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Abstract: Blockchain technology has impacted various sectors and is transforming them through its
decentralized, immutable, transparent, smart contracts (automatically executing digital agreements)
and traceable attributes. Due to the adoption of blockchain technology in versatile applications,
millions of transactions take place globally. These transactions are no exception to adversarial attacks
which include data tampering, double spending, data corruption, Sybil attacks, eclipse attacks, DDoS
attacks, P2P network partitioning, delay attacks, selfish mining, bribery, fake transactions, fake
wallets or phishing, false advertising, malicious smart contracts, and initial coin offering scams. These
adversarial attacks result in operational, financial, and reputational losses. Although numerous
studies have proposed different blockchain anomaly detection mechanisms, challenges persist. These
include detecting anomalies in just a single layer instead of multiple layers, targeting a single
anomaly instead of multiple, not encountering adversarial machine learning attacks (for example,
poisoning, evasion, and model extraction attacks), and inadequate handling of complex transactional
data. The proposed AHEAD model solves the above problems by providing the following: (i) data
aggregation transformation to detect transactional and user anomalies at the data and network
layers of the blockchain, respectively, (ii) a Three-Layer Hierarchical Ensemble Learning Model
(HELM) incorporating stratified random sampling to add resilience against adversarial attacks,
and (iii) an advanced preprocessing technique with hybrid feature selection to handle complex
transactional data. The performance analysis of the proposed AHEAD model shows that it achieves
higher anti-adversarial resistance and detects multiple anomalies at the data and network layers. A
comparison of the proposed AHEAD model with other state-of-the-art models shows that it achieves
98.85% accuracy against anomaly detection on data and network layers targeting transaction and
user anomalies, along with 95.97% accuracy against adversarial machine learning attacks, which
surpassed other models.

Keywords: blockchain; anomaly detection; adversarial machine learning; cybersecurity

1. Introduction

Blockchain technology’s decentralized, secure, and transparent nature has positively
impacted various industries. The distributed ledger system of blockchain enables trustless
record keeping by verifying and timestamping each transaction through a network of nodes.
This decentralized structure allows for secure, transparent, and immutable transactions
without a central authority, facilitating trust among parties in a transaction [1]. Blockchain
technology not only laid the foundation of cryptocurrencies like Bitcoin and Ethereum
but has also transformed several industries such as the Internet of things, supply chain
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management, smart healthcare, education, fintech, energy sector, smart cities, e-governance,
voting systems, and many more by changing the way data and assets are managed and ex-
changed [2]. Recent advancements in blockchain technology, such as web 3.0, non-fungible
tokens, central bank digital currencies, blockchain-as-a-service, the metaverse, decentral-
ized finance, green blockchain, and Ricardian Contracts, are impacting the evolution of
technology globally [3]. Since then, research in blockchain technology has been growing.

Blockchain technology works on a decentralized network architecture, ensuring secure
transactions through a distributed ledger spread across nodes. These nodes validate trans-
actions using consensus algorithms, such as proof-of-work or proof-of-authority, depending
on the blockchain type (public or private). Cryptography secures these transactions, with
smart contracts automating processes according to predefined codes. The application layer
provides a platform for applications based on blockchain, such as cryptocurrencies, and
supply chains. The overall blockchain working process consists of these steps: broadcasting
transactions, verifying them through consensus, grouping them into blocks secured by
cryptographic hashes, and updating the distributed ledger with uniformity and integrity
across the network [4].

The blockchain technology follows a structured approach that divides the blockchain
into multiple layers, each with a distinct role. The data layer organizes the transaction
blocks for transparency and security. The network layer creates consensus among partici-
pating nodes to maintain their integrity. The incentive layer executes the rewards policies.
The contract layer ensures the deployment of smart contracts to facilitate decentralized
agreements. The application layer provides a user-friendly interface for decentralized
applications (dApps) for end-users of blockchain services. The execution layer executes
smart contracts, ensuring trustless and decentralized operations. This layered approach
helps create a robust, secure, transparent, and efficient blockchain architecture having a
wide range of applications ranging from secure financial transactions to decentralized
governance systems. A high-level overview of these layers is presented in Figure 1.

Figure 1. Blockchain layers and their functionalities.

An anomaly is an irregularity or deviation from the norm or expected pattern. It
represents something that stands out as unusual or atypical compared to what is considered
standard or normal [5]. Anomaly detection is playing a key role in cybersecurity by
detecting intrusions and fraud, monitoring network performance, ensuring data quality,
and predicting equipment failures. It is also used in healthcare to detect critical health
events, in spam detection, and in surveillance to identify unusual activities [6]. This makes
anomaly detection crucial for maintaining security, performance, and reliability across
various applications.
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Due to blockchain’s decentralized nature and wide range of applications in various
domains, blockchain technology faces some challenges due to some inherent vulnerabili-
ties/anomalies like double-spending, where a single cryptocurrency is utilized multiple
times, phishing attacks that aim to steal a user’s private keys, and Ponzi schemes where
returns are paid to earlier investors from the capital of newer ones, money laundering,
scam operations, and so on [7]. Abnormal user behaviour poses a critical threat to the
integrity and security of blockchain systems. These anomalous activities can lead to a huge
loss for an organization if not handled properly, like financial losses due to fraud, loss of
user confidence, exploitation of the network for illicit activities, and so forth. Thus, it is
important to detect and mitigate these anomalies to ensure trust, integrity, and security in
blockchain networks.

Adversarial attacks manipulate machine learning models, including those used for
anomaly detection in blockchain. These attacks exploit vulnerabilities, leading to incorrect
results [8]. Common types include the following: (i) poisoning attacks (contaminating
training data), (ii) evasion attacks (manipulating input data), (iii) extraction attacks (steal-
ing sensitive information), (iv) input manipulation attacks (modifying transactions to
evade detection), (v) model inversion attacks (reverse-engineering model parameters), and
(vi) impersonation attacks (mimicking legitimate users or transactions).

Adversarial attacks on blockchain anomaly detection models lead to financial losses,
reputational damage, and compromised security. Developing robust and resilient models
is crucial to preventing financial fraud, protecting user data, and maintaining transaction
integrity. Anomaly detection models are critical in identifying suspicious transactions, such
as money laundering or fraud. However, the entire blockchain ecosystem is at risk if these
models are vulnerable to adversarial attacks. Therefore, developing adversarial-resistant
models is essential to ensuring the security and trustworthiness of blockchain transactions.

The existing studies on anomaly detection techniques in blockchain focus on single
aspects, such as a single type of anomaly (for example, transactions or users) and a single
layer (for example, the data or network layer). This results in a narrow scope of detection,
inefficient utilization of computational resources, and limited anomaly detection. The
existing methods can only detect anomalous transactions; however, they fail to identify the
anomalous user behind the transaction. Moreover, traditional algorithms for anomaly detec-
tion face challenges when working with the complex and imbalanced nature of blockchain
datasets, which leads to less optimal performance. Another concern is the vulnerability of
these ML models when they face adversarial attacks because adversaries can exploit the
models to manipulate the network. Lastly, when detecting anomalies, the existing models
may be biased because they depend only on one ML technique. This research aims to
develop a Hierarchical Ensemble Learning Model (HELM) for an optimized, secure, and
multi-layered ML-based anomaly detection mechanism tailored for blockchain networks
to address the aforementioned challenges. The proposed AHEAD makes the following
key contributions:

• Anti-adversarial resilience of the proposed ML model from attacks like data poisoning, eva-
sion, extraction, and input manipulation based on the novel Three-Layer Hierarchical
Ensemble Learning Model (HELM) employing stratified random sampling.

• Multi-layered, multi-anomaly detection at the data and network layers of blockchain,
targeting both anomalous transactions and users.

This manuscript is organized as follows: The second section provides a comprehensive
review of the existing literature. Section 3 introduces our proposed methodology, detailing
the innovative approaches and techniques. Section 4 presents the evaluation of the proposed
AHEAD model. Further, Section 5 compares AHEAD with existing ML mechanisms.
Finally, in Section 6, we conclude the paper by summarizing the key insights derived from
our study.
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2. Literature Review

As discussed earlier, the decentralized nature and other properties of blockchain net-
works lead to their vast deployment in various domains from business to governance. The
blockchain, however, faces similar challenges and security threats as other similar widely
welcomed technologies could. This includes various attacks like fraudulent transactions,
cyber-attacks, traffic bottlenecks, and so on. The research community has proposed a
variety of solutions to address these challenges. These include strategies like machine
learning approaches, graph-based approaches, real-time anomaly detection, network traffic
analysis, and data mining approaches. This section discusses the limitations and efficiency
of existing transaction-based and user-based anomalies.

2.1. Anomalous Transaction-Based Anomaly Detection

In blockchain networks, the integrity and security of transactions play an important
role in maintaining trust and functionality. Transactional anomalies in blockchain refer
to irregular or suspicious activities that deviate from expected patterns. This indicates
potential fraud, theft, or other malicious intents. It is important to identify these anomalies
to prevent financial losses and protect against cyber threats. This subsection explores
various methodologies aimed at identifying and mitigating such anomalous transactions in
blockchain networks.

2.1.1. Machine Learning Approaches

Several studies have applied machine learning techniques to improve anomaly de-
tection within blockchain networks. For instance, the Isolation Forest (IF) algorithm has
been employed to develop a method for automatically signing blockchain transactions [9].
This approach utilizes historical transaction data to automatically authenticate transactions.
Only those transactions identified as anomalous require manual verification by a user. This
method enhances the efficiency of the transaction process while ensuring security against
fraudulent activities. However, personalized anomaly detection’s effectiveness may be
limited by the variability in transaction patterns across different users, requiring continual
adaptation and refinement of the detection model to cater to individual user behaviours.

Efficient fraud detection [10] within Bitcoin transactions is proposed using XGBoost
and random forest algorithms. It is validated by precision and AUC metrics; this approach
demonstrates notable accuracy in fraud detection. However, its focus on a single anomaly
and blockchain layer results in incomplete detection and inefficient computational use.
Additionally, security analysis against adversarial attacks is performed using the Oyente
tool. However, the model’s robustness against actual adversarial inputs has not been tested.
The model cannot fully address such sophisticated threats.

ADOBSVM [11], an anomaly detection model for Bitcoin transactions using a support
vector machine (SVM), extracts comprehensive features from transaction data for refining
labels to eliminate noise and employs an SVM to identify illicit activities. This model claims
to enhance security and also optimize power consumption and execution time, but it lacks
empirical evidence to prove these claims. Moreover, an SVM relies heavily on data points
for classification purposes. This research uses too few features during training, raising the
risk associated with false positives.

Theft detection [12] is employed in Bitcoin using unsupervised machine learning
algorithms like K-nearest neighbour, support vector machine, random forest, Ada Boost,
and multi-layer perception to predict Bitcoin transaction patterns, with random forest
outperforming others by achieving recall, precision, and F1 values of 95.9%. However,
focusing on specific aspects of anomalies may lead to inefficient computational use and
incomplete detection. Additionally, the approach might not adequately address the threat
of adversarial attacks, which could exploit vulnerabilities in the detection system.
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2.1.2. Graph-Based Approaches

Graph-based approaches are notably effective in enhancing the detection of anomalies
within blockchain networks. A method for detecting abnormal transactions, leveraging
node and neighbourhood features through a random walk method [13], is proposed for
enhanced anomaly detection. It combines these features to mine information from the
network’s structure and employs an unsupervised algorithm to identify and rank abnormal
transactions. However, the research is limited to basic network metrics like degree centrality,
which may affect the accuracy of feature extraction. Additionally, the reliance on unsuper-
vised algorithms and the complexity of the fusion process may limit the model’s precision.

The multi-layer temporal transaction [14] anomaly detection model employs a graph
neural network approach for anomaly detection in Ethereum networks, combining multi-
layer temporal analysis and graph convolutional networks for graph classification. How-
ever, the lack of detailed evaluation of large-scale, complex networks may challenge the
model’s scalability and generalizability.

A scalable anomaly detection method [15] was proposed for blockchain transactions,
utilizing a sub-graph approach and GPU acceleration to identify illegal transactions. By
focusing on partial blockchain data and employing parallel processing, this method re-
duces detection time. In evaluations with real Bitcoin data, it achieved an 11.1× speed
improvement over previous GPU-based methods. This advancement enables a quicker
response to fraudulent transactions, although its effectiveness is directly tied to the chosen
sub-graph size and the algorithm’s adaptability to transaction complexity.

2.1.3. Real-Time Anomaly Detection

Real-time anomaly detection in blockchain is crucial for identifying and mitigating
threats in a timely manner. BAD [16], a blockchain anomaly detection framework, protects
blockchain networks from unforeseen attacks by identifying and mitigating anomalous
activities. This method leverages blockchain metadata to detect anomalies. Despite its
novel approach to enhancing blockchain security, the framework’s reliance on unsuper-
vised detection algorithms may limit its ability to adapt to and identify new, evolving
attack patterns. Continuous model evolution and integration of more dynamic detection
mechanisms are required in it.

2.1.4. Network Traffic Analysis

A network traffic analysis approach was proposed for detecting anomalies in blockchain
networks. An anomaly detection framework was developed for blockchain networks based
on traffic monitoring [17], using a semi-supervised learning model with an AutoEncoder
(AE) for profiling normal network behaviour. This approach focuses on network traffic
statistics rather than blockchain ledger data and enables the detection of previously unseen
attack patterns. The system demonstrated effective online detection of malicious activities,
reducing time complexity for both training and testing phases by up to 66.8% and 85.7%,
respectively. However, its reliance on traffic data may overlook ledger-based anomalies,
and the semi-supervised model might not adapt quickly to novel, complex attack vectors,
highlighting areas for future improvement.

2.1.5. Data Mining Approaches

Data mining approaches in blockchain anomaly detection employ algorithms for effec-
tive analysis. The label scarcity method [18] was presented for detecting money laundering
in the Bitcoin blockchain. The study highlights the cons of unsupervised anomaly detec-
tion for identifying illicit transactions. The authors proposed an active learning solution
that achieved comparable results to fully supervised baselines with only 5% of the labels,
leveraging a limited number of expert-annotated labels in real-world scenarios. However,
the approach may struggle to adapt rapidly to evolving laundering techniques without
continuous input from costly manual labelling, a drawback to this approach.
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2.2. Anomalous User-Based Anomaly Detection

In blockchain technology, ensuring the authenticity and legitimacy of user activity
is important for maintaining the network’s integrity and trustworthiness. Anomalous
user-based activities, including illicit account operations, fraudulent transactions, and
suspicious behavioural patterns, pose challenges to blockchain network security. Detecting
such anomalies is critical for preempting potential threats and mitigating risks that can
compromise the blockchain ecosystem. This subsection explores the research in anomaly
detection focused on user behaviour.

2.2.1. Machine Learning Approaches

A novel approach was developed to improve Bitcoin ownership identification [19] by
analyzing transaction patterns to cluster addresses that share the same ownership. This
method analyzed over 46 million Bitcoin addresses and used transaction patterns such as
relay, sweep, and distributing transactions, combined with traditional heuristics, to identify
clusters of addresses. This method of combining features enhances anomaly detection in
Bitcoin. However, focusing on predefined patterns may miss other blockchain transactions
and not consider evolving adversarial attacks, compromising blockchain security.

In another study, the XGBoost classifier is applied to detect illicit accounts in the
Ethereum blockchain, focusing on transaction history [20]. This method, leveraging 2179 ac-
counts flagged by the Ethereum community and 2502 normal accounts, achieved an average
accuracy of 0.963 with an AUC of 0.994, advancing the detection of illicit activities on the
Ethereum network. Despite its effectiveness, the model’s reliance on transaction history
could limit adaptability to evolving illicit patterns not represented in the dataset, em-
phasizing the need for continuous data updates and model refinement to maintain its
detection capabilities.

Another Fraud Detection Framework [21] experimented on various machine learning
techniques, including K-nearest neighbour, decision tree (DT), and random forest, to
identify unauthorized accounts within the Ethereum blockchain. A limitation of this study
is its reliance on a relatively small dataset from Kaggle.com, which might not provide the
comprehensive representation required for accurate detection of the Ethereum blockchain.

2.2.2. Graph-Based Approaches

A temporal graph properties-based approach [22] was presented for detecting ma-
licious accounts in permission-less blockchains. This approach utilizes a directed graph
model. The study leverages machine learning models to classify accounts as malicious or
benign based on newly introduced temporal features such as burst and attractiveness, in
addition to traditional graph metrics. However, the study’s reliance on temporal features
may not fully capture blockchain fraud’s dynamic and sophisticated nature.

Another study presents an anomaly detection method for public blockchain networks
using an evolved graph attention [23] network and a directed dynamic attribute graph,
enhancing transaction attribute granularity and updating node learning weights based
on temporal changes. The authors use the Graph-SMOTE method to handle imbalanced
data. The proposed method may encounter scalability challenges due to the computational
complexity inherent in handling larger and complicated blockchain networks.

2.2.3. Data Mining Approaches

Various data mining approaches have been proposed in the research community
for anomaly detection in blockchain. A scalable anomaly detection method is proposed
in [24], using data sketches for a compact block for the identification of suspicious activities
without analyzing the entire blockchain. The proposed technique utilizes machine learning
approaches and frequency estimation with sketches like HyperLogLog, which can identify
complex patterns; however, it can suffer from the need for extensive training data and
potential accuracy issues due to their probabilistic nature, leading to a trade-off between
efficiency and precision in detecting blockchain anomalies.
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Similarly, the authors in [25] proposed a sketch-based framework for detecting anoma-
lies in blockchain networks, using Ethereum as a test case. It identifies suspicious ac-
counts while reducing memory and time complexity (90–96% and 86%) as compared to
conventional methods. This approach may face challenges in identifying complex, low-
frequency anomalies and adapting to new threats due to its reliance on summarized data
and fixed parameters.

A collective anomaly detection approach [26] was proposed to find fraud in Bitcoin.
The authors focused on user behaviour across multiple wallets, using the trimmed K-means
algorithm. According to the article, the proposed method identified 14 fraudulent users
and 26 associated addresses. This work utilized high computational and operational power
to extract features and execute algorithms. Also, this approach targets a single blockchain
layer, leading to incomplete detection and inefficient computational usage. The approach
might be susceptible to adversarial attacks, exposing vulnerabilities in the detection system
and potentially compromising blockchain security.

A summary of related work on anomaly detection is presented in Table 1. In conclu-
sion, detecting anomalies in blockchain networks requires advanced, multi-dimensional
approaches due to the complexities of fraud, unauthorized transactions, and cyber threats.
This review illuminates the necessity for innovative solutions that transcend traditional
methods. This research aims to create a secure, efficient, and comprehensive framework for
detecting anomalies.

Table 1. Summary of related work on anomaly detection in blockchain networks.

Existing Work Year Target Anomaly Target
Layer

Multi-
Layer

Multi-
Anomaly

ML
Model

Feature Selection
Method Dataset Approach

Evolved graph
attention [13] 2024 Transaction

(Txn) Data × × × Domain-Driven Bitcoin Graph theory

Multi-layer temporal
transaction [14] 2023 Txn Data × × × Domain-Driven Ethereum Graph neural network

Efficient fraud
detection [10] 2022 Txn Data × × ✓ Domain-Driven Bitcoin XGBoost, RF

ADOBSVM [11] 2022 Txn Data × × ✓ Domain- Driven Bitcoin SVM

Bitcoin theft
detection [12] 2021 Txn Data × × ✓ Domain-Driven Bitcoin KNN, SVM, RF, Ada

Boost, MLP

Scalable anomaly
detection [15] 2021 Txn Data × × × Domain-Driven Bitcoin Graph theory

Monitoring traffic [17] 2021 Txn Data × × ✓ Statistical Bitcoin Semi-supervised learning
model

BAD [16] 2020 Txn Data × × × Domain-Driven Bitcoin Leveraging blockchain
metadata

Random walk [13] 2020 Txn Data × × ✓ Domain-Driven Bitcoin K-means clustering

Label scarcity [18] 2020 Txn Data × × × Machine learning Bitcoin Active learning

Blockchain Transaction
Signing [9] 2019 Txn Data × × ✓ Domain-Driven Ethereum IF

Sketch-based
framework [25] 2023 User Network

(N/W) × × × Domain-Driven Ethereum Sketching technique

Collective anomaly
detection [26] 2022 User N/W × × ✓ Domain-Driven Bitcoin Trimmed K-means

clustering

Scalable anomaly
detection [24] 2021 User N/W × × × Statistical Ethereum Sketching

Temporal graph
properties [22] 2021 User N/W × × ✓ Domain-Driven Ethereum K-means

Fraud Detection
Framework [21] 2021 User N/W × × ✓ Statistical Ethereum DT, RF, K-nearest

neighbours

Transactional History
Approach [20] 2020 User N/W × × ✓ Machine learning Ethereum XGBoost, ETC

Ownership
identification [19] 2018 User N/W × × ✓ Domain-Driven Bitcoin Clustering

Proposed AHEAD 2024 Transaction and
User

Data
and

N/W
✓ ✓ ✓

Hybrid (Statistical +
ML + Data Science +

Domain-Driven)
Ethereum

Ensemble (ETC, GBC,
ABC, RFC, KNC, eXGB,
LGBM, BC, DTC, CB)
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2.3. Problem Statement

Based on the survey in the last section, the problem can be stated as follows. The
majority of the research work on detecting and mitigating adversarial attacks is either fo-
cused on a single aspect of an anomaly (such as only anomalous transactions or anomalous
users) or a single layer of the blockchain (such as the data or the network layer). This leads
to inefficient computational usage, incomplete detection, mitigation, and remedial steps,
thereby limiting the scope of anomaly detection [9,11]. Moreover, blockchain data possess
inherent complexities such as high dimensionality, huge volumes of data, and imbalanced
classes, which makes data preprocessing challenging and negatively affects the accuracy
of anomaly detection [27]. Lastly, to the best of our survey, the current anomaly detection
ML models are vulnerable to adversarial attacks which can exploit their weaknesses and
compromise the overall integrity of the blockchain network [8,10,28].

3. Proposed Methodology

This section discusses the methodology of our proposed work for anomaly detection
in the blockchain on multiple layers. The first subsection discusses preprocessing steps. The
selection of optimal algorithms for enhanced anomaly detection is discussed in subsection
two, followed by the three-layered ensemble model approach in subsection three. Figure 2
describes the phases of our proposed work for anomaly detection.

Figure 2. Proposed AHEAD: multi-layer multi-anomaly detection with adversarial ML model resilience.



Big Data Cogn. Comput. 2024, 8, 103 9 of 21

3.1. Preprocessing of Transactional Dataset

Data preprocessing in blockchain anomaly detection is essential for transforming
complex and raw data into a clear, usable format. In this stage, we perform cleaning,
handling missing values, data balancing, scaling, encoding, feature engineering, and
normalizing the data. In this process, we enhance data quality, which is crucial for accurate
and efficient anomaly detection, strengthening blockchain network security. This subsection
will present the details of the specific steps of the preprocessing.

3.1.1. Dataset

Our experiments utilize the Ethereum network transaction dataset [29]. This dataset
was chosen after extensive reviews of several pertinent datasets, with the final selection
strongly aligning with the objectives of our research. The Ethereum dataset contains trans-
actions, where each transaction consists of two components: first, transaction-data, which
are required to detect data layer anomalies, and transaction-users, which are required
to detect network layer anomalies. Features related to transaction-data include ‘Hash’,
‘Transaction_index’, ‘Value’, ‘Input’, ‘Receipt_cumulative_gas_used’, ‘Receipt_gas_used’,
‘Block_timestamp’, ‘Block_number’, and ‘Block_hash’. Similarly, the features related to
transaction-users include ‘From_address’, ‘To_address’, ‘Nonce’, ‘Gas’, ‘Gas_price’,
‘From_scam’, ‘To_scam’, ‘From_category’, and ‘To_category’. The dataset comprises 71,250
transactions, each described by 18 distinct features. Among these, 57,000 transactions are
categorized as normal, while 14,250 are identified as anomalous. A detailed description of
the dataset’s features is provided in Table 2.

Table 2. Feature description in blockchain transactions.

Feature Name Description

Hash Hash of the transaction.
Nonce Number of transactions made by the sender.

Transaction_index Index of the transaction.
From_address Transaction sender address.

To_address Transaction receiver address.
Value Value of the transaction in Wei.
Gas Gas used in the transaction.

Gas_price Price of gas provided by the sender.
Input Data sent with the transaction.

Receipt_cumulative_gas_used Accumulative gas used in block until current transaction.
Receipt_gas_used Actual gas used in the transaction.
Block_timestamp Timestamp of the block containing the transaction.

Block_number Number of the block containing the transaction.
Block_hash Hash of the block containing the transaction.
From_scam Indicator if the sender is anomalous.

To_scam Indicator if the receiver is anomalous.
From_category Category of sender anomaly, if available.

To_category Category of receiver anomaly, if available.

3.1.2. Handling Missing Values

The dataset has several missing values in the ‘from_category’ and ‘to_category’
columns. These columns contain 68,622 and 59,601 null values, respectively, out of 71,250
records. We dropped these two columns to enhance our dataset’s quality and reliability
and minimize the noise and potential data skewness. We performed this step to maintain
data integrity and improve the accuracy of our anomaly detection model.

3.1.3. Data Aggregation

Further, the aggregation of data was performed, an important preprocessing step in
the development of our anomaly detection model for blockchain. This process is pivotal in
identifying anomalies at data and network layers, one of the objectives of our research.
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In data aggregation, we introduced a new target attribute variable ‘class’. It was
derived from the ‘to_scam’ and ‘from_scam’ columns. We updated the ‘to_scam’ column
through strategic data transformations, replacing all 1s with 2s, and engineered the ‘class’
attribute using condition-based classifications. This attribute classifies the transactions into
three classes to distinguish between normal and anomalous transactions and their users.
The classification of transactions and users are presented in Table 3.

We introduce a new abstract feature set by labelling these classes and removing the
original ‘from_scam’ and ‘to_scam’ columns. This refined data aggregation and feature
engineering approach advances our model’s capacity to detect and analyze anomalies in
the blockchain.

Table 3. Classification of anomalous transactions and users.

Class Description

0 Normal transaction and normal user (Normal Tx)
1 Anomalous transactions with anomalous user at the sender side (Anom Tx Sndr)
2 Anomalous transactions with anomalous user at the receiver side (Anom Tx Rcvr)

3.1.4. Data Encoding

In the preprocessing stage, an essential step involves transforming categorical variables
into a format that machine learning algorithms can efficiently process. Categorical data
in their original form can introduce complexities and ambiguities, hindering the model’s
performance and interpretability. We used the Label-Encoder class from the scikit-learn
preprocessing module for Encoding. The mathematical algorithm used by Label-Encoder
is a mapping function: it assigns a unique integer (starting from 0) to each distinct category
in a column, based on the alphabetical order of the categories, using Equation (1):

f (x) = index of x in the sorted list of unique categories. (1)

We identify three categorical columns, i.e., ‘block_hash’, ‘from_address’, and ‘to_address’.
Further, we encoded them into numerical values. In this transformation, we appended
the suffix ‘_encoded’ to new columns and dropped the categorical columns. This step is
beneficial in blockchain contexts, where data categories like addresses and hashes do not
possess a natural order. We enhanced the precision and interpretability of our anomaly
detection model through this encoding process.

3.1.5. Normalization of Numerical Features

When working with anomaly detection in blockchain systems, it is crucial to normalize
the numerical features to boost the effectiveness of the models. We used the Standard-Scaler
module from the scikit-learn library to accomplish this. The purpose of scaling is to modify
the distribution of each variable to have a mean value (µ) of 0 and a standard deviation (σ)
of 1. The mathematical formula used in Standard-Scaler for scaling a feature is described in
Equation (2):

Xscaled =
X − µ

σ
(2)

3.1.6. Temporal Feature Decomposition

After the normalization step, temporal feature decomposition was performed on
time-based data. This section explores how we transformed the ‘block_timestamp’ data
from blockchain datasets into several detailed time-based features. The ‘block_timestamp’
is recorded when transactions or blocks are logged in the system. These raw data are
informative but often need to be broken down into more descriptive parts for a thorough
analysis. We extracted the year, month, day, hour, minute, second, and day of the week as
separate features.
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This step was performed to analyze in depth the temporal patterns within the blockchain
data. For instance, analyzing transactions with respect to the time of day or day of the week
can reveal repeated patterns or anomalies that might not be possible to find from the raw
timestamp alone. Such insights are valuable in detecting fraudulent activities, irregularities,
or inefficiencies within blockchain networks.

3.1.7. Feature Selection

In anomaly detection within blockchain technology, feature selection plays an impor-
tant role in enhancing model accuracy and computational efficiency. This study introduces
a novel, multi-faceted approach to feature selection, integrating statistical methods, ma-
chine learning algorithms, and data science techniques. This hybrid strategy ensures the
selection of the most impactful features for subsequent study.

Initially, we employed a statistical technique, SelectKBest, one of the most used tech-
niques, paired with the ANOVA F-test to find important features. This method empha-
sizes features with the strongest relationships with the output variable. The top ten fea-
tures identified through this technique include ‘nonce’, ‘receipt_cumulative_gas_used’,
‘receipt_gas_used’, ‘block_number’, ‘to_address_encoded’, ‘year’, ‘month’, ‘day’, ‘hour’,
and ‘day_of_week’.

Subsequently, we used a machine learning-based approach, utilizing a Random Forest
(RF) Classifier for feature selection. This ensemble learning method offers insights into fea-
ture importance, derived from the aggregated decision trees. The top ten features identified
by this approach are ‘block_number’, ‘receipt_gas_used’, ‘month’, ‘to_address_encoded’,
‘value’, ‘gas’, ‘nonce’, ‘gas_price’, ‘year’, and ‘day’.

Further enhancement of the feature selection process involves data science techniques,
where Domain-Driven insights and analytical methods are applied. For instance, a box-
enplot visualization in Figure 3 shows the distribution of the ‘value’ feature across three
distinct classes on a logarithmic scale. This visualization reveals that normal transactions
mostly involve lower transaction values, whereas anomalous transactions involve higher
transaction values. Such distinct patterns suggest the ‘value’ feature’s influence on the
model’s performance.

Figure 3. A representation of the ‘value’ attribute differentiated by class.

Moreover, in Figure 4, a scatter plot with ‘gas’ and ‘gas_price’ on logarithmic scales
provides further insights. Normal transactions are characterized mainly by lower gas usage
and gas prices, while anomalous transactions display high levels of gas usage and gas
prices, indicative of cost-intensive transactions. These observations suggest the inclusion of
‘gas’ and ‘gas_price’ as important features. Our further analyses highlight the significance
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of the ‘to_address_encoded’ feature, which shows clear transaction patterns across different
classes, emphasizing its crucial role in our feature set.

Figure 4. Class-wise relationship between ‘gas’ and ‘gas_price’.

However, we also identified features that showed a limited level of importance for
anomaly detection. For instance, while ‘block_number’ and ‘transaction_index’ provide
some structural information, they lack the depth in relational and behavioural insights that
is important for detecting anomalies effectively. Similarly, ‘receipt_cumulative_gas_used’,
which aggregates the gas used across all transactions in a block, proved to be less important.

After detailed experimentation and analysis, we selected a more targeted feature set
for further research. This set includes ‘month’, ‘receipt_gas_used’, ‘to_address_encoded’,
‘value’, ‘nonce’, ‘gas’, and ‘gas_price’. Our hybrid feature selection approach combines
statistical analysis, machine learning techniques, and data science insights using domain
expertise and extensive experimentation.

3.1.8. Handling Imbalanced Data

In blockchain anomaly detection, one common challenge is imbalanced classes in
transaction data that can affect the accuracy of predictive models. Our study addresses
this issue with a dataset of 71,250 blockchain transactions. Initially, this dataset showed a
significant imbalance: it consisted of 57,000 normal transactions (label 0), 2628 transactions
labelled as anomalous due to an anomalous sender (label 1), and 11,622 transactions labelled
as anomalous due to an anomalous receiver (label 2). The unbalanced distribution of classes
leads to biased predictions favouring the majority class, reduces the model’s ability to
generalize well to unseen data, and necessitates complex evaluation metrics to assess and
improve model performance.

We used the Adaptive Synthetic Sampling (ADASYN) method, a robust oversampling
technique designed to generate synthetic samples for the minority class, to resolve the issue
of an imbalanced dataset. ADASYN adaptively adjusts the weights of different minority
class examples based on their level of difficulty in learning. It improves model performance
on minority samples without compromising the overall accuracy. After applying the
ADASYN technique, the dataset had 56,860 for each class, i.e., normal transactions (label 0),
anomalous transactions with the sender as anomalous (label 1), and anomalous transactions
with the receiver as anomalous (label 2).

3.2. Selection of Optimal Algorithms for Enhanced Anomaly Detection

We performed experimental analysis on various machine learning algorithms to
identify an ensemble of algorithms that exhibits superior performance for an efficient,
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reliable, and secure anomaly detection system. We selected the top-performing algorithms
based on a comprehensive evaluation of key performance indicators. These indicators
included accuracy, precision, recall, and F1 score, each providing an understanding of the
model’s predictive capabilities and their adeptness in managing the complex dynamics
of anomaly detection in blockchain networks. We selected the algorithm that achieved a
metric score of over 75% in any of the evaluated indicators. The selected classifiers are Extra
Trees Classifier (ETC), Random Forest Classifier (RFC), eXtreme Gradient Boosting (eXGB),
Bagging Classifier (BC), Categorical Boosting (CB), Decision Tree Classifier (DTC), Light
Gradient Boosting Machine (LGBM), K-Neighbours Classifier (KNC), Gradient Boosting
Classifier (GBC), and Ada Boost Classifier (ABC).

The ensemble technique incorporates these top-tier algorithms and leverages the
strengths and mitigates the limitations of individual models. This strategy ensures a
comprehensive and nuanced anomaly detection mechanism essential for maintaining the
efficiency and security of blockchain networks.

3.3. Three-layer Hierarchical Ensemble Learning Model (HELM)

In addressing the complex challenges of anomaly detection in blockchain technology,
this study has presented an advanced three-layer model employing ensemble techniques.
Ensemble models are more robust to adversarial attacks compared to single models, and
ensemble learning can improve the model’s ability to learn complex patterns and reduce
overfitting, leading to higher accuracy. Hence, this approach aligns with the research
objectives: to develop an anti-adversarial, accurate, and multi-layered anomaly detection
framework for blockchain networks.

3.3.1. Layer 1: Anti-Adversarial Stratified Random Sampling

In the first layer, distinct model groups were created. We performed experiments
in different settings by changing the number of groups and the combination of different
optimal selected algorithms within each group. After extensive experiments, based on the
diversity of algorithms and evaluation results, five groups, each with the combination of
three algorithms, were constituted to ensure a robust and comprehensive anomaly detection
capability. From the preprocessed dataset, each group was given a unique subset of the
dataset using stratified sampling. This approach increases the complexity of the model and
makes it more resilient to adversarial attacks such as data poison, evasion, extraction, and
input manipulation.

The composition of each group along with their algorithms are presented in Table 4.

Table 4. Summary of Layer 1 groups.

Group No. Group Models

1 ETC, GBC, ABC
2 RFC, KNC, GBC
3 eXGB, LGBM, KNC
4 BC, DTC, LGBM
5 BC, CB, DTC

3.3.2. Layer 2: Optimal Grouping of Classifiers Based on Soft Voting

In the second layer, we leveraged soft voting to combine predictions from algorithms
in each group trained on different data subsets. Soft voting aggregates the class probability
distributions from each model, leading to a more robust ensemble classifier. This approach
improves the overall performance, stability, and accuracy of predictions.

3.3.3. Layer 3: Final Ensemble Model Based on Soft Voting

We employed group-level ensembles from Layer 2 and developed Layer 3 of the final
anomaly detection model. We used a soft voting mechanism to merge the predictions
from each group, which were trained on different subsets of data. The final ensemble



Big Data Cogn. Comput. 2024, 8, 103 14 of 21

benefits from the strengths of predictions from each group, enhancing the model’s ability
to generalize across varied scenarios and improving its overall robustness.

4. Evaluation of the Proposed AHEAD Model

In this section, we will first explain the evaluation metrics. Then, we will evaluate
two aspects of AHEAD, the anti-adversarial resilience through the HELM (Three-Layer
Ensemble Learning Model) and multi-layer multi-anomaly detection capability. In the
next section, we will compare the performance of AHEAD with other machine learning
mechanisms.

4.1. Evaluation Metrics

For blockchain anomaly detection evaluation, we chose to employ weighted metrics
for precision, recall, and the F1 score along with accuracy metrics. The details of the metrics
are as follows:

• Accuracy: This provides a measure of the overall effectiveness of the model using the
formula written in Equation (3).

Accuracy =
TP + TN

P + N
(3)

• Precision: This is calculated by weighting the precision of each class according to its
representation in the data. It is calculated as written in Equation (4).

Weighted Precision =
∑n

i=1(Precision of class i × instances in class i)
Total instances

(4)

• Recall: Similarly, weighted recall ensures the model’s sensitivity. It is calculated as
written in Equation (5).

Weighted Recall =
∑n

i=1(Recall of class i × instances in class i)
Total instances

(5)

• F1 score: The weighted F1 score corresponds to precision and recall, providing a
metric reflecting the model’s balanced performance across both dimensions. It is
calculated as written in Equation (6).

Weighted F1 Score = 2 × ∑n
i=1(Precision of class i × Recall of class i × instances in class i)

∑n
i=1((Precision of class i + Recall of class i)× instances in class i)

(6)

We use a confusion matrix to complement these quantitative metrics to visualize the
model’s performance, presenting the true positives, true negatives, false positives, and
false negatives in a matrix format. The confusion matrix for our model is depicted for each
class: normal transaction, anomalous transaction and sender, and anomalous transaction
and receiver.

4.2. Anti-Adversarial Resilience of AHEAD’s HELM

Securing anomaly detection models from adversarial attacks is crucial as adversarial
attacks can cause incorrect predictions, manipulate input data, erode trust, and lead to
financial losses. The security of the model was tested through a perturbation analysis,
where the input features of the test dataset were intentionally altered within a specified
range to simulate an adversarial attack scenario. The core objective of this method is to
assess the prediction ability of a model under potentially compromised conditions.

Table 5 outlines the final model’s performance metrics, offering a detailed view of
its accuracy, precision, recall, and F1 score. The experimental results demonstrate the
resilience of the AHEAD model to adversarial attacks. In a situation of perturbed inputs,
this model has the ability to maintain high accuracy, precision, recall, and F1 score. This
ability of the model enhanced the robustness and reliability of anomaly detection systems
in blockchain networks. Figure 5 presents the performance of AHEAD against adversarial
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attacks for all classes. The figure illustrates the consistent and high performance of the
HELM against all metrics across different classes under adversarial conditions. This shows
that the HELM exhibits high accuracy and precision, which are crucial for minimizing false
positives and false negatives. Figure 6 further supports these findings for the proposed
HELM of AHEAD’s model. The confusion matrix shows that the model achieves high true
positive rates and low false positive rates across all classes, indicating its effectiveness in
distinguishing between normal and anomalous transactions under adversarial conditions,
demonstrating the optimal performance of the HELM.

Table 5. Performance evaluation for HELM (anti-adversarial resilience of AHEAD).

Evaluation Metrics Final Results

Accuracy 95.97%
Precision 96.03%

Recall 95.97%
F1 score 95.98%

Figure 5. Performance of HELM against adversarial attacks for all classes.

Figure 6. Confusion metrics showing performance of HELM against adversarial attacks.
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4.3. Multi-Layer Multi-Anomaly Detection Capability of AHEAD

In this section, our research describes the implementation and outcomes of a novel
AHEAD method for multi-layer multi-anomaly detection within blockchain technology.
This methodology is designed to address the challenges of identifying anomalies in two
layers of blockchain networks, i.e., data and network layers targeting transaction and user
anomalies. We performed advanced preprocessing techniques, e.g., data aggregation, tem-
poral feature selection, hybrid feature selection, and handling imbalanced data, to enhance
model accuracy and computational efficiency. Further, we selected optimal algorithms
that exhibit superior performance metrics, ensuring robustness and reliability in anomaly
detection. The AHEAD adopts the train–test split method with 30% of the data used for
testing while the remaining 70% is used for training. This approach ensures that our model
is well trained and tested with a substantial amount of unseen data.

The implementation of the AHEAD model concluded with the refinement of anomaly
detection. Table 6 outlines the final model’s performance metrics with a detailed view of its
accuracy, precision, recall, and F1 score, which showcased an enhanced overall accuracy
of 98.85%. This increment highlights the effectiveness of our hierarchical voting system
in improving decision making accuracy. Figure 7 displays the confusion metrics of the
proposed AHEAD model achieving high true positive rates and low false positive rates,
indicating its effectiveness in distinguishing between normal and anomalous transactions.
Figure 8 presents the performance of AHEAD for multiple layers and multiple anomalies
for all classes. The figure illustrates the consistent and high performance of the AHEAD
against all metrics across different classes and exhibits high accuracy and precision, which
are crucial for minimizing false positives and false negatives, thus underscoring the ad-
vancements achieved through our innovative three-layered ensemble model in the realm of
blockchain anomaly detection.

Table 6. Performance evaluation for multi-layer anomaly detection model.

Evaluation Metrics Final Results

Accuracy 98.8510%
Precision 98.8524%

Recall 98.8510%
F1 score 98.8510%

Figure 7. Confusion metric for AHEAD’s multi-layer multi-anomaly detection capability.
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Figure 8. Performance of AHEAD’s multi-layer multi-anomaly detection capability for all classes.

5. Comparison of AHEAD with Existing ML Approaches

In this section, firstly, we will compare the ML model of AHEAD, the Three-Layer
Hierarchical Ensemble Learning Model (HELM), with the existing ML models, and then
we will compare AHEAD with the prevalent ML approaches, to highlight their multi-layer
multi-anomaly detection capability.

5.1. Comparing Adversarial Resilience of AHEAD’s HELM with Existing ML Models

This section evaluates how an ML model reacts when exposed to adversarial attacks
(like data poisoning, evasion, extraction, and input manipulation). The comparison of
AHEAD’s HELM with existing ML models was conducted under identical preprocessing
conditions to ensure a fair evaluation. For this, we followed the preprocessing steps
explained in Section 3.1. Additionally, we intentionally altered the preprocessed dataset
within a specified range to simulate an adversarial attack scenario for testing purposes. The
performance results of the HELM surpassed those of other models. The HELM achieved
95.97% accuracy, 96.03% precision, 95.97% recall, and a 95.98% F1 score. The superior
performance of the HELM is due to its three-layer hierarchical ensemble approach, which
leverages the following: (i) An optimal grouping of classifiers based on soft voting. Soft
voting aggregates the probability distributions of each classifier’s predictions, allowing
for a more nuanced decision making process. This method enhances the model’s ability
to correctly classify inputs even when some classifiers are fooled by adversarial data.
(ii) Anti-adversarial stratified random sampling by which we provided a separate dataset
to each group. By stratifying the data, the HELM minimizes the impact of data poisoning
attacks. (iii) The final layer of HELM combines outputs from grouped classifiers, enhancing
accuracy and robustness by leveraging their strengths and mitigating weaknesses. This
multi-layered approach ensures that even if initial defenses are bypassed, subsequent layers
can detect and counteract attacks, resulting in superior overall performance. The closest
competitor is the Categorical Boosting model, which attained 90.52% accuracy, 90.66%
precision, 90.52% recall, and 90.49% F1 score. The Extra Tree Classifier exhibited the next
best performance with 89.95% accuracy, 90.31% precision, 89.95% recall, and an 89.95%
F1 score.

Out of the 11 total competitor models, including the proposed HELM, the worst
performance reported was of the Ada Boost Classifier. It achieved 70.34% accuracy, 70.75%
precision, 70.30% recall, and 69.53% F1 score. The performance comparison of the HELM
with existing ML models against adversarial attacks is visualized in a bee swarm in Figure 9.
This illustrates the distribution and density of performance scores for different metrics:
accuracy, precision, recall, and F1 score. Each coloured dot represents a model’s score for
a visual comparison. The proposed HELM, depicted by purple dots, consistently shows
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superior performance across all metrics. This visualization effectively demonstrates the
proposed model’s robustness and reliability against adversarial attacks. The performance
results of ML models against adversarial attacks are presented in Figure 10.

Figure 9. Performance comparison of HELM with other ML models against adversarial attacks.

Figure 10. Performance comparison of HELM with other ML models against adversarial attacks.

5.2. Comparing Multi-Layer Multi-Anomaly Capability of AHEAD with Other ML Models

In this section, we compare the performance of the AHEAD model for multi-layer
multi-anomaly detection with state-of-the-art existing anomaly detection techniques. The
data aggregation of preprocessing in the proposed AHEAD model (explained in Section 3.1)
gives it the capability to detect multiple anomalies at multiple layers. However, this feature
does not exist in state-of-the-art anomaly detection techniques. For a performance compari-
son of AHEAD and prevalent techniques, an identical preprocessing feature was added
to ensure a fair evaluation. AHEAD surpasses other techniques by achieving the highest
accuracy of 98.85%. We achieved this accuracy by utilizing advanced preprocessing steps,
e.g., we used a hybrid feature selection approach to ensure that only the most impactful
features were selected, enhancing model accuracy and computational efficiency. Further,
AHEAD employs a diverse set of algorithms that exhibit superior performance metrics,
ensuring robustness and reliability in anomaly detection. Finally, the Three-Layer Hierar-
chical Ensemble Learning Model (HELM) increases model resilience to adversarial attacks
and improves its ability to learn complex patterns, reducing overfitting and enhancing
accuracy. The closest accuracy is achieved by a Fraud Detection Framework (FDF) [21],
a value of 98.67%, followed by the Transactional History Approach (THA) [20], which
achieves 97.79% accuracy. Blockchain Transaction Signing (TS) [9] achieves only 51.08%
accuracy. The performance comparison of AHEAD with other anomaly detection tech-
niques is visualized in a bee swarm in Figure 11. The proposed AHEAD model, depicted by
purple dots, consistently shows superior performance across all metrics. Figure 12 presents
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the detailed performance metrics of all techniques, showcasing their respective accuracy,
precision, recall, and F1 scores.

Figure 11. Performance comparison of AHEAD with other anomaly detection techniques.

Figure 12. AHEAD performance for multi-layer multi-anomaly detection with state-of-the-art models.

Our work is a pioneer in demonstrating the resilience of the proposed AHEAD against
adversarial attacks and effectively mitigates individual model biases. This dual-layer,
dual-target approach enhanced by a novel feature selection strategy sets a new benchmark
in blockchain anomaly detection.

6. Conclusions and Future Work

This research presents a pioneering Novel Anti-Adversarial Hierarchical Ensemble
Model for Multi-Layered Anomalies Detection in Blockchain. We employ advanced pre-
processing techniques and introduce a hybrid feature selection mechanism by integrating
statistical analysis, machine learning algorithms, and data science methodologies for ef-
fective feature selection, ensuring precise and efficient anomaly detection. The proposed
AHEAD model detects anomalies in both the data layer and network layer, simultaneously
targeting anomalous transactions and anomalous users, significantly enhancing the security
and reliability of blockchain networks. This research contributes a multi-layered anomaly
detection framework that employs ensemble methods and exhibits resilience to adversarial
threats, demonstrating the model’s robustness. The empirical findings from our study out-
perform existing models, underscoring the proposed approach’s effectiveness by achieving
98.85% accuracy against anomaly detection on data and network layers targeting transac-
tion and user anomalies, along with 95.97% accuracy against adversarial machine learning
attacks. This research highlights the importance of continuously improving anomaly de-
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tection techniques to face evolving security threats in blockchain technology. Our future
work will focus on integration with sophisticated algorithms and detailed case studies to
allow the model to achieve a high level of adaptability, scalability, real-time processing, and
long-term stability within any blockchain environment.
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