. Therefore, during the model aggregation process, the influence of the number of
client samples on the aggregation results must be carefully considered.

To address the above issues and integrate the advantages of different algorithms, this
chapter adopts FedAdam as the base algorithm, incorporates the weighted client data
samples from the FedAvg algorithm, and proposes a new model hierarchical difference as
the pseudo-gradient ∆t in the FedAdam algorithm:

∆t = [wavg,1 − wt,1, wavg,2 − wt,2, . . . , wavg,i − wt,i]. (14)
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Here, i represents the number of model layers, wavg denotes the global model aggregated
using the joint mean algorithm in the first stage, and wt is the global model from the
previous round. The detailed calculation of ∆t is presented in Algorithm 1.

Algorithm 1: Calculation of hierarchical differences in models

Input: The Global Model Aggregated by the Joint Mean Algorithm wavg, Previous
round of global model wt

Output: Model layering differences ∆t
1 Calculate the number of model layers layers for the global models wavg and wt;
2 Initialize Model Hierarchical Difference Set ∆t;
3 for i← 1 to layers do
4 for j← 1 to layers do
5 if key value of wavg,i equals key value of wt,j then
6 Calculate the dimensions of the vectors contained in wavg,i and wt,j

separately;
7 Map wavg,i and wt,j based on vector dimensions;
8 Put the values of the dimension mapped (wavg,i - wt,j) into the

hierarchical difference set ∆t of the model;
9 end

10 end
11 end

Using hierarchical model differences that account for data samples as pseudo-gradients
can effectively resolve the weight bias and generalization decline caused by average model
differences. However, there are still challenges in calculating wavg. In the calculation of
wavg, only the number of client samples is considered, meaning that the more samples
a client has, the greater the client’s influence on the global model aggregation. If a client’s
model parameters are of poor quality but the client has a large number of samples, this
will negatively impact the performance of the global model.

In real-world federated learning, various factors influence client samples, including
not only sample size but also differences in data distribution and quality. Therefore, the
aggregation method for wavg can be further improved to fully account for the impact of
factors such as client local data distribution and quality on the aggregation results. Since
no direct indicator exists to measure data distribution and quality, the loss during client
training is used as an indirect indicator to assess the local data distribution and quality
factors of the client, further optimizing the calculation of

wavg =
K

∑
k=1

[
(1− θ) · nk

n
+ θ · Lk

]
· wk

t+1. (15)

Here, Lk represents the proportion of losses incurred by the k-th client relative to all clients.
This improvement considers both the impact of local data samples and the loss incurred
during training on the aggregation results. The parameter θ adjusts the ratio between
sample size and loss. When θ equals 0, the calculation of wavg is equivalent to the original
FedAvg algorithm. Lk is calculated using Equation (16). In Equation (15),

Lk =
e−lk

∑K
i=1 e−li

, (16)

where li represents the model loss for the k-th client trained on the local dataset. This
formula converts a set of losses into a probability distribution with values ranging between
0 and 1. For the exponential term e−lk , taking the negative value of the input lk ensures
that smaller lk values approach 1 after the exponential operation, while larger lk values
approach 0. Accordingly, for larger losses, if the model’s learning performance is poor, the
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proportion of losses should be small, whereas for smaller losses, if the model’s learning
performance is good, the proportion of losses should be large.

Weight decay is a technique used to regularize neural networks, with its effects
primarily manifesting in regularization, preventing overfitting, enhancing robustness,
simplifying model structure, and improving convergence stability. By introducing weight
decay, the model can learn simpler and smoother representations, thereby enhancing
its generalization ability and robustness. Weight decay is introduced in the adaptive
aggregation algorithm to prevent the global model parameters from becoming too large
after server-side aggregation, thereby reducing the risk of overfitting and improving the
stability and generalization performance of the global model. The weight decay penalty is
introduced in the adaptive aggregation algorithm updates to control the complexity of the
model. The optimized model update is given by:

wt+1 = wt + σ

(
mt√

vt + ϵ
− λwt

)
. (17)

Here, λ represents the weight decay term, which is a non-negative real number typically
set to 0.0001 during training.

Based on the aforementioned algorithm steps and fundamental principles, a server-
side adaptive parameter aggregation algorithm for multi-method fusion has been imple-
mented. The detailed steps of the algorithm are presented in Algorithm 2. Algorithm 3
provides the client-side update procedure, which is used to receive the global model and
perform updates and local training.

Algorithm 2: A server-side adaptive parameter aggregation algorithm for multi-
method fusion (SAPAA-MMF)

Input: (Parameters: k is the number of clients, t is the iteration rounds of joint
training, β1 is the decay rate of the first-order moment estimation, β2 is the
decay rate of the second-order moment estimation, σ is the initial learning
rate of the server, and λ is the weight decay item)

Output: global model w∗

1 Initialize the global model as w;
2 Select kclients to participate in this joint training;
3 for i← 1 to T do
4 The selected client implements local update and training according to

Algorithm 3, and the server receives the model parameter wk
t+1 of each client;

5 According to the Equation (15), calculate the step 1 global model wavg; (step 1
aggregation)

6 Calculate the hierarchical model difference as ∆t according to Equation (14)
and Algorithm 1;

7 Calculate the first-order moment estimation mt according to the Equation (9);
8 Calculate the second-order moment estimation vt according to the

Equation (12);
9 Update the current global model wt+1 according to the Equation (17); (step 2

aggregation)
10 Distribute the global model wt+1 to each client;
11 end
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Algorithm 3: Client update algorithm

Input: global model wt+1 (The global model parameter B is the local small batch
size of the client, E and η are the number of iteration rounds and learning
rate of the client in each round of updating the model locally)

Output: Weight wk
t+1 for client k to complete round t + 1 training

1 The client receives the current global model wt+1 as the local initialization model
wk

t+1 = wt+1;
2 Divide the local dataset dk into multiple batch sets B of size b;
3 for i← 1 to E do
4 for j← 1 to B do
5 Perform gradient descent on the data in set B, and continuously update the

model wk
t+1 according to the Equation (7)

6 end
7 end

3.3.4. Algorithm Flow

Combining the SAPAA-MMF algorithm with the basic process of federated learning,
the specific algorithm process is illustrated in Figure 2. Initially, the server selects k clients
for joint training. Each client loads its local dataset and waits for the initialization of the
model. Once the server initializes the model, it distributes the global model to each client.
After receiving the initialized global model, clients load it and use it as their initial model
parameters for training. After the initialization phase, the training proceeds according
to the specified number of rounds. If training reaches the specified number of rounds,
the joint training task ends. Otherwise, each client uses its local dataset for training and
waits for all k clients to complete their training, after which the server aggregates the k
models. In the SAPAA-MMF algorithm, the improved joint mean algorithm is first used
to aggregate and obtain a one-stage global model. The hierarchical model difference is
subsequently calculated based on the previous round’s global model. This hierarchical
model difference is used as a pseudo-gradient to calculate the first-order moment estimation
and the second-order moment estimation. A two-stage global model is generated through
adaptive aggregation, and the global model parameters for the current round are stored.
This process constitutes one round of SAPAA-MMF training. Iterative training continues
until the specified number of rounds is reached or the model converges, at which point the
training concludes.

start Select K clients

The client loads the local 
dataset

Server initializes global 
model parameters

Deliver global model 
parameters to the client

The client loads the global 
model parameters

t>T?

The client trains by the 
specified epoch

k clients complete 
the training?

Wait for the other clients 
to complete the training

The server aggregates by 
Federal Average

Based on the global model 
and the average model, 

the global model variance 
is calculated

Calculate the first-order 
moment estimation of the 

adaptive aggregation

Calculate the second-order 
moment estimation of the 

adaptive aggregation

Update the global model 
with moment estimation

Save the global model 
parameters

end

Figure 2. SAPAA-MMF algorithm flow chart.
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3.3.5. Algorithm Complexity Analysis

SAPAA-MMF is a federated learning algorithm that operates within the federated
learning framework, with its primary task being model aggregation. Therefore, this section
will not consider the complexity of the federated learning framework but will focus solely
on analyzing the time and space complexity of the SAPAA-MMF algorithm. In terms of
time complexity, the primary factor affecting the complexity of the SAPAA-MMF algorithm
is the number of model layers, denoted as m. The algorithm first iterates through the
model layers for one-stage aggregation, resulting in a time complexity of O(m). Next, the
hierarchical model difference is calculated. Since the model layers need to be matched,
the time complexity of this step is O(m2). Finally, the adaptive algorithm aggregates the
two-stage model, with a time complexity of O(m). Therefore, the overall time complexity
of the SAPAA-MMF algorithm is O(m2 + 2m), which simplifies to O(m2). In terms of space
complexity, the primary factor influencing the complexity of the SAPAA-MMF algorithm is
the number of model layers, denoted as m. The algorithm requires loading all the models
into the memory during execution. Therefore, the space complexity of the algorithm
is O(m).

4. Experiments
4.1. Experiments Setup

Datasets. This paper utilizes transmission line defect data as the experimental dataset,
provided by the State Grid Sichuan Electric Power Company Electric Power Research
Institute. After thorough screening and collation, the defect data has been meticulously
marked and reviewed by professionals, ensuring its high quality and credibility, thereby
accurately reflecting various transmission line defects in actual operation. The entire
dataset is categorized based on defect characteristics, comprising four main types: bird’s
nest foreign bodies, cement rod damage, shockproof hammer slip, and insulator self-
explosion. To enable efficient detection of multiple defects using a single model, the four
types of defect data are combined into a mixed dataset containing various defect types.
Table 1 illustrates the details of all the datasets. Figures 3 and 4 present sample images of
the four defect types and the mixed dataset, respectively.

Table 1. Defect dataset information.

Dataset client_1 client_2 client_3 client_4 Total

Bird’s nest foreign bodies 115 115 115 36 381
Cement rod damage 90 100 110 23 323

Shockproof hammer slip 85 105 115 29 334
Insulator self-explosion 114 93 106 26 339

Mixed dataset 175 175 175 54 579

As shown in Table 1, federated learning involves multiple clients and requires dis-
tributed training. Therefore, this paper divides the five datasets into four parts, each
of which is used as local data for individual clients. Client_4 is designated for global
evaluation and does not participate in model training.
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(a) Bird’s nest foreign bodies (b) Cement rod damage

(c) Shockproof hammer (d) Insulator self-explosion

Figure 3. Examples of datasets. The image dataset was obtained from the State Grid Sichuan Electric
Power Research Institute, Power Internet of Things Key Laboratory of Sichuan Province.

Figure 4. Mixed data example. The image dataset was obtained from the State Grid Sichuan Electric
Power Research Institute, Power Internet of Things Key Laboratory of Sichuan Province.

Software and hardware environment. The experimental environment is divided
into a hardware environment and a software environment. The host using the Ubuntu
operating system on the hardware uses system version number 18.04 and has a memory
size of 86 G, a CPU of AMD EPYC 7402, a graphics card of NVIDIA A40 (19.5 TFLOPs),
and a video memory size of 48G. The programming language of the software is python,
version 3.8. The depth learning framework used is python, version 1.9. The programming
IDE is Pycharm 2023.2.
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Experimental framework. On the experimental framework, Flower is used as the basic
framework for federated learning and the SSD network is used as the transmission line
defect detection model to build a multi-client transmission line defect detection federated
learning synchronous training framework.

Comparison Algorithms. The SAPAA-MMF algorithm proposed in this paper is used for
federated learning, and compared with FedAvg [11], FedAvgM [35], FedYogi [11], FedAdam [11],
FedAdagrad [11], FedMedia [22], TrimmedAvg [22], and Krum [21] algorithms.

Parameter settings. The initial learning rate of the SSD network is set to 0.002,
the Batchsize is set to 2, 20 epochs are trained in each round, a total of 20 rounds, and
1200 epochs are trained for three clients. The initialization parameter of SAPAA-MMF
algorithm θ is set to 0.003, β1 is set to 0.9, β2 is set to 0.99, and σ is set to 0.01.

Evaluation metrics. The experimental results are evaluated and compared sepa-
rately for the server and client. Server evaluation measures the performance of the global
model, while client evaluation assesses the performance of the client model. The client
evaluation result is obtained by averaging all client evaluations. For evaluation met-
rics, five indicators—AP, AP50, AP75, AR100, and AR300—which effectively represent the
model’s performance, are selected. These five indicators are standard metrics from the
COCO dataset [36]. Detailed definitions of these evaluation metrics are provided in the
next subsection.

4.2. Evaluation Metrics Definition

In this paper, a target detection model is used to identify transmission line defects
and a federated learning model for defect detection is trained using the federated learning
algorithm. Therefore, the evaluation metrics used in this paper are commonly employed
in target detection and the effectiveness of the proposed federated learning algorithm is
assessed using these metrics. The commonly used evaluation metrics in target detection
include AP and AR values. These evaluation metrics are described below.

Intersection over Union (IoU) is a metric commonly used to evaluate the degree
of overlap between bounding boxes in target detection. IoU calculates the ratio of the
overlapping area between two bounding boxes to their union. It is typically used to
evaluate the match between the predicted bounding box and the actual target box. The
formula is as follows:

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
. (18)

Here, Bp represents the predicted box, Bgt is the actual target box, and the IoU value ranges
from 0 to 1.

Generally, in target detection, when the Intersection over Union (IoU) between the
predicted box and the ground truth box exceeds the threshold of 0.5, the predicted box is
considered a positive sample. Conversely, if the IoU is lower than 0.5, the predicted box is
considered a negative sample. Under this standard, the instances that the model correctly
identifies as positive samples are defined as true positives (TP), while the instances correctly
identified as negative samples are referred to as true negatives (TN). Conversely, when
an actual positive sample is mistakenly classified as negative by the model, it is recorded
as a false negative (FN). Similarly, when an actual negative sample is mistakenly classified
as positive, it is recorded as a false positive (FP). Based on the above, Precision and Recall
can be calculated using the following formulas:

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
. (20)

The Precision–Recall (PR) curve illustrates the trade-off between these two metrics
as the threshold changes, making it a common method for evaluating the effectiveness of



Big Data Cogn. Comput. 2024, 8, 102 16 of 27

classification models. Average precision (AP) is the area under the PR curve, obtained
by integrating the area enclosed by the PR curve and the coordinate axes, and serves as
a measure of the model’s overall performance. The larger the area value, the better the
overall performance of the detection model. Its calculation formula is as follows:

AP =
∫ 1

0
P(r)dr. (21)

In target detection tasks, AP is an important evaluation metric, typically calculated
based on different IoU thresholds. These thresholds include AP50 and AP75, which repre-
sent the average precision when the IoU threshold is 0.5 and 0.75, respectively. Additionally,
an IoU step of 0.05 can be used to calculate AP values from AP50 to AP95, with the average
taken as AP50:95. The model’s performance can be evaluated using multiple metrics at
different thresholds.

Average recall (AR) is the average of all Recall values within the IoU range of [0.5, 1],
used to evaluate the recall performance of the detection model. The calculation formula is
as follows:

AR = 2
∫ 1

0.5
recall(o)do (22)

In target detection tasks, the maximum number of targets to be detected is often
limited. Therefore, metrics such as AR100 and AR300 are typically used to represent the
average recall when the number of detections is limited to 100, 300, and so on, to more
comprehensively evaluate the performance of the detection model.

4.3. Comparison of Server Evaluation

This section will compare the performance of SAPAA-MMF algorithm and each
comparison algorithm in the server evaluation using five datasets.

The server evaluation results based on the Bird’s Nest Foreign Bodies dataset are
presented in Table 2. From this dataset, it is evident that the SAPAA-MMF algorithm ranks
first in four of the server evaluation metrics. The AP, AP50, AR100, and AR300 metrics
outperform those of the other comparison algorithms. Although AP75 is lower than the
maximum value among the comparison algorithms, the overall Average value remains
higher than that of the other comparison algorithms.

Table 2. The server evaluation results of each algorithm, based on the Bird’s Nest Foreign
Bodies dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.166 0.497 0.070 0.260 0.265 0.252
FedAvgM 0.185 0.455 0.114 0.265 0.265 0.257
FedYogi 0.182 0.483 0.079 0.240 0.240 0.245

FedAdam 0.174 0.506 0.063 0.247 0.247 0.247
FedAdagrad 0.196 0.503 0.074 0.255 0.255 0.257

FedMedia 0.171 0.496 0.094 0.243 0.243 0.249
TrimmedAvg 0.197 0.469 0.156 0.265 0.265 0.270

Krum 0.138 0.443 0.047 0.217 0.232 0.215
SAPAA-MMF 0.202 0.509 0.123 0.267 0.267 0.274

The server evaluation results based on the Cement Rod Damage dataset are presented
in Table 3. From this dataset, it is evident that the SAPAA-MMF algorithm ranks first in
four of the server evaluation metrics. The AP, AP50, AR100, and AR300 metrics outperform
those of the other comparison algorithms. Although AP75 is lower than the maximum



Big Data Cogn. Comput. 2024, 8, 102 17 of 27

value among the comparison algorithms, the overall Average value remains higher than
that of the other comparison algorithms.

Table 3. The server evaluation results of each algorithm, based on the Cement Rod Damage dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.601 0.783 0.752 0.633 0.650 0.684
FedAvgM 0.543 0.776 0.703 0.588 0.588 0.640
FedYogi 0.597 0.793 0.754 0.642 0.642 0.686

FedAdam 0.602 0.776 0.752 0.604 0.604 0.668
FedAdagrad 0.534 0.771 0.567 0.567 0.567 0.601

FedMedia 0.577 0.763 0.752 0.613 0.613 0.664
TrimmedAvg 0.540 0.786 0.621 0.596 0.596 0.628

Krum 0.522 0.727 0.655 0.567 0.567 0.608
SAPAA-MMF 0.614 0.795 0.752 0.654 0.654 0.694

The server evaluation results based on the Shockproof Hammer Slip dataset are pre-
sented in Table 4. The SAPAA-MMF algorithm ranks first in all five server evaluation met-
rics: AP, AP50, AP75, AR100, and AR300, outperforming the other comparison algorithms.

Table 4. The server evaluation results of each algorithm, based on the Shockproof Hammer
Slip dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.443 0.692 0.499 0.521 0.521 0.535
FedAvgM 0.440 0.691 0.478 0.514 0.514 0.527
FedYogi 0.445 0.700 0.498 0.545 0.545 0.547

FedAdam 0.438 0.703 0.521 0.521 0.534 0.543
FedAdagrad 0.264 0.629 0.116 0.393 0.393 0.359

FedMedia 0.398 0.714 0.414 0.497 0.497 0.504
TrimmedAvg 0.439 0.699 0.554 0.507 0.507 0.541

Krum 0.310 0.673 0.288 0.393 0.400 0.412
SAPAA-MMF 0.446 0.716 0.586 0.552 0.552 0.570

The server evaluation results based on the Insulator Self-Explosion dataset are pre-
sented in Table 5. From this dataset, it is evident that the SAPAA-MMF algorithm ranks
first in four of the server evaluation metrics. The AP, AP50, AR100, and AR300 metrics
outperform those of the other comparison algorithms. Although AP75 is lower than the
maximum value among the comparison algorithms, the overall Average value remains
higher than that of the other comparison algorithms.

The server evaluation results based on the mixed dataset are presented in Table 6.
From this dataset, it is evident that the SAPAA-MMF algorithm ranks first in three of the
server evaluation metrics. The AP, AP50, and AP75 metrics outperform those of the other
comparison algorithms. Although AR100 and AR300 are lower than the maximum values
among the comparison algorithms, the overall Average value remains higher than that of
the other comparison algorithms.



Big Data Cogn. Comput. 2024, 8, 102 18 of 27

Table 5. The server evaluation results of each algorithm, based on the Insulator Self-Explosion
dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.261 0.463 0.273 0.355 0.370 0.344
FedAvgM 0.293 0.523 0.349 0.385 0.391 0.388
FedYogi 0.346 0.528 0.381 0.391 0.391 0.407

FedAdam 0.330 0.517 0.407 0.370 0.376 0.400
FedAdagrad 0.256 0.531 0.260 0.300 0.300 0.329

FedMedia 0.264 0.445 0.333 0.370 0.370 0.356
TrimmedAvg 0.314 0.526 0.371 0.397 0.397 0.401

Krum 0.274 0.526 0.304 0.373 0.376 0.371
SAPAA-MMF 0.349 0.533 0.394 0.398 0.398 0.414

Table 6. The server evaluation results of each algorithm, based on the mixed dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.320 0.598 0.344 0.394 0.394 0.410
FedAvgM 0.311 0.570 0.301 0.394 0.394 0.394
FedYogi 0.290 0.581 0.262 0.356 0.356 0.369

FedAdam 0.332 0.628 0.365 0.368 0.368 0.412
FedAdagrad 0.342 0.651 0.299 0.368 0.368 0.406

FedMedia 0.290 0.562 0.321 0.397 0.397 0.393
TrimmedAvg 0.284 0.580 0.301 0.392 0.397 0.391

Krum 0.263 0.564 0.252 0.363 0.365 0.361
SAPAA-MMF 0.346 0.653 0.370 0.396 0.396 0.432

From Tables 2–6, it is evident that the SAPAA-MMF algorithm consistently achieves
the best results across the five datasets in the server evaluation, excelling in key metrics
such as AP, AP50, AP75, AR100, and AR300. Notably, the AP and AP50 metrics consistently
rank first across all datasets, and the overall average value of all SAPAA-MMF indicators
remains higher than those of the comparison algorithms. This consistent performance
highlights the superiority of the SAPAA-MMF algorithm, demonstrating its innovation and
advancement over traditional methods. The SAPAA-MMF algorithm, as a multi-method
fusion federated learning approach, leverages the strengths of different algorithms to
achieve superior performance. In the one-stage aggregation process, it effectively balances
the impact of data sample size and training loss, leading to strong initial results. The two-
stage adaptive aggregation further enhances the stability of the training process, ensuring
that the model not only performs well but also exhibits robust generalization capabilities.
Consequently, the SAPAA-MMF algorithm produces a federated learning model that excels
in defect detection, significantly improving both detection accuracy and generalization
across diverse datasets.

4.4. Comparison of Client Evaluation

This section will compare the performance of the SAPAA-MMF algorithm with that of
each comparison algorithm in the client evaluation using five datasets.

The client evaluation results based on the Bird’s Nest Foreign Bodies dataset are
presented in Table 7. From this dataset, it is evident that the SAPAA-MMF algorithm ranks
first in three of the client evaluation metrics. The AP, AP50, and AP75 metrics outperform
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those of the other comparison algorithms. Although AR100 and AR300 are lower than the
maximum values among the comparison algorithms, the overall Average value remains
higher than that of the other comparison algorithms.

Table 7. The client evaluation results of each algorithm, based on the Bird’s Nest Foreign Bodies
dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.214 0.571 0.121 0.287 0.289 0.296
FedAvgM 0.224 0.585 0.175 0.318 0.318 0.324
FedYogi 0.203 0.551 0.147 0.303 0.303 0.302

FedAdam 0.214 0.564 0.140 0.281 0.282 0.296
FedAdagrad 0.219 0.589 0.155 0.281 0.281 0.305

FedMedia 0.217 0.587 0.136 0.316 0.316 0.314
TrimmedAvg 0.224 0.562 0.160 0.316 0.319 0.316

Krum 0.203 0.518 0.135 0.295 0.305 0.291
SAPAA-MMF 0.244 0.597 0.178 0.317 0.317 0.331

The client evaluation results based on the Cement Rod Damage dataset are presented
in Table 8. The SAPAA-MMF algorithm ranks first in all five client evaluation metrics, AP,
AP50, AP75, AR100, and AR300, outperforming the other comparison algorithms.

Table 8. The client evaluation results of each algorithm, based on the Cement Rod Damage dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.611 0.837 0.720 0.659 0.659 0.697
FedAvgM 0.609 0.811 0.749 0.653 0.655 0.695
FedYogi 0.605 0.847 0.718 0.667 0.667 0.701

FedAdam 0.564 0.853 0.703 0.631 0.631 0.676
FedAdagrad 0.516 0.822 0.546 0.566 0.566 0.603

FedMedia 0.604 0.851 0.683 0.671 0.674 0.697
TrimmedAvg 0.597 0.853 0.692 0.650 0.650 0.688

Krum 0.569 0.780 0.708 0.618 0.619 0.659
SAPAA-MMF 0.621 0.867 0.758 0.677 0.678 0.720

The client evaluation results based on the Shockproof Hammer Slip dataset are pre-
sented in Table 9. From this dataset, it is evident that the SAPAA-MMF algorithm ranks
first in four of the client evaluation metrics. The AP, AP50, AR100, and AR300 metrics
outperform those of the other comparison algorithms. The overall Average value remains
higher than that of the other comparison algorithms.

The client evaluation results based on the Insulator Self-Explosion dataset are pre-
sented in Table 10. From this dataset, it is evident that the SAPAA-MMF algorithm ranks
first in four of the client evaluation metrics. The AP, AP75, AR100, and AR300 metrics
outperform those of the other comparison algorithms. The overall Average value remains
higher than that of the other comparison algorithms.

The client evaluation results based on the mixed dataset are presented in Table 11.
From this dataset, it is evident that the SAPAA-MMF algorithm ranks first in four of the
client evaluation metrics. The AP, AP50, AR100, and AR300 metrics outperform those of the
other comparison algorithms. Although AP75 is lower than the maximum value among
the comparison algorithms, the overall Average value remains higher than that of the other
comparison algorithms.
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Table 9. The client evaluation results of each algorithm, based on the Shockproof Hammer
Slip dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.473 0.751 0.500 0.544 0.544 0.562
FedAvgM 0.465 0.746 0.554 0.541 0.541 0.569
FedYogi 0.470 0.771 0.567 0.532 0.532 0.574

FedAdam 0.436 0.707 0.506 0.523 0.523 0.539
FedAdagrad 0.276 0.641 0.178 0.370 0.376 0.368

FedMedia 0.466 0.767 0.499 0.534 0.534 0.560
TrimmedAvg 0.441 0.732 0.471 0.505 0.505 0.531

Krum 0.403 0.730 0.425 0.504 0.504 0.513
SAPAA-MMF 0.473 0.772 0.559 0.553 0.553 0.582

Table 10. The client evaluation results of each algorithm, based on the Insulator Self-
Explosion dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.263 0.485 0.262 0.357 0.361 0.346
FedAvgM 0.275 0.503 0.284 0.372 0.378 0.362
FedYogi 0.316 0.554 0.320 0.377 0.378 0.389

FedAdam 0.318 0.539 0.344 0.366 0.370 0.387
FedAdagrad 0.255 0.529 0.256 0.334 0.335 0.342

FedMedia 0.210 0.434 0.166 0.319 0.325 0.291
TrimmedAvg 0.275 0.522 0.300 0.353 0.360 0.362

Krum 0.233 0.461 0.236 0.340 0.348 0.324
SAPAA-MMF 0.328 0.539 0.348 0.381 0.389 0.397

Table 11. The client evaluation results of each algorithm, based on the mixed dataset.

Algorithm
Indicator

AP AP50 AP75 AR100 AR300 Average

FedAvg 0.263 0.534 0.208 0.379 0.381 0.353
FedAvgM 0.277 0.518 0.215 0.382 0.382 0.355
FedYogi 0.270 0.516 0.262 0.341 0.341 0.346

FedAdam 0.265 0.537 0.238 0.334 0.334 0.342
FedAdagrad 0.278 0.537 0.216 0.346 0.346 0.345

FedMedia 0.280 0.527 0.239 0.364 0.364 0.355
TrimmedAvg 0.264 0.514 0.230 0.369 0.372 0.350

Krum 0.227 0.498 0.181 0.333 0.333 0.314
SAPAA-MMF 0.285 0.540 0.240 0.383 0.384 0.366

From Tables 7–11, it is evident that the SAPAA-MMF algorithm consistently achieves
the best results across the five client evaluation metrics: AP, AP50, AP75, AR100, and AR300
on the five datasets. The AP metric consistently ranks first across all five datasets, and the
average value of all metrics for the SAPAA-MMF algorithm remains higher than that of the
other comparison algorithms. SAPAA-MMF combines the strengths of multiple algorithms
and enhances the server evaluation, resulting in a better global model. This indicates that
the global model performs better across the entire dataset, demonstrating strong generaliza-
tion capabilities and consistent performance across different data distributions. As a result,
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client evaluation has also improved, further confirming that the global model exhibits
strong generalization capabilities on client data. This underscores the effectiveness and
innovation of the SAPAA-MMF algorithm, which consistently delivers strong performance
and generalization.

4.5. Hyper-Parameter Experimental Verification

In the SAPAA-MMF algorithm, factors such as data distribution, data quality, and
the number of samples also influence the effectiveness of parameter aggregation. Since
there is no direct indicator to measure these factors, the client training loss is used as an
indirect measure of local data distribution and quality. In the SAPAA-MMF algorithm,
the hyperparameter θ is used to control the balance between sample size and loss during
parameter aggregation. The optimal value of the hyperparameter θ is determined through
experiments, validating the rationale for using client loss as a condition for parameter
aggregation. Tables 12 and 13 in the mixed dataset present the optimal values of the
hyperparameter θ for server and client evaluations across different metrics, including AP,
AP50, AP75, AR100, and AR300.

Table 12. Optimal indicators for server evaluation with different parameter values based on
mixed datasets.

Parameter
Indicator

AP AP50 AP75 AR100 AR300 Average

θ = 0 0.335 0.624 0.339 0.390 0.390 0.416
θ = 0.001 0.304 0.649 0.275 0.400 0.400 0.406
θ = 0.003 0.346 0.653 0.370 0.396 0.396 0.432
θ = 0.005 0.329 0.550 0.352 0.397 0.397 0.405
θ = 0.007 0.320 0.629 0.252 0.411 0.411 0.405
θ = 0.009 0.316 0.626 0.303 0.403 0.403 0.410
θ = 0.01 0.319 0.570 0.314 0.399 0.399 0.400
θ = 0.03 0.244 0.515 0.196 0.373 0.378 0.341
θ = 0.05 0.198 0.433 0.131 0.343 0.346 0.290
θ = 0.07 0.131 0.339 0.112 0.273 0.273 0.226
θ = 0.09 0.107 0.269 0.088 0.255 0.257 0.195

Table 13. Optimal indicators for client evaluation with different parameter values based on
mixed datasets.

Parameter
Indicator

AP AP50 AP75 AR100 AR300 Average

θ = 0 0.284 0.539 0.271 0.326 0.326 0.349
θ = 0.001 0.278 0.533 0.271 0.331 0.331 0.349
θ = 0.003 0.285 0.540 0.240 0.383 0.384 0.366
θ = 0.005 0.287 0.520 0.259 0.352 0.352 0.354
θ = 0.007 0.277 0.546 0.265 0.351 0.351 0.358
θ = 0.009 0.275 0.534 0.281 0.347 0.347 0.357
θ = 0.01 0.278 0.531 0.248 0.351 0.351 0.352
θ = 0.03 0.251 0.546 0.190 0.358 0.358 0.341
θ = 0.05 0.186 0.459 0.115 0.304 0.305 0.274
θ = 0.07 0.135 0.358 0.070 0.291 0.291 0.229
θ = 0.09 0.091 0.280 0.049 0.206 0.206 0.166

From Tables 12 and 13, it is evident that different values of the hyperparameter θ have
varying effects on the server and client evaluation metrics. This fully demonstrates the
effectiveness and rationale of considering both the number of client samples and training
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loss in the SAPAA-MMF algorithm. To intuitively determine the optimal value of the
hyperparameter θ, the average values of various metrics and the corresponding values of θ
are illustrated in a bar chart, as shown in Figure 5.

From Figure 5, it is evident that different values of the parameter θ in the SAPAA-
MMF algorithm result in varying effects on both client-side and server-side evaluations.
In the server evaluation, when the parameter θ is set to 0.003, the average metric value
is 0.416 higher compared to the case where client loss is not considered. In the client
evaluation, when the parameter θ is set to 0.003, 0.005, 0.007, 0.009, or 0.01, the average
metric value is higher than the baseline value of 0.349, where client loss is not considered.
Therefore, when the parameter θ is set to 0.003, the average evaluation metrics for both
server and client are higher than those that do not consider client loss, achieving the best
performance. This fully verifies that incorporating client loss during model parameter
aggregation yields better results. Based on this analysis, the optimal value of θ used
throughout this study is 0.003.

θ θ

Figure 5. Mean value of client evaluation indicators using different parameter values (The dashed
line represents the mean of indicators that do not take into account client losses.).

4.6. Validation of Multi-Method Fusion

This paper proposes the SAPAA-MMF algorithm. By leveraging the concept of multi-
method fusion, different algorithms are combined, fully utilizing their complementary
advantages to enhance the performance and generalization ability of the model while
ensuring stability and convergence. To comprehensively verify the effectiveness of multi-
method fusion, the FedAdam algorithm and the SAPAA-MMF algorithm without fusion
are tested on five datasets. The detailed server and client evaluation metrics are presented
in Tables 14 and 15.

Table 14. Comparison between non-multi-method fusion and multi-method fusion server evaluation
based on different datasets.

Dataset
No Fusion Fusion (θ = 0)

AP AP50 AP75 AR100 AR300 AP AP50 AP75 AR100 AR300

Bird’s nest foreign bodies 0.174 0.506 0.063 0.247 0.247 0.190 0.491 0.084 0.255 0.255
Cement rod damage 0.602 0.776 0.752 0.604 0.604 0.614 0.792 0.752 0.642 0.642

Shockproof hammer slip 0.438 0.703 0.521 0.521 0.534 0.442 0.708 0.559 0.549 0.549
Insulator self-explosion 0.330 0.517 0.407 0.370 0.376 0.341 0.525 0.404 0.390 0.391

Mixed 0.332 0.628 0.365 0.368 0.368 0.335 0.624 0.339 0.390 0.390
Average 0.375 0.626 0.422 0.422 0.426 0.384 0.628 0.428 0.445 0.445
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From Tables 14 and 15, it is evident that after multi-method fusion, server-side evalua-
tions showed improvements across multiple datasets. On the Bird’s Nest Foreign Bodies
dataset, AP, AP75, AR100, and AR300 increased by 1.6%, 2.1%, 0.8%, and 0.8%, respectively.
On the Cement Pole Damage dataset, AP, AP50, AR100, and AR300 increased by 1.2%,
1.6%, 3.8%, and 3.8%. On the Shockproof Hammer Slip dataset, AP, AP50, AP75, AR100,
and AR300 increased by 0.4%, 0.5%, 3.8%, 2.8%, and 1.5%, respectively. On the Insulator
Self-Explosion dataset, AP, AP50, AR100, and AR300 increased by 1.1%, 0.8%, 2%, and
1.5%, respectively. On the mixed dataset, AP, AR100, and AR300 increased by 0.3%, 2.2%,
and 2.2%.

Table 15. Comparison between non-multi-method fusion and multi-method fusion client evaluation
based on different datasets.

Dataset
No Fusion Fusion (θ = 0)

AP AP50 AP75 AR100 AR300 AP AP50 AP75 AR100 AR300

Bird’s nest foreign bodies 0.214 0.564 0.140 0.281 0.282 0.232 0.573 0.160 0.285 0.285
Cement rod damage 0.564 0.853 0.703 0.631 0.631 0.603 0.850 0.742 0.655 0.656

Shockproof hammer slip 0.436 0.707 0.506 0.523 0.523 0.467 0.763 0.498 0.548 0.548
Insulator self-explosion 0.318 0.539 0.344 0.366 0.370 0.327 0.554 0.387 0.376 0.377

Mixed 0.265 0.537 0.238 0.334 0.334 0.284 0.539 0.271 0.326 0.326
Average 0.359 0.640 0.387 0.427 0.428 0.383 0.656 0.412 0.438 0.438

In the client evaluation on the Bird’s Nest Foreign Bodies dataset, AP, AP50, AP75,
AR100, and AR300 increased by 1.8%, 0.9%, 2%, 0.4%, and 0.3%, respectively. On the
Cement Pole Damage dataset, AP, AP75, AR100, and AR300 increased by 3.9%, 3.9%, 2.4%,
and 2.5%, respectively. On the Shockproof Hammer Slip dataset, AP, AP50, AR100, and
AR300 increased by 3.1%, 5.6%, 2.5%, and 2.5%, respectively. On the Insulator Self-Explosion
dataset, AP, AP50, AP75, AR100, and AR300 increased by 0.9%, 1.5%, 4.3%, 1%, and 0.7%,
respectively. On the mixed dataset, AP, AP50, and AP75 increased by 1.9%, 0.2%, and
3.3%, respectively.

From both server-side and client-side evaluations, fully considering the stability of
client data samples and utilizing adaptive aggregation during server-side parameter aggre-
gation leads to better aggregation outcomes. This demonstrates that multi-method fusion
effectively leverages the complementary strengths of different algorithms, significantly
improving model performance and effectiveness.

4.7. Training Effectiveness Experiment

To verify the effectiveness of applying federated learning to the training of transmis-
sion line defect detection models and to assess the effectiveness of the constructed federated
learning training framework, nine federated learning algorithms, including the SAPAA-
MMF algorithm proposed in this chapter, were selected for evaluation in this section.
Figure 6 illustrates the trends of various evaluation metrics (AP, AP50, AP75, AR100, and
AR300) for SAPAA-MMF and other algorithms on the mixed dataset as training progresses.
As shown in the figure, SAPAA-MMF and the other algorithms exhibit an upward trend
in all five evaluation metrics as training progresses, eventually stabilizing after a certain
point, demonstrating the good convergence ability of SAPAA-MMF. Furthermore, except
for the AP metric, where SAPAA-MMF is sub-optimal, SAPAA-MMF achieves the best
results in the other four evaluation metrics after 20 training rounds, further demonstrating
its effectiveness.



Big Data Cogn. Comput. 2024, 8, 102 24 of 27

Figure 6. Evaluation metrics change curves for SAPAA-MMF and comparison algorithms run for
20 rounds on a mixed dataset.

4.8. Statistical Hypothesis Testing

The Friedman statistical test is a non-parametric method for comparing multiple
related samples. It evaluates whether there are significant differences across conditions
by ranking observed values and comparing the differences between these rankings. In
this section, the Friedman test is used to conduct hypothesis testing to determine whether
there are significant differences in the performance of each algorithm. The first step
involves sorting all algorithms according to performance indicators for each dataset and
assigning ranks from 1 to k. Next, the average ranking of each algorithm across all datasets
is calculated. Finally, the statistics required for the test are calculated using Equations (23)
and (24) as follows:

τχ2 =
12N

k(k + 1)

(
k

∑
i=1

r2
i −

k(k + 1)2

4

)
, (23)

τF =
(N − 1)τχ2

N(k− 1)− τχ2
. (24)



Big Data Cogn. Comput. 2024, 8, 102 25 of 27

where k is the number of algorithms participating in the statistical test, N is the number of
datasets, and ri represents the average ranking value of the i algorithm in all datasets. τχ2

is used to measure the ranking difference among algorithms and τF is the conversion of τχ2

to make it obey the approximate normal distribution, which is used to further analyze that
the ranking difference τF obeys the F distribution with degrees of freedom of (k− 1) and
(k− 1)(N − 1).

The significance level α is typically set at 0.05 in hypothesis testing. The null hypoth-
esis posits that “there is no significant difference in the performance of the algorithms
between the server and the client”. If the value of τF is less than the critical value of
the F distribution at the significance level α, the null hypothesis is accepted, indicating
no significant difference in the performance of the algorithms between the server and
the client. Otherwise, the null hypothesis is rejected, indicating a significant difference
in performance.

To examine the performance differences between the server and the client across the
nine algorithms, the Friedman statistical test was applied to analyze the experimental
results. All statistical tests were conducted on the AP metric. The experiment involved
five datasets and nine algorithms. According to Equations (23) and (24), the value of τF
for the server evaluation is 19.38, and for the client evaluation it is 16.17. The critical
value of the F distribution at a significance level of 0.05 is F0.05(8, 32) = 2.244. Since
19.38 > 2.244 and 16.17 > 2.244, the null hypothesis is rejected, indicating a significant
difference in the performance of the algorithms between the server and the client. Based on
these experimental results, it can be concluded that SAPAA-MMF outperforms the other
comparison algorithms.

5. Conclusions

This study proposes a server-side Adaptive Parameter Aggregation Algorithm based
on Multi-method Fusion (SAPAA-MMF) for transmission line defect detection. A feder-
ated learning framework for transmission line defect detection was constructed to enable
distributed model training without the need to centrally store or transmit original data, ad-
dressing the issues of data silos, privacy concerns, and hardware performance limitations
associated with traditional transmission line defect detection model training. To address
the limitation that existing federated learning algorithms only use a single algorithm for
server-side parameter aggregation, making it challenging to fully leverage the advantages
of different algorithms, this study proposes a server-side adaptive parameter aggregation
algorithm based on multi-method fusion to enhance the aggregation effect, model perfor-
mance, and generalization ability. The performance of the SAPAA-MMF algorithm was
compared with multiple baseline algorithms across five datasets, and the effectiveness
of SAPAA-MMF was verified. This comprehensive performance across multiple datasets
underscores the effectiveness of SAPAA-MMF in addressing challenges associated with
federated learning in defect detection tasks. By integrating multiple methods and carefully
balancing key factors, SAPAA-MMF demonstrates its capacity to provide a more reliable
and adaptable solution for real-world transmission lines defect detection applications.

However, existing federated learning algorithms often overlook personalized client
feature information during the client update process. Additionally, the generalization
ability of these models for performing defect detection tasks in other domains has not
been thoroughly demonstrated. Future research should explore additional strategies and
optimize client parameter updates to further enhance model performance. Furthermore,
applying SAPAA-MMF to defect detection tasks in other real-world scenarios could further
highlight the effectiveness of our research approach.
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arXiv 2020, arXiv:2003.00295.

12. Wu, Q.; An, J. An active contour model based on texture distribution for extracting inhomogeneous insulators from aerial images.
IEEE Trans. Geosci. Remote Sens. 2013, 52, 3613–3626. [CrossRef]

13. Wang, W.; Wang, Y.; Han, J.; Liu, Y. Recognition and drop-off detection of insulator based on aerial image. In Proceedings of
the 2016 9th International Symposium on Computational Intelligence and Design, Hangzhou, China, 10–11 December 2016;
pp. 162–167.

14. Yan, S.; Jin, L.; Duan, S.; Zhao, L.; Yao, C.; Zhang, W. Power line image segmentation and extra matter recognition based on
improved otsu algorithm. In Proceedings of the 2013 2nd International Conference on Electric Power Equipment-Switching
Technology, Matsue, Japan, 20–23 October 2013; pp. 1–4.

15. Chen, J.; Wen, Y.; Nanehkaran, Y.A.; Zhang, D.; Zeb, A. Multiscale attention networks for pavement defect detection. IEEE Trans.
Instrum. Meas. 2023, 72, 1–12. [CrossRef]

16. Yu, Y.; He, Y.; Karimi, H.R.; Gelman, L.; Cetin, A.E. A two-stage importance-aware subgraph convolutional network based on
multi-source sensors for cross-domain fault diagnosis. Neural Netw. 2024, 179, 106518. [CrossRef] [PubMed]

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
18. Li, F.; Xin, J.; Chen, T.; Xin, L.; Wei, Z.; Li, Y.; Zhang, Y.; Jin, H.; Tu, Y.; Zhou, X.; et al. An automatic detection method of bird’s

nest on transmission line tower based on faster_rcnn. IEEE Access 2020, 8, 164214–164221. [CrossRef]
19. Li, L.; Wang, Z.; Zhang, T. Gbh-yolov5: Ghost convolution with bottleneckcsp and tiny target prediction head incorporating

yolov5 for pv panel defect detection. Electronics 2023, 12, 561. [CrossRef]
20. Wang, X.; Gao, H.; Jia, Z.; Li, Z. Bl-yolov8: An improved road defect detection model based on yolov8. Sensors 2023, 23, 8361.

[CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2019.2891123
http://dx.doi.org/10.3390/en12071204
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/j.cie.2020.106854
http://dx.doi.org/10.1109/TGRS.2013.2274101
http://dx.doi.org/10.1109/TIM.2023.3298391
http://dx.doi.org/10.1016/j.neunet.2024.106518
http://www.ncbi.nlm.nih.gov/pubmed/39068680
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/ACCESS.2020.3022419
http://dx.doi.org/10.3390/electronics12030561
http://dx.doi.org/10.3390/s23208361
http://www.ncbi.nlm.nih.gov/pubmed/37896455


Big Data Cogn. Comput. 2024, 8, 102 27 of 27

21. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.
Adv. Neural Inf. Process. Syst. 2017, 30, 119–129.

22. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.

23. Pan, Z.; Geng, H.; Wei, L.; Zhao, W. Adaptive client model update with reinforcement learning in synchronous federated learning.
In Proceedings of the 2022 32nd International Telecommunication Networks and Applications Conference, Wellington, New
Zealand, 30 November–2 December 2022; pp. 1–3.

24. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach.
Learn. Syst. 2020, 2, 429–450.

25. Li, Q.; He, B.; Song, D. Model-contrastive federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10713–10722.

26. Zhu, Z.; Hong, J.; Zhou, J. Data-free knowledge distillation for heterogeneous federated learning. In Proceedings of the 38th
International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 12878–12889.

27. Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-
learning approach. Adv. Neural Inf. Process. Syst. 2020, 33, 3557–3568.

28. Li, X.-C.; Zhan, D.-C.; Shao, Y.; Li, B.; Song, S. Fedphp: Federated personalization with inherited private models. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2021; pp. 587–602.

29. Chen, J.; Zhang, R.; Guo, J.; Fan, Y.; Cheng, X. Fedmatch: Federated learning over heterogeneous question answering data. In
Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5 November
2021; pp. 181–190.

30. Niu, Y.; Deng, W. Federated learning for face recognition with gradient correction. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vancouver, BC, Canada, 28 February–1 March 2022; pp. 1999–2007.

31. Collins, L.; Hassani, H.; Mokhtari, A.; Shakkottai, S. Exploiting shared representations for personalized federated learning. In
Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 2089–2099.

32. Shen, T.; Zhang, J.; Jia, X.; Zhang, F.; Lv, Z.; Kuang, K.; Wu, C.; Wu, F. Federated mutual learning: A collaborative machine
learning method for heterogeneous data, models, and objectives. Front. Inf. Technol. Electron. Eng. 2023, 24, 1390–1402. [CrossRef]

33. Shi, C.; Shen, C.; Yang, J. Federated multi-armed bandits with personalization. In Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics, Virtual Event, 13–15 April 2021; pp. 2917–2925.

34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Hsu, T.-M.H.; Qi, H.; Brown, M. Federated visual classification with real-world data distribution. In Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part X 16; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 76–92.

36. Lin, T.-Y.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1631/FITEE.2300098

	Introduction
	Related Work
	Defect Detection
	Federated Learning

	Proposed Method
	Overall Algorithm Architecture
	Objective Function
	Algorithm Principle
	Joint Mean Algorithm
	Adaptive Aggregation Algorithm
	A Server-Side Adaptive Parameter Aggregation Algorithm for Multi-Method Fusion
	Algorithm Flow
	Algorithm Complexity Analysis


	Experiments
	Experiments Setup
	Evaluation Metrics Definition
	Comparison of Server Evaluation
	Comparison of Client Evaluation
	Hyper-Parameter Experimental Verification
	Validation of Multi-Method Fusion
	Training Effectiveness Experiment
	Statistical Hypothesis Testing

	Conclusions
	References

