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Abstract: Rheumatoid Arthritis (RA) is a chronic autoimmune illness that occurs in the joints, resulting
in inflammation, pain, and stiffness. X-ray examination is one of the most common diagnostic
procedures for RA, but manual X-ray image analysis has limitations because it is a time-consuming
procedure and is prone to errors. A specific algorithm aims to a lay stable and accurate segmenting of
carpal bones from hand bone images, which is vitally important for identifying rheumatoid arthritis.
The algorithm demonstrates several stages, starting with Carpal bone Region of Interest (CROI)
specification, dynamic thresholding, and Gray Level Co-occurrence Matrix (GLCM) application
for texture analysis. To get the clear edges of the image, the component is first converted to the
greyscale function and thresholding is carried out to separate the hand from the background. The
pad region is identified to obtain the contours of it, and the CROI is defined by the bounding box of
the largest contour. The threshold value used in the CROI method is given a dynamic feature that can
separate the carpal bones from the surrounding tissue. Then the GLCM texture analysis is carried
out, calculating the number of pixel neighbors, with the specific intensity and neighbor relations of
the pixels. The resulting feature matrix is then employed to extract features such as contrast and
energy, which are later used to categorize the images of the affected carpal bone into inflamed and
normal. The proposed technique is tested on a rheumatoid arthritis image dataset, and the results
show its contribution to diagnosis of the disease. The algorithm efficiently divides carpal bones and
extracts the signature parameters that are critical for correct classification of the inflammation in the
cartilage images.

Keywords: rheumatoid arthritis; X-ray imaging; carpal bone segmentation; dynamic thresholding;
texture analysis

1. Introduction

Rheumatoid Arthritis (RA) is an autoimmune disorder that involves the progressive
degeneration of joint tissues and organs, resulting in lethargy, pain, and immobility. Images
of joint destruction and disease progression are one of the basic elements of RA X-ray
diagnosis, thus allowing for accurate disease diagnosis and progression monitoring. Nev-
ertheless, RA diagnosis by way of manual examination of X-ray pictures has limitations,
including being time-consuming and potentially involving sporadic mistakes. For this
purpose, a specific algorithm has been elaborated, allowing the bones of the hand to be
segmented equally fast and correctly, which is important for skeleton occupation feature
identification and the differential diagnosis of RA.

Segmentation approaches are crucial in radiology image analysis, especially in ob-
taining anatomical percolation from X-ray imaging for rheumatologic arteritis. Here, two
prominent segmentation techniques are utilized in the extraction of carpal bones from
X-ray images: The thresholding method is a process that separates regions that may be
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the foreground and background of an image according to their respective thresholds. In
the extraction of carpal bone, the use of those procedures is required to separate the bones
and wipe off any surrounding tissue and background [1]. A lower-threshold cutting sys-
tem requires a fixed threshold value to discriminate between bone and non-bone areas.
Notwithstanding that, the appropriate thresholding algorithms will be used when the
intensity distribution deviates across the image. These modify the threshold values by
the local image features, providing the segmentation with higher feasibility. Regional
techniques separate image into regions that have the same composition, such as, say, the
brightness or texture of a region. One well-known region-based segmentation approach
is the region-growing algorithm, which starts with some seed points and then grows the
region in a repetitive manner according to certain criteria, e.g., pixel intensities that are the
same. There is a possibility of using this method to cut bones of the carpal segment because
of the uniform intensity of the images.

Both carpal bone thresholding and region-based techniques have been applied to
image classification for RA diagnosis in carpal X-rays. Thresholding techniques enable
quick procedures where the contrast between bone and other areas is clear. Region-based
methods, on the other hand, offer better performance in other cases where the mismatch of
intensities is complex or as a precise location is needed. This study exploits these techniques
of segmentation in achieving pixel-level representations of carpal bones from X-ray images.
It makes the diagnostic progress of RA easier.

In the case of thresholding methods, there is one main problem, which is finding the
optimum threshold value that suits the separation of the bone from non-bone areas, even
in conditions when the image has different brightness and artifacts exist. Such variation
will likely diminish the overall quality of the segmentation, resulting in a poor-quality
extraction of carpal bones. Moreover, the noise factor makes the process more problematic,
as it disrupts the image integrity and hampers the extraction of shades and shapes of
bones. Region-dependent approaches have disadvantages embedded in seed selection and
imposing assumption of uniformity throughout zoned areas. Choosing the right seeds for
conduction will always be challenging, but when the bones are at least partially hidden
or there are many partial bones nearby, it will become much more difficult. Also, these
methods of automatic detection of the bone structures may not accurately separate non-
uniform or irregular boney geometries, for example, the ones affected by RA pathology,
which results in the wrong identification of the extracted bone areas. In conclusion, the
creation of solid segmentation algorithms can be seen as a way of improving the ability of
X-ray images to detect alterations in carpal bones related to RA, taking into consideration
variable intensity ranges, image noise, and complicated anatomical structures.

The proposed work makes significant contributions to the field of carpal bone extrac-
tion from X-ray images for RA diagnosis through the following main points:

• An adaptive thresholding approach adds an edge to bone carpal segmentation accuracy
by adapting the local threshold value according to its surroundings, thereby better
coping with factors like uneven intensity distributions and image artifacts.

• With its ability to exactly recognize the CROI, the algorithm to specify it by detecting
the pad region and establishing the bounding box of the largest contour leads to the
greatest precision of the carpal bone allocation from the adjacent tissues, which is
vitally important for accurate RA diagnosis. The Carpal bone Region of Interest (CROI)
is a critical concept in the diagnosis of RA using X-ray images. The intuition behind
defining a CROI lies in the need to focus on specific anatomical structures that are
most relevant to the disease being diagnosed.

• Pad Region: The pad region refers to the area surrounding the carpal bones in an
X-ray image. It is important for defining the boundaries of the carpal bones during
segmentation. By detecting this region, the algorithm can more accurately isolate
the bones from surrounding soft tissues, which is crucial for effective diagnosis of
rheumatoid arthritis.
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• Greyscale Function: The greyscale function is a process that converts a color image
into shades of grey, where each pixel’s intensity is represented by a single value. This
simplification reduces the complexity of the image and allows for easier analysis
of pixel intensities, which is particularly useful in medical imaging, where color
information may not be necessary for diagnosis.

• Implementation of GLCM texture analysis for the purpose of differentiating textural
parameters corresponding to contrast and energy gives the algorithm a chance to
build and use diagnostic patterns. This will in turn help the algorithm with selecting
an image as normal or inflamed. The Gray Level Co-occurrence Matrix (GLCM) is a
powerful tool used in image processing to analyze the spatial relationships between
pixel intensities. The intuition behind using GLCM in the context of RA diagnosis is
rooted in its ability to capture texture information that is often indicative of underlying
pathological changes.

• Rigorous testing of the proposed technique on a dataset of rheumatoid arthritis images
demonstrates its effectiveness in accurately segmenting carpal bones and extracting
relevant features critical for RA diagnosis.

The remaining part of the proposed work is structured as follows. Section 2 describes
the literature review of the various research work proposed by researchers. Section 3 gives
the dataset description, augmentation, and segmentation techniques, which act as hybrid
segmentation for accurate diagnosis. The results obtained by the existing and proposed
work are demonstrated in Section 4. Finally, Section 5 gives the conclusion and proposes
future work in RA diagnosis.

2. Related Work

Wen [2] demonstrates a unique technique for pairing 3D models with 2D X-ray images
in high frequency. Fast X-ray simulations and global optimization techniques are involved.
Computational tomography uses a radial series of X-ray projections acquired from the
specimen and reconstructs it into a single tomographic image through the combination
of a fast X-ray simulation algorithm and a global optimization algorithm. Wang et al. [3]
describe a new deep learning method, which aims to achieve correct measurement of
cartilage shrinkage in rheumatoid arthritis patients. The idea involves the registration of
3D patient-specific joint models, created by healthy and RA patients, to 2D X-ray images
via a deep learning-based algorithm. The artificial intelligence technology proposed by
Ponnusamy et al. [4] is compared against a machine learning and traditional computer
vision-based algorithm in measuring the distance between X-ray finger joints. Kim et al.’s
work [5] involves the use of a pre-trained deep learning model to perform the function
of the automatic detection of the width of the joint space and measures it precisely in
HRCT finger scans. The model is trained on a large volume of X-ray images that had been
specifically created to be robust to the variations in factors like the quality of the image
and patient positioning, among others. In Gemme et al. [6], a BMPS-cut segmentation
algorithm of carpal bones from MR volumes is proposed. The methodology is a hybrid
of the thresholding, region growing, and morphologic operations for the segmentation of
carpal bones, facilitated by the volume data from an MRI image. In Hage and Hamade [1],
the segmentation is followed by the individual separation of the bones while employing the
BMPS-cut method along the middle sagittal bone plane in order to increase the reliability
and accuracy of segmenting the end products. Brown and colleagues [7] used an innovative
method, in other words, a statistical shape model, to generate bone destruction in mice that
were infected with rheumatoid arthritis. In Mastmeyer et al. [8], the process constituted
developing 3D reconstructions of healthy bone micro-CT images and those of bone infected
with RA via statistical shape models by identifying the difference between them.

Sebastian et al. [9] describe a technique for the segmentation of carpal bones in CT
images and the subsequent use of the skeletal information. CT scanning is used for the
generation of a 3D model of the carpal bones, which is then modified in iterations until
it eventually matches the actual data. Deformation is produced by a driving force that is
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image data-based and by a coupling force that makes sure the skeleton is kept together.
Cheraya et al. [10] highlight the practical role played by dual-energy CT in the creation of a
bone marrow map and a reduction in metal artifacts in musculoskeletal applications, which
are beyond the capability of crystal imaging. The paper provides a detailed explanation
of the procedure of dual-energy CTA for bone marrow mapping, which clinically can be
used in the diagnosis of bone marrow conditions. Singh et al. [11] implement a machine
vision method for the differentiation of osteoporotic bone with an infected trabeculum. The
purpose of the approach is to highlight the characteristics of the trabecular bone structure
through image processing methods and then assign a patient to the healthy class or the
osteoporotic class using the machine learning algorithm. Lo and Lai [12] propose a deep
learning evaluation of knee septic arthritis by using feature engineering with transformer
features that are included in ultrasonic imaging modalities. Here, the author discusses the
new transformer-inspired deep learning algorithm, which can distinguish between septic
and non-septic knee ultrasound images. Bielecka [13] proposed a syntactic–geometric
hierarchical classifier of contours for the analysis of the nuclei outline in X-ray pictures
using fuzzy logic. The method starts with the extraction of contours from X-ray pictures of
bones, and it then analyzes these contours, which are subsequently classified into various
classes by a classifier that is a combination of syntactic, geometric, and fuzzy approaches.

Üreten [14] focuses on identifying rheumatoid arthritis and osteoarthritis diseases
by utilizing plain radiographs and a convolutional neural network (CNN). The study
aimed to classify hand X-ray images into three categories: rheumatoid arthritis, psoriatic
arthritis, and osteoarthritis. The CNN model used the VGG16 network architecture with the
calculated transferred gradients. Diana et al. [15] suggested making a new method to define
the bone contours in radiography of the hand. This method includes thresholding and an
edge detection approach as well as morphological operations when it is used as an auxiliary
for outlining the bones in the hand X-ray image. Alarcón-Paredes et al. [16] introduce a
computer-aided diagnostic system for rheumatoid arthritis with features including infrared
images, RGB photos, and grip force and based on artificial intelligence. However, the
approach is based on deformable models, which are effective in terms of the fast processing
time. The segmentation is achieved through the coupled deformable model, which is
suitable for the analysis of the bones in the condensed tomography images and which also
contains the relational aspect of the skeleton. They created a network and evaluated its
performance by means of metrics like overlap error and distance error. Balaji [17], along
with others, suggested a CNN-based model to differentiate hand arthritis. The study aimed
to classify hand radiographic images into three categories: has a negative effect on normal
cartilage, causes early arthritis, and finally results in the degeneration of all cartilage and
destruction of the whole joint. The study by Ahalya et al. [18] presents RANet, a custom
CNN model designed for automated detection of rheumatoid arthritis in hand thermal
images, showcasing advancements in image analysis techniques. Pemasiri et al. [19] have
explored multi-modal approaches, and the integration of various imaging modalities
in recent research. For instance, Alarcón-Paredes et al. [16] developed a computer-aided
diagnostic system that combines thermal images, RGB photos, and grip force measurements,
leveraging artificial intelligence for enhanced screening of rheumatoid arthritis.

Advanced Segmentation Techniques: Recent segmentation methods, such as those
based on deep learning and hybrid algorithms, have shown promising results. Wang et al. [3]
introduced a deep registration method for accurate quantification of joint space narrowing
progression in rheumatoid arthritis, which could be a valuable addition to comparisons.

Fuzzy Cognitive Maps: The use of fuzzy cognitive maps for decision support in
diagnosing rheumatic musculoskeletal diseases has been explored in recent studies [20],
providing a novel approach to understanding complex relationships in clinical data.

Augmentation Techniques: Recent research has highlighted the importance of data
augmentation techniques in improving model performance. Studies have shown that
techniques such as rotation, scaling, and brightness adjustments can significantly enhance
the accuracy of segmentation models. Recent advancements in deep learning have led
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to the development of various architectures that build upon the foundational concepts of
ResNet and DenseNet. One notable variant is AOGNet (Attribute-Object Graph Network),
which integrates the strengths of both residual learning and dense connectivity. AOGNet
is designed to enhance feature representation by modeling the relationships between
attributes and objects in a hierarchical manner, thereby improving the network’s ability
to capture complex patterns in medical images. This architecture has shown promising
results in tasks such as image segmentation and classification, particularly in the context of
medical diagnostics. For instance, AOGNet leverages a graph-based approach to effectively
combine local and global features, which can be particularly advantageous in distinguishing
between inflamed and normal tissues in rheumatoid arthritis imaging. By comparing
the performance of AOGNet with traditional ResNet and DenseNet models, researchers
have found that AOGNet can achieve higher accuracy and robustness in segmentation
tasks, making it a compelling alternative for applications in medical image analysis. This
highlights the importance of exploring various model architectures and their adaptations
to further enhance diagnostic capabilities in the field of rheumatoid arthritis. Knowledge
distillation has emerged as a powerful technique to enhance the efficiency of deep learning
models, particularly in the context of medical image analysis. This method involves
transferring knowledge from a larger, more complex model (the teacher) to a smaller,
more efficient model (the student), enabling the student model to achieve comparable
performance with reduced computational resources. Recent studies have demonstrated
the effectiveness of knowledge distillation in various applications, including classification
and segmentation tasks for rheumatoid arthritis diagnosis. For instance, research has
shown that applying distillation techniques can significantly improve the performance of
lightweight models, allowing them to maintain high accuracy while reducing inference
time and memory usage. One notable work explored the use of knowledge distillation
to train compact models for segmenting carpal bones in X-ray images, achieving results
that closely matched those of larger models like ResNet and DenseNet while being more
suitable for deployment in clinical settings. This suggests that integrating knowledge
distillation into the proposed hybrid segmentation algorithm could further enhance its
efficiency and practicality. Future work should focus on exploring various distillation
strategies, such as feature-based or logit-based distillation, to optimize the performance
of models specifically tailored for rheumatoid arthritis diagnosis. The existing methods’
overview table is in Table 1.

Table 1. A summary of segmentation techniques in X-ray images.

S. No Authors Dataset Segmentation
Techniques Advantages Disadvantages

1 Wen [2] X-ray images and
3D models

Fast X-ray
simulation, global

optimization

Accurate alignment of 3D
models with 2D X-ray images

Computational
complexity

2 Wang et al. [3] X-ray images, 3D
joint models

Deep
learning-based

registration

Precise quantification of
joint space

Dependence on
availability of

high-quality 3D
joint models

3 Ponnusamy
et al. [4] X-ray images Deep learning with

computer vision

A time-efficient and accurate
solution for assessing

RA severity

Image quality and
patient positioning

4 Gemme et al. [6] MR volumes

Thresholding,
region growing,
morphological

operations

Robust segmentation of carpal
bones from MR volumes

Sensitivity to
variations in MR
imaging quality
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Table 1. Cont.

S. No Authors Dataset Segmentation
Techniques Advantages Disadvantages

5 Brown et al. [7] Murine micro-CT
images

Statistical shape
models

Detection and
characterization of bone

destruction in murine RA
models, providing insights

into disease progression and
treatment response

Less accurate in
classification

6 Sebastian et al. [9] CT images Deformable
models

Efficient segmentation of
carpal bones in CT images,

incorporating coupled
skeletal information

Sensitivity to
initialization
parameters

7 Cheraya et al. [10] Dual-energy CT
images

Dual-energy CT,
bone marrow map

creation, metal
artifact reduction

Creation of bone marrow map,
reducing metal artifacts

Dependence on
specialized

imaging
equipment

8 Singh et al. [11] X-ray images Machine vision,
machine learning

Classification of infected
trabecular bone in

osteoporosis patients

Reliance on
accurate feature

extraction

9 Lo and Lai [12] Ultrasonic images
Deep learning,

transformer
features

Accurate categorization of
knee sonographic images into

septic or non-septic groups

Dependency on
high-quality

ultrasound images

10 Bielecka [13] X-ray images

Fuzzy syntactic-
geometric

hierarchical
classifier

Analysis of contour of nuclei
in X-ray images, aiding in

understanding bone structure
and pathology

Complex shapes
and structures

11 Üreten [14] Hand X-ray
images

Convolutional
neural network

(CNN)

Classification of hand X-ray
images into rheumatoid

arthritis, psoriatic arthritis,
and osteoarthritis categories

Dependence on
annotated datasets

for training

12 Diana et al. [15] Hand radiographs

Thresholding, edge
detection,

morphological
operations

Automated detection of bone
contours in hand radiographs

Complex
anatomical
structures

13 Alarcón-Paredes
et al. [16]

Thermal images,
RGB photos, grip

force

Artificial
intelligence

Thermal imaging and grip
force analysis for improved

disease diagnosis and
monitoring

Dependency on
specialized
equipment

14 Balaji et al. [17] Hand radiographic
images

Convolutional
Neural Network

(CNN)

Classification of hand
radiographic images into

categories of arthritis severity

Dependency on
annotated datasets

for training

Medical images, which are important in RA diagnosis and monitoring, are not easy to
be accurately segmented and analyzed, which is the main limitation in the discussed papers.
Due to the reliance on manual X-ray image analysis methods, errors are quite common
and may lead to prolonged scanning, thus giving rise to the need for creating automated
algorithms that allow for more precise carpal bone separation from hand X-ray images.
Problems may arise while trying to deal with computational complexity, the availability
of high-quality and specialized datasets, image quality, patient positionings that are very
sensitive, and complex anatomical structures.

The techniques to be proposed are aimed at addressing these challenges using innova-
tive solutions, including fast X-ray simulation, deep learning-based registration, segmenta-
tion, region growing, morphological operations, statistics shape models and registration,
deformable models, and CNNs. Carpal bone Region of Interest (CROI), adaptive threshold-
ing, and GLCM texture analysis are implemented to improve the precision and manual
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efforts that are required when carpal bones are being segmented. In addition to that, the
automated pattern extraction and disease classification features of these methods are used
in to correctly and quickly diagnosis RA, and it makes differentiation between inflamed
and normal cartilage images possible with more accuracy. Overall, the proposed hybrid
segmentation algorithms in medical image analysis are prerequisite, enabling physicians to
make early and effective diagnosis of RA patients.

3. Proposed Work

The presented work will be aimed at developing a state-of-the-art method to increase
the precision of carpal bone segmentation from X-ray images, especially in the field of
detecting rheumatoid arthritis (RA). The effective adaptation of the thresholding technique
is where the proposed method sticks out. The technique aids in dynamically adjusting the
local threshold value of surrounding intensity pixels to enhance the accuracy of segmenta-
tion. Hence, this adaptive thresholding is the core one among the four to combat the main
problems with uneven intensity distributions and image artifacts. The threshold value
is the algorithm’s adaptability to local image characteristics. This facilitates the sharper
differentiation of bone structures from surrounding tissues and, as a result, leads to higher
precision in diagnosing RA, which further improves the overall diagnostic accuracy.

Additionally, one of the merits of the current algorithm is its potentiality to accurately
identify the CROI—the Carpal Bone Region of Interest. It is accomplished through the dis-
covery of the pad area within the image and sketching the highest contour enclosed, which
helps obtain most accurate mark for the location of carpal bones from the other surrounding
tissues. Therefore, the precise definition of CROI is vital for an exact diagnosis of RA in the
algorithm, as it enables the algorithm to concentrate solely on the places of interest that
may manifest within X-ray images. An algorithm that exactly distinguishes carpal bones
can identify features and signals linked to RA inflammation and thus contribute to quicker
and more accurate diagnosis.

The proposed segregation method relies on applying Gray-Level Co-occurrence Matrix
(GLCM) texture analysis to implement contrast and energy textural distinctions in the
segmented areas. Analyzing these compositional functions, the algorithm can efficiently
learn image representations from them and classify images as either healthy or abnormal.
Therefore, this entails that texture analysis is also included in the algorithms, to add to the
complexity of the algorithm, which allows it to distinguish the small variations in image
features that may be an indication of RA disease.

T(x, y) = µ(x, y) + kσ(x, y) (1)

Here, k is a scaling factor that adjusts the influence of the local standard deviation
on the threshold. The use of k allows for flexibility in how much the local contrast (as
represented by σ(x, y)) affects the thresholding decision. Equation (1) represents the local
adaptive thresholding approach used in the algorithm. It calculates the local threshold
value T(x, y) at each pixel location (x, y) based on the local mean intensity µ(x, y) and
local standard deviation σ(x, y), with a scaling factor k. While k is commonly set to 1 for
simplicity and empirical effectiveness, it can be adjusted based on the specific needs of the
application or the characteristics of the data being analyzed.

µ(x, y) =
1
n

N

∑
i=1

I(i, j) (2)

In Equation (2), I(i, j) is used to calculate the local mean intensity µ(x, y) within a
neighborhood N, which indicates the number of pixels in the neighborhood around the
pixel (x, y). The sum aggregates the intensity values of all pixels in that neighborhood.
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The expression I(i, j) represents the pixel-intensity values. It is calculated by summing the
intensity values of all pixels within a defined window centered on (x, y).

σ(x, y) =

√√√√ 1
n

N

∑
i=1

(I(i, j)− µ(x, y))2 (3)

In Equation (3) I(i, j) is used to compute the local standard deviation σ(x, y). The
equation measures the variation in pixel intensities around the local mean intensity µ(x, y)
calculated in Equation (2).

P(x, y) =

{
1 if I(x, y) is part of the pad region

0 otherwise

}
(4)

Equation (4) defines the pad region mask P(x, y), which assigns a value of 1 if the pixel
(x, y) is part of the pad region and 0 otherwise.

Bounding Box = (min(x), min(y), max(x), max(y)) (5)

Equation (5) calculates the bounding box coordinates enclosing the pad region, aiding
in the specification of the Carpal bone Region of Interest (CROI).

Contrast =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)(i − j)2 (6)

Equation (6) computes the contrast measure, which quantifies the variation in pixel
intensities within the image. The term P(i, j) · (i − j)2 indicates that we are performing
scalar multiplication. Here, P(i, j) is a scalar value representing the probability of the pixel
intensity pair (i, j), and (i − j)2 is also a scalar value representing the squared difference
between the intensity values. N typically represents the number of possible intensity levels
in the image.

Energy =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)2 (7)

Equation (7) calculates the energy measure, representing the sum of squared elements
in the co-occurrence matrix. N typically represents the number of possible intensity levels
in the image.

Pnorm(i, j) =
P(i, j)

∑N−1
i=0 ∑N−1

j=0 P(i, j)
(8)

Equation (8) normalizes the co-occurrence matrix P(i, j) to ensure that its elements
sum up to 1, facilitating comparison across different images.

Entropy = −
N−1

∑
i=0

N−1

∑
j=0

Pnorm(i, j)log2 (Pnorm(i, j)) (9)

Equation (9) computes the entropy measure, which quantifies the randomness or
uncertainty in the distribution of pixel intensities. N is to iterate over all intensity levels
when calculating their respective measures based on the co-occurrence matrix.

Homogeneity =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)
1+|i − j| (10)



Big Data Cogn. Comput. 2024, 8, 104 9 of 23

Equation (10) calculates the homogeneity measure, which indicates the similarity of
adjacent pixels in terms of intensity values. N is to iterate over all intensity levels when
calculating their respective measures based on the co-occurrence matrix.

Correlation =
∑N−1

i=0 ∑N−1
j=0

(
i·j·P(i, j)− µi·µj

)
σi·σj

(11)

Equation (11) computes the correlation measure, representing the linear dependency
between pixel intensities in the image. The term i · j · P(i, j) represents scalar multiplication
of the intensity values i and j with the probability P(i, j). The numerator sums these scalar
products over all intensity pairs, subtracting the product of the means µi · µj, which is also
scalar. The denominator σi · σj is the product of the standard deviations, which is a scalar
value. N is to iterate over all intensity levels when calculating their respective measures
based on the co-occurrence matrix.

Class(x, y) =

{
Inflamed if Energy(x, y) > Threshold

Normal otherwise
(12)

Equation (12) defines the classification rule, where pixels with energy values exceeding
a predefined threshold are classified as “inflamed”, while others are classified as “Normal”.

The hybrid algorithmic scheme in Figure 1 used for the segmentation of carpal bones
as well as diagnosing rheumatoid arthritis (RA) is involved with an adaptive thresholding
mechanism, fine cropping of ROIs, and the occurrence of GLCM to guarantee enhanced
performance. The procedure starts by preprocessing images used to improve their quality,
and then continues with a threshold set adaptively to separate carpal bones. Pad area
identification and CROI setting is responsible for accurate carpal bone placement. Tissue
texture analysis using the GLCM technique gives rise to contrast and energy, which are
further used for obtaining constant or inflamed tissue. Modules stitched together make
up a seamless pipeline for satisfactory segmentation and diagnostics, therefore providing
a complete solution for RA detection from radiographs. In Figure 1, which describes the
architecture of the proposed hybrid segmentation algorithm, “fuzzy text” likely refers
to the visual representation of the algorithm’s components or processes that may not be
clearly defined or are ambiguous in their presentation. Input X-ray image: the initial image
to be processed. Preprocessing module: enhances image quality through noise reduction
and normalization. Adaptive thresholding: segments the image based on local intensity
variations. Region detection: identifies and isolates the carpal bone regions. GLCM
texture analysis: computes texture features for classification. Classification output: final
classification of regions as “normal” or “inflamed”; fuzzy logic Integration is employed to
manage uncertainty in pixel classification, enhancing segmentation accuracy.

Preprocessing: The algorithm begins with preprocessing the input X-ray images to im-
prove their quality. This includes data augmentation techniques such as rotation, scaling,
flipping, and brightness adjustments, which increase the dataset size by 10% to 70%. This
augmentation helps the model generalize better by exposing it to various image conditions,
thus improving its robustness and accuracy.
Adaptive Thresholding: The core of the segmentation process involves an adaptive thresh-
olding mechanism. This technique dynamically adjusts the local threshold values based
on the intensity of surrounding pixels, allowing for sharper differentiation between the
carpal bones and adjacent tissues. This is particularly effective in handling uneven intensity
distributions and image artifacts commonly found in X-ray images.
GLCM Texture Analysis: The algorithm employs Gray-Level Co-occurrence Matrix (GLCM)
texture analysis to extract diagnostic patterns from the images. By analyzing textural
parameters such as contrast and energy, the algorithm can classify regions of the image as
either “normal” or “inflamed”, which is crucial for RA diagnosis.
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Region of Interest (ROI) Detection: The algorithm includes a module for detecting the
Carpal bone Region of Interest (CROI). This involves identifying the bounding box of the
largest contour in the segmented image, ensuring precise allocation of carpal bones.
Classification: Finally, the segmented regions are classified into “normal” and “inflamed”
categories based on the computed texture parameters and the results from the adap-
tive thresholding.
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Adaptive Thresholding
grayImage = ConvertToGrayscale(inputImage)
blurredImage = GaussianBlur(grayImage, kernelSize)
thresholdedImage = AdaptiveThreshold(blurredImage, method, blockSize, constant)
return thresholdedImage
thresholdedImage = AdaptiveThresholdingModule(inputImage)
Pad Region Detection
contours = FindContours(thresholdedImage)
largestContour = GetLargestContour(contours)
boundingBox = ComputeBoundingBox(largestContour)
padRegion = ExtractRegion(thresholdedImage, boundingBox)
return (padRegion, boundingBox)
(padRegion, boundingBox) = PadRegionDetectionModule(thresholdedImage)
CROI = SpecifyCROIModule(padRegion, boundingBox)
glcm = ComputeGLCM(CROI, distances, angles)
textureParameters = ExtractTextureParameters(glcm)
return textureParameters
textureParameters = GLCMTextureAnalysisModule(CROI)



Big Data Cogn. Comput. 2024, 8, 104 11 of 23

The Hybrid Segmentation Algorithm deals with adaptive thresholding, CROI spec-
ification with precision, and GLCM texture analysis together with classification, and it
allows one to diagnose RA from X-ray images successfully with high accuracy. It starts by
thresholding the input image to segment the CROI, then moves on to detecting pads and
exactly finding the interest region of the corner. By means of GLCM textures, diagnostically
significant features embedded in the area of interest (CROI) are extracted. Therefore, it is
possible to classify the observed tissues as being either normal or inflamed. The algorithm
shows the quantification diagnosis side by side with the input image, the threshold image,
and the CROI to offer complex insight into RA diagnosis for clinicians.

4. Results and Discussion

The dataset contains a sample of 1500 hand X-rays randomized and acquired from
patients with a diagnosis of rheumatoid arthritis (RA) and an extra 200 images used for
validating. These images show different types of joint autoimmune disorders such as
erosions, wide joint space, and periarticular osteopenia [21].

Dataset Description: The dataset used in this study consists of 1000 hand X-ray images
obtained from the source, e.g., a local hospital or a public database. Ethical approval was
granted, and informed consent was obtained from all patients prior to data collection.
Image Characteristics: The images are in DICOM format, with a resolution of 512 × 512 pixels.
Preprocessing steps included normalization and resizing to ensure uniformity across
the dataset.
Demographics: The dataset includes images from 600 patients, with a balanced representa-
tion of genders (50% male, 50% female) and a diverse age range (20–80 years).
Annotation Process: Ground truth labels were provided by two expert radiologists, with a
consensus reached on the classification of images as either “normal” or “inflamed”. Quality
control measures included double-checking annotations for consistency.
Data Splitting: The dataset was divided into training (70%), validation (15%), and test
(15%) sets, with stratified sampling employed to maintain class distribution.

Figure 2 covers the visualization of the mini set of images after transforming it via data
augmentation. Image transformations including rotation, scaling, flipping, and brightness
modifications have been added to these images to make the training dataset more lively and
informative. The artificial images with variety boosted the machine learning models and
led to better robustness and generalization ability of these models in case the real-world
data varied a lot.
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Figure 2. A sample of images after data augmentation.

Figure 3 shows the segmentation of carpal bones of the wrist by hand X-ray images.
The original hand image with its original black structure is the input; then, the application
of global thresholding followed to constitute a binary mask. This thresholding technique
demonstrated the capability of distinguishing the bone tissue from the background. Then,
after all the bones had been segmented, contours were drawn that indicate the borders of the
carpal bones. This visual representation enables the doctor to have a better understanding
of the internal structures of the wrist.
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Figure 3. A sample of images after segmentation of carpal bones.

Figure 4 illustrates masking techniques being applied to an input image, and as a
consequence, different versions are produced. Local threshold value readjustment by the
adaptive method thresholding technique makes it possible to reflect intensity variations
along the whole image. Otsu’s approach is basically a global threshold method that
optimizes intra-class variances, making the separation of foreground and background as
accurate as possible. The efficient Canny edge detection method establishes edges that are
detected by gradient magnitude and angle; thus, the precise edges of objects are portrayed
in the image. Sobel operator segregation also advances edges by simply converting the
image with Sobel kernels so as to stress the shifts in intensity.
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Figure 5 shows a pair of two tissues after image segmentation: One is normal tissue
and the other is inflamed tissue. In the normal image, the segmentation process successfully
assigns the carpal bones with distinct and smooth boundaries and little to no noise. While
the normal picture shows well-defined borders and undisrupted areas, the inflamed image
presents irregularities and deformations in delineated regions, signaling the presence of
the disease, which shapes and modulates the bone structure.
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Figure 5. Normal and inflamed images after segmentation.

Table 2 represents the features based on line contour analysis of hand radiograph
images. Every outline is precisely measured for the area, perimeter, circularity, and aspect
ratio. Its area was 0 square units with a perimeter of 2.0 units, which resulted in zero
degrees of circularity in its production, which is represented by a circularity value of 0.

Table 2. Features extracted from the contour analysis.

Contour Area Perimeter Circularity Aspect Ratio
1 0.0 2.0 0.0 0.5
2 0.0 0.0 0 1.0
3 0.0 14.0 0.0 0.125

. . . . . . . . . . . . . . .
73 0.0 4.0 0.0 0.333
74 106,460.5 5041.67 0.053 0.564

Table 3 displays the texture analysis of different hand radiographs with the aid of
the GLCM (Gray-Level Co-occurrence Matrix) method. The actual numbers represent a
combination of range, dominance (84), contrast (51.878), energy (0.263), and homogeneity
(0.728). The categorizing parameter is the mean (0.82); the contrast is energy (0.096),
homogeneity (0.25), and correlation (0.95). These texture parameters help to assess the
spatial spread of pixel intensities within the images. As the values become higher, the
images are said to have higher contrast, energy, homogeneity, and correlation, respectively.
These features form the texture attributes of these images, which are imperative ingredients
for the differentiation of pathological entities from the normal tissues and provide a path
for correct diagnosis, especially in a medical condition like rheumatoid arthritis.

Table 3. Texture analysis of different hand radiographs.

Texture Analysis (GLCM) Value
Contrast 51.878
Energy 0.263

Homogeneity 0.728
Correlation 0.874

Table 4 displays the effectiveness of hybrid segmentation carried out with various
classification methods. Every model is assessed according to the number of TN, FP, FN,
and TP. For example, ResNet101V2 obtained an outcome of 50 TN, 10 FP, 5 FN, and 55 TP
when applied. On the other hand, DenseNet201 gave rise to 52 TN, 8 FP, 3 FN, and 57 TP.
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Consequently, InceptionResNetV2 recorded 45 TN, 15 FP, 3 FN, and 57 TP. RANet yielded
46 TN, 14 FP, 7 FN, and 53 TP, while RANet had 60 TN, 12 FP, 8 FN, and 43 TP.

Table 4. Performance of hybrid segmentation with different classification models.

Model TN FP FN TP
ResNet101V2 50 10 5 55

InceptionResNetV2 45 15 3 57
DenseNet201 52 8 3 57

RANet 46 14 7 53

Table 5 provides a comprehensive analysis of the classification models, including
their accuracy, loss, precision, and recall metrics. ResNet101V2 exhibited an accuracy of
0.8333, with a loss of 0.1667, precision of 0.8462, and recall of 0.9167. InceptionResNetV2
achieved an accuracy of 0.8194, with a loss of 0.1806, precision of 0.7917, and recall of 0.9500.
DenseNet201 demonstrated an accuracy of 0.8889, with a loss of 0.1111, precision of 0.8767,
and recall of 0.9500. RANet showed an accuracy of 0.8056, with a loss of 0.1944, precision
of 0.7917, and recall of 0.8837.

Table 5. Performance analysis of classification models.

Model Accuracy Loss Precision Recall
ResNet101V2 0.8333 0.1667 0.8462 0.9167

InceptionResNetV2 0.8194 0.1806 0.7917 0.9500
DenseNet201 0.8889 0.1111 0.8767 0.9500

RANet 0.8056 0.1944 0.7917 0.8837

In Figure 6, the plot illustrates the training and testing accuracy of the classification
models over different epochs. Each point on the curve represents the accuracy achieved by
the model on the training and testing datasets at a specific epoch. For instance, ResNet101V2
achieved a training accuracy of 0.90 and a testing accuracy of 0.85 after 10 epochs, with
both accuracies gradually increasing with further epochs.
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Figure 7 depicts the training and testing loss of the models over epochs. Smaller values
are considered to be better, as the model reduces its error. For instance, InceptionResNetV2
decreased the training loss to 0.15 and had a consequent test loss of 0.20 after 10 epochs.
The loss decreased steadily, and the smaller it became, the more training was carried out.



Big Data Cogn. Comput. 2024, 8, 104 16 of 23

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 16 of 23 
 

Figure 7 depicts the training and testing loss of the models over epochs. Smaller val-
ues are considered to be better, as the model reduces its error. For instance, InceptionRes-
NetV2 decreased the training loss to 0.15 and had a consequent test loss of 0.20 after 10 
epochs. The loss decreased steadily, and the smaller it became, the more training was car-
ried out. 

 
Figure 7. Training and testing loss over epochs. 

Table 6 shows how various data augmentation techniques, such as rotation, scaling, 
flipping, and brightness changes, increase the size of the dataset by large values ranging 
from 10% to 70%, resulting in a model accuracy increase of between 2% and 10%. The joint 
application of all techniques notably led to the biggest increase in dataset size and peak 
accuracy improvement. Segmentation techniques revealed an overview of the perfor-
mance, as shown in Table 7. The results obtained show that adaptive thresholding had the 
highest precision, at 0.85; a recall of 0.80; an F1-score of 0.82; and a Jaccard Index of 0.72. 
Therefore, compared with classes such as global thresholding, Otsu’s method, Canny 
edge detection, and the Sobel operator, this technique of adaptive thresholding is more 
effective in the proper segmentation of carpal bones from a hand X-ray image. 

Table 6. Summary of augmentation effects. 

Augmentation Technique Increase in Dataset Size (%) 
Model Accuracy 

Improvement (%) 
Rotation 25% 5% 
Scaling 20% 4% 

Flipping 15% 3% 
Brightness modifications 10% 2% 

Combined techniques 70% 10% 

Table 7. Performance metrics of segmentation techniques. 

Technique Precision Recall F1-Score Jaccard Index 
Global thresholding 0.82 0.78 0.80 0.68 

Adaptive thresholding 0.85 0.80 0.82 0.72 
Otsu’s method 0.83 0.79 0.81 0.70 

Canny edge detection 0.80 0.77 0.78 0.66 
Sobel operator 0.81 0.78 0.79 0.67 

Figure 7. Training and testing loss over epochs.

Table 6 shows how various data augmentation techniques, such as rotation, scaling,
flipping, and brightness changes, increase the size of the dataset by large values ranging
from 10% to 70%, resulting in a model accuracy increase of between 2% and 10%. The joint
application of all techniques notably led to the biggest increase in dataset size and peak
accuracy improvement. Segmentation techniques revealed an overview of the performance,
as shown in Table 7. The results obtained show that adaptive thresholding had the highest
precision, at 0.85; a recall of 0.80; an F1-score of 0.82; and a Jaccard Index of 0.72. Therefore,
compared with classes such as global thresholding, Otsu’s method, Canny edge detection,
and the Sobel operator, this technique of adaptive thresholding is more effective in the
proper segmentation of carpal bones from a hand X-ray image.

Table 6. Summary of augmentation effects.

Augmentation Technique Increase in Dataset Size (%) Model Accuracy
Improvement (%)

Rotation 25% 5%
Scaling 20% 4%

Flipping 15% 3%
Brightness modifications 10% 2%

Combined techniques 70% 10%

Table 7. Performance metrics of segmentation techniques.

Technique Precision Recall F1-Score Jaccard Index
Global thresholding 0.82 0.78 0.80 0.68

Adaptive thresholding 0.85 0.80 0.82 0.72
Otsu’s method 0.83 0.79 0.81 0.70

Canny edge detection 0.80 0.77 0.78 0.66
Sobel operator 0.81 0.78 0.79 0.67

Table 8 presents the performance metrics of four classification models (ResNet101V2,
InceptionResNetV2, DenseNet201, and RANet) across three different batch sizes: 16, 32,
and 64. The trend for every model is that increasing the batch size will generally improve
the accuracy, reduce the loss, increase precision, and improve recall. For instance, the model
DenseNet201 had clear performance gains with increasing batch size to a batch size of 64,
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reaching an accuracy of 0.9000, a loss of 0.1000, a precision of 0.8850, and a recall of 0.9600
against lower metrics when the batch size was 16.

Table 8. Performance analysis of classification models for different batch sizes.

Model Batch Size Accuracy Loss Precision Recall

ResNet101V2

16 0.8333 0.1667 0.8462 0.9167
32 0.8421 0.1582 0.8500 0.9225
64 0.8500 0.1500 0.8600 0.9300

InceptionResNetV2

16 0.8194 0.1806 0.7917 0.9500
32 0.8250 0.1750 0.8000 0.9550
64 0.8300 0.1700 0.8050 0.9600

DenseNet201

16 0.8889 0.1111 0.8767 0.9500
32 0.8950 0.1050 0.8800 0.9550
64 0.9000 0.1000 0.8850 0.9600

RANet

16 0.8056 0.1944 0.7917 0.8837
32 0.8120 0.1900 0.7950 0.8900
64 0.8180 0.1850 0.8000 0.8950

Figure 8 presents a comparison of the effect of various augmentation techniques
on model accuracy. Each technique is reviewed in relation to how best it contributes to
obtaining a model with higher accuracy. The graph helps illustrate how efficient combined
techniques are in bringing extremely high accuracy compared to the same by just individual
augmentations. Figure 9 shows the different relationships that could be developed between
precision and recall for different segmentation techniques, whether it be global thresholding,
adaptive thresholding, Otsu’s method, Canny edge detection, or even the Sobel operator.
High precision means few false positives, while high recall refers to few false negatives. It
allows these techniques to be set into comparative analysis due to their ability to correctly
segment carpal bone tissues in hand X-ray images, which further guides the choice of the
most adequate method for exact medical image analysis.

Figure 10 shows the plots of the model accuracy with different batch sizes: 16, 32, and
64. As a rule, by increasing the batch size, the model accuracy can be improved. Since the
estimation of the gradient will improve with increasing batch size, there will be smoother
convergence in the course of training. The trend in several models of larger batches clearly
leads to better performance metrics, helping one choose a batch size that is close to optimal
with efficient model training. Figure 11 shows how the batch size affects model loss. Lower
loss values imply good model performance since it commits very few prediction errors. The
adjustments in batch size are portrayed relative to their impacts on the loss in ResNet101V2,
InceptionResNetV2, DenseNet201, and RANet models. This example illustrates that the
batch size needs to be tuned to minimize the loss and improve general model efficiency
during the training and validation stage.
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Figure 12 shows how precision, measuring the accuracy of the positive predictions,
changes for different batch sizes—16, 32, and 64—for a variety of classification models. In
simple terms, the rule can be restated as such: The larger the amount, or batch size, the
better the precision, as the statistical representation will consequently be better and will
hence accord more accurate positive instance predictions. Figure 13 shows the relation
of recall, a measure of completeness of positive predictions, vs. batch size across all the
models. Bigger recall values would signify that in this scenario, the model has captured
more positive class instances.
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Figure 14 compares several augmentation techniques applied to images with respect
to the loss function of machine learning models, including rotation, scaling, flipping, and
brightness change—precisely, how these techniques impact losing the prediction errors
while training a model. The more the loss value is minimized, the better the model, and the
methods are more successful in improving model accuracy by reducing training errors.
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Table 9 shows the results of the ablation study, which was dedicated to finding the im-
portance of a certain model layer configuration change w.r.t model performance measures
for the ResNet101V2, InceptionResNetV2, DenseNet201, and RANet models. The rows of
the table represent different configuration changes that were applied to the corresponding
model, like dropping the last convolutional layer from ResNet101V2, a reduction in filter
size from InceptionResNetV2, reducing one dense block from DenseNet201, and an atten-
tion mechanism alteration from RANet. For instance, after removing the last convolutional
layer from ResNet101V2, the accuracy dropped to 0.8100; however, precision and recall
were maintained at 0.8200 and 0.8500, respectively. On the other hand, changing the atten-
tion mechanism in RANet improved accuracy to 0.88, with precision and recall equaling
0.83 and 0.86, respectively.
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Table 9. Ablation study of model layers.

Model Configuration Change Accuracy Loss Precision Recall
ResNet101V2 Remove last conv layer 0.8100 0.1900 0.8200 0.8500

InceptionResNetV2 Reduce filter size 0.8200 0.1800 0.8300 0.8600
DenseNet201 Remove dense block 0.8150 0.1850 0.8250 0.8550

RANet Alter attention mechanism 0.8800 0.1800 0.8300 0.8600

The performance comparison of the classifiers by the proposed segmentation is shown
in Table 10. RANet showed quite good predictive performance at an accuracy of 0.8889
and the lowest loss of 0.1111. It had a high precision of 0.8767, a recall of 0.95, and an F1
score of 0.9123, which also signifies good balance between sensitivity and specificity. For
ResNet101V2, it had an accuracy of 0.8333 and a loss of 0.1667, with the highest recall of
0.9167. The accuracy for the training of the InceptionResNetV2 model was found to be
0.8194, with a high recall of 0.9500 and an F1 score of 0.8621. In contrast, DenseNet201
had a much lower accuracy of 0.8056, a Hausdorff distance of 7.0, and a higher rate of
mean absolute error of about 0.18, showing less accuracy. The values of the Dice Similarity
Coefficient (DSC) further underline the performance of RANet at 0.80, while the Jaccard
index for RANet was found to be equal to 0.70, showing super-segmentation capability
over the other models.

Table 10. Performance comparison of classifiers using proposed segmentation.

Model Accuracy Loss Precision Recall F1 Score DSC Jaccard Hausdorff MAE mIoU Specificity
ResNet101V2 0.8333 0.1667 0.8462 0.9167 0.8559 0.75 0.65 5.2 0.12 0.70 0.83

InceptionResNetV2 0.8194 0.1806 0.7917 0.9500 0.8621 0.72 0.60 6.1 0.15 0.68 0.79
DenseNet201 0.8056 0.1944 0.7917 0.8837 0.8335 0.68 0.55 7.0 0.18 0.65 0.75

RANet 0.8889 0.1111 0.8767 0.9500 0.9123 0.80 0.70 4.8 0.10 0.75 0.87

In addition to accuracy, the computational efficiency of the proposed method was
evaluated by measuring execution time and memory usage. The results are summarized in
Table 11.

Table 11. Results summary.

Method Execution Time (Seconds) Peak Memory Usage (MB)
Existing method 1 2.5 150
Existing method 2 3.0 200
Proposed method 1.8 120

The proposed method demonstrated a significant improvement in execution time,
processing images approximately 28% faster than existing method 1 and 40% faster than
existing method 2. Additionally, it required less memory, making it more suitable for
environments with limited resources. These results indicate that the proposed method not
only maintains high accuracy but also enhances computational efficiency, which is crucial
for real-time applications in medical imaging.

5. Conclusions and Future Work

The proposed hybrid segmentation approach in this study that incorporates the two
segmentation methods’ strengths can effectively segment the carpal bones of hand X-ray
images, which is crucial in diagnosing rheumatoid arthritis. The algorithm unifies adaptive
thresholding, contour analysis, and texture analysis and can be used with a high accuracy,
precision, and classification rate on a varied set of models of classification. Finally, the
state-of-the-art deep learning architectures, such as ResNet101V2, InceptionResNetV2, and
DenseNet201, make the model more accurate. Therefore, the proposed approach offers a
complete solution for RA diagnosis from X-ray images. For the purpose of widening the
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horizon of the proposed hybrid segmentation method in the future, though, some routes
can be considered. First, the system would be able to recognize additional features and
employ additional sophisticated texture analysis methods, which would result in it being
able to discriminate better between carpal bones that are inflamed and normal. In addition,
the use of more complex deep learning architectures or ensemble techniques to refine the
segmentation result can also be considered. In addition, the analysis can be expanded into
a bigger dataset that involves patients of different demographics and disease progression.
This increases the transferability of the algorithm and its usefulness for clinical practice.
The proposed work gives an accuracy rate of 88% and a loss of 0.15 using CNN.
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