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Abstract: Learning distance metrics and distinguishing between samples from different classes are
among the most important topics in machine learning. This article proposes a new distance metric
learning approach tailored for highly imbalanced datasets. Imbalanced datasets suffer from a lack
of data in the minority class, and the differences in class density strongly affect the efficiency of the
classification algorithms. Therefore, the density of the classes is considered the main basis of learning
the new distance metric. It is possible that the data of one class are composed of several densities,
that is, the class is a combination of several normal distributions with different means and variances.
In this paper, considering that classes may be multimodal, the distribution of each class is assumed
in the form of a mixture of multivariate Gaussian densities. A density-based clustering algorithm is
used for determining the number of components followed by the estimation of the parameters of the
Gaussian components using maximum a posteriori density estimation. Then, the Bhattacharya distance
between the Gaussian mixtures of the classes is maximized using an iterative scheme. To reach a large
between-class margin, the distance between the external components is increased while decreasing
the distance between the internal components. The proposed method is evaluated on 15 imbalanced
datasets using the k-nearest neighbor (KNN) classifier. The results of the experiments show that using
the proposed method significantly improves the efficiency of the classifier in imbalance classification
problems. Also, when the imbalance ratio is very high and it is not possible to correctly identify minority
class samples, the proposed method still provides acceptable performance.

Keywords: imbalanced data classification; distance metric learning; Bhattacharya divergence; class
density estimation

1. Introduction

Machine learning (ML) allows computers to learn without being explicitly programmed.
Many machine learning and pattern recognition methods require calculating the distance
between data points, often utilizing the Euclidean distance metric [1,2], as developing a new
and suitable distance metric for the data is challenging. Currently, distance metric learning
(DML) is a significant aspect of machine learning, where a machine learns a novel distance
metric according to the input patterns’ characteristics. This new metric can enhance the
effectiveness of classification algorithms that rely on the distance metric.

Supervised learning is a category of learning algorithms. In this type of learning, the
algorithm has access to labeled data. The goal of supervised distance metric learning is to
train a new distance metric that brings the data points with the same label closer together
and separates the points with different labels. In the learning process, according to Figure 1,
the most appropriate distance matrix is extracted for each dataset using the distance metric
learning algorithm. Then, the data are mapped to a new space based on the new distance
metrics, and after that, various classification algorithms can be applied to the mapped data.
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Figure 1. The general process of supervised distance metric learning.

One of the important issues in the field of data mining and machine learning is the
problem of classifying imbalanced datasets. An imbalanced distribution of classes in
datasets occurs when the number of observations in the minority class (positive class) is
much less than in the majority class (negative class). The existence of rare or very expensive
samples in the real world creates imbalanced datasets [3,4]. On the other hand, traditional
classification algorithms such as the k-nearest neighbor (KNN) algorithm and support
vector machine (SVM) do not work well on imbalanced datasets because they do not
consider the quality of the data space and the imbalance ratio. Therefore, when classifying
imbalanced datasets, these algorithms tend towards the majority class and consider the
minority class samples as noise or outliers. Consequently, the probability of misclassifying
the minority class compared to the majority class increases, and the accuracy of their
performance on these samples is very low. Additionally, when the imbalance ratio is very
high, it becomes challenging to identify the minority class [5,6].

The challenge of classifying imbalanced datasets is usually encountered in scenarios
where anomaly detection is crucial, such as medical diagnosis (diagnosing rare diseases) [7],
fraud detection in the banking system [8], prediction of natural disasters like earthquakes,
face recognition, text classification [9], error detection [10], and anomaly detection [11]. Con-
sequently, research in the field of imbalanced dataset classification has gained significant
attention in recent years [12]. Given that in real-world applications, the primary objective
is often to identify rare cases, it is imperative to develop a model capable of accurately
classifying the minority class.

In this article, a new distance metric is proposed for imbalanced data classification.
The difference in class density strongly affects the efficiency of classification algorithms.
Therefore, the local density of classes is the primary basis for learning the new approach.
In the proposed method, the density between classes is the main criterion for learning the
distance metric. Imbalanced datasets suffer from a lack of data in the minority class, and
the disparity between the density of the minority class and the majority class significantly
impacts the efficiency of the k-nearest neighbor classification algorithm.

On the other hand, it is possible that the data of one class are composed of several
densities. That is, the data are a combination of several normal distributions with differ-
ent parameters, each having distinct means and variances. In the proposed method, for
identifying the number of normal distributions, the distribution of classes is assumed to
be a mixture of Gaussians. The number of components is determined using the DBSCAN
density-based clustering algorithm. To accurately identify the Gaussian components of the
Gaussian mixture model (GMM) probabilistic models, the parameters are estimated and
updated separately using the maximum a posteriori (MAP) estimator. Subsequently, the dis-
tance between the densities of Gaussian components is maximized using the Bhattacharya
distance and an iterative optimization algorithm to achieve a large between-class margin.
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The rest of this article is organized as follows: In Section 2, works related to the topic of
distance metric learning are reviewed. In Section 3, the proposed model is presented, which
is based on training the appropriate distance metric for the imbalanced datasets to enhance
the efficiency of classification algorithms. Section 4 reports the results of experiments on
several imbalanced datasets. The conclusion and future works are outlined in Section 5.

2. Related Works
2.1. Background and Definitions

Distance metric learning emerged in 2003 in Mr. Xing’s article with the introduction of
Mahalanobis distance [13]. Unlike Euclidean distance, Mahalanobis distance also considers
the correlation between features and is represented by Equation (1).

dM
(
x, x′

)
=

√
(x − x′)T M(x − x′) (1)

where x and x’ are two random vectors from the same distribution with covariance matrix
M. Matrix M is a symmetric positive semi-definite (PSD) matrix with d × d dimensions [14].
If M is an identity matrix, Equation (1) will represent the Euclidean distance. Since M is
PSD, dM has the following properties.

dM
(
x, x′

)
≥ 0

dM(x, x) = 0
dM

(
x, x′

)
= dM

(
x′, x

)
dM(x, x′′ ) ≤ dM

(
x, x′

)
+ dM

(
x′, x′′

)
Since matrix M can be written as M = LTL, the linear transformation of the data is

performed with the transfer matrix L in the Mahalanobis distance.

dM
(
x, x′

)
=

√
(x − x′)T LT L(x − x′)

dM
(
x, x′

)
=

√(
Lx − xL′)T(Lx − Lx′

)
In general, the research conducted in the field of distance metric learning can be

divided into the following categories [15].

a. Pairwise cost-based approaches

Weinberger et al. [16,17] introduced the large margin nearest neighbor (LMNN) algo-
rithm, a supervised distance metric designed to improve the k-nearest neighbor classifier.
LMNN works by reducing the distance between k-nearest neighbors that share the same
label (target neighbors), thus increasing their separation from samples of different classes
and creating a larger margin. However, a notable limitation of this algorithm is its focus on
optimizing intra-class distances, meaning the initially designated target neighbors do not
change during training. As a result, the performance of LMNN is highly dependent on the
initial selection of these target neighbors.

Zadeh et al. [18] presented the geometric mean metric learning (GMML) algorithm
to improve the accuracy of k-nearest neighbor classification. In their approach, samples
are divided into two sets: S for similar point pairs and D for dissimilar point pairs. The
algorithm computes a similarity matrix for S and a dissimilarity matrix for D. It then finds
the shortest line connecting the inverses of the second-moment matrix of similar points to
the second-moment matrix of dissimilar points, with the midpoint of this line defined as
the geometric mean. This method aims to achieve a global minimum in a strongly convex
objective function, focusing on minimizing the total distance among all similar points.

Ying et al. [19] developed the distance metric learning algorithm with eigenvalue op-
timization (DML_eig) to improve the accuracy of k-nearest neighbor classification. Their
method involves dividing samples into two sets: S, which contains pairs of similar points, and
D, which includes pairs of dissimilar points. They refined the objective function from Xing
et al. that seeks to maximize the distances between dissimilar pairs while keeping the sum
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of squared distances between similar pairs within an upper limit. The DML_eig algorithm
optimizes this process by identifying the largest eigenvector in each iteration, which helps
maximize the minimum squared distances between dissimilar pairs while adhering to the
constraints for similar pairs. However, this approach requires eigen decomposition of a matrix
at each iteration, resulting in significant time consumption during convergence.

Nguyen et al. [20] introduced distance metric learning through maximization of the Jeffrey
divergence (DMLMJ) to enhance the accuracy of k-nearest neighbor classification. In their
approach, they divided samples into two groups: S, comprising k similar neighbors, and D,
consisting of k dissimilar neighbors. They calculated the covariance matrices for both sets and
derived their eigenvectors and eigenvalues. The objective was to learn a linear transformation
that maximizes the Jeffrey divergence between the two multivariate Gaussian distributions.

b. Probabilistic approaches

In this group of methods, researchers aim to maximize the probability that a point is
similar to its neighbors while minimizing classification error based on k-nearest neighbors
in the image space. A significant disadvantage of these methods is that their equations are
non-convex, leading to convergence at a local maximum and increased computational com-
plexity. Davis et al. [21], in a method known as information theoretic metric learning (ITML),
categorized all samples into two sets: classmates and non-classmates. They sought to train
and optimize the Mahalanobis distance by minimizing the log-determinant divergence.
This method employs concepts from Bergman’s information theory and optimization.

c. Boost-Like methods

Boost-like methods try to train a new metric in each step with a linear combination
of the sub-metrics of the previous steps, which have weak constraints in their formula. In
other words, by adding weaker learners, strong learners are produced. Chang et al. [22]
introduced a boosting algorithm for supervised learning of the Mahalanobis distance metric
called BoostMDM. In this method, a cost function is defined, which is repeatedly reduced
in each step. In each iteration, the metric matrix is combined with what was learned in the
previous step. In this method, the entire sample space is used for training.

d. Hybrid approaches

This category explores the integration of distance metric learning with other models,
such as online learning, to enhance system efficiency. These methods are adaptable to large
datasets and can continuously update metrics with current data.

Zhong et al. [23] introduced the scalable large margin online metric learning (SLMOML)
method, which employs log-determinant divergence to maintain proximity between
two trained Mahalanobis distance metrics. Using the Hinge loss function, SLMOML creates
a large margin between different samples and connects passive learning with Bergman
imaging, achieving global convergence. The initial Mahalanobis matrix remains positive
semi-definite (PSD) throughout the process.

Liu et al. [24] proposed LM-KNN, addressing label prediction in multi-label problems
where each example can have multiple related tags, such as in document classification. To
reduce the cost and increase the speed of tag prediction for unseen samples, they utilized a
distance metric to identify relationships between labels, enabling the separation of distinct
tags. Rather than relying on costly optimization techniques, LM-KNN employs a KNN
solution to predict labels in the transformed space.

e. Deep metric learning approaches

In this category, distance metric learning is combined with deep learning to increase
the efficiency of the system for managing non-linear and massive data [25–27]. In this
type of learning, instead of Mahalanobis distance, neural networks are used to create a
new feature space with high discrimination power. Cao et al. [28] used a deep neural
network to reduce the intra-class distance, increase the extra-class distance, and improve
the performance of classification methods such as KNN.
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2.2. Learning Distance Metric in Imbalanced Applications

Wang et al. [29] introduced the iterative metric learning (IML) method to address
imbalanced data in classification, consisting of three steps. First, the LMNN algorithm
iteratively transforms training samples to better align with the test data space. Second,
the distance between test samples and training samples is calculated to select the closest
training samples, thereby reducing the training sample size. Finally, training samples from
each iteration are compared to those from the previous iteration to retain the most similar
ones, creating a more stable neighborhood space for test samples.

Feng et al. [30] proposed the distance metric by balanced KL-divergence (DMBK),
which develops a new distance metric suitable for imbalanced datasets. They assumed a
Gaussian density with uniform covariance across classes and used Kullback–Leibler diver-
gence to measure the distance between class distributions. To effectively handle samples
from both minority and majority classes, they utilized the logarithm of the geometric mean
of the normalized Kullback–Leibler deviation, solving the optimization problem using
ascending gradients and iterative operations.

Gautheron et al. [31] introduced imbalanced metric learning (IML), which creates a
distance metric to improve performance on imbalanced datasets. Unlike the traditional
Mahalanobis formula, which minimizes loss across all pairs without considering labels, IML
employs two loss functions: one for same-label pairs, aiming to reduce their distance below
one, and another for different-label pairs to increase their distance beyond one plus a margin.

Yan et al. [32] presented the deep metric framework with border-line-margin loss
(DMFBML), combining a new distance metric with a neural network to minimize intra-
class distance while maximizing extra-class distance in overlapping class regions, thereby
improving classification accuracy for minority class samples in imbalanced datasets. Lastly,
the authors of [33] proposed a method to extract desirable features and reduce undesirable
ones in imbalanced datasets, which could enhance distance metric learning and facilitate
the transfer of data to a new feature space with higher discrimination power. This paper
proposes a method that simultaneously selects and extracts features through a cost-sensitive
optimization problem. The feature extraction phase focuses on reducing error and maintain-
ing geometric relationships between data using a manifold learning optimization problem.
In the feature selection phase, a cost-sensitive optimization problem is used to minimize
the upper limit of the generalization error. The combined optimization problem is solved
by adding a cost-sensitive term to balance the classes without manipulating the data.

The authors of [34] introduced DFSVM, a novel method for imbalanced classification
that combines deep learning with fuzzy support vector machines. DFSVM begins by utilizing
a deep neural network to generate an embedding representation of the data, trained with
triplet loss to strengthen the similarities within classes while maximizing differences between
classes. To address the challenges posed by imbalanced data distribution, an oversampling
technique is applied in the embedding space, focusing on feature and center distances to create
diverse new samples and mitigate overfitting. Finally, a fuzzy support vector machine (FSVM)
with cost-sensitive learning serves as the classifier, assigning higher misclassification costs to
minority class samples to enhance overall classification performance.

3. The Proposed Method

Since most distance metric learning algorithms are designed for balanced datasets, it
is essential to introduce additional algorithms that cater to imbalanced datasets. In this
article, we present a novel distance metric called DMLdbIm, specifically developed for
imbalanced datasets. The aim of DMLdbIm is to establish an appropriate data space that
enhances the efficiency of distance-based classification algorithms.

In imbalanced datasets, the disparity between the densities of the minority and major-
ity classes is extremely pronounced. Consequently, during classification, the minority class
may be overlooked, leading to a significant reduction in the classifier’s effectiveness for
that class. The proposed algorithm emphasizes the density of the minority class, employing
a new distance metric designed to bring samples of the minority class closer together
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while maximizing their distance from samples of the majority class in the data space. This
approach aims to enhance the classification algorithm’s performance on the minority class.
The overall structure of the proposed DMLdbIm method is illustrated in Figure 2. The
subsequent sections will discuss the various phases of the proposed model.
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3.1. The Proposed Model Construction Method

The proposed approach includes 5 phases.

3.1.1. The First Phase: Estimating the Density of the Classes

In the proposed method, a new distance metric is developed based on the density
differences between classes. This approach is particularly relevant for imbalanced datasets,
where the disparity in density between the minority and majority classes is often significant.
Additionally, it is possible for the data of a single class to consist of multiple populations;
that is, the data may be represented as a combination of several normal distributions, each
with distinct parameters, including different means and variances. The proposed method
aims to identify the number of normal distributions present in the data. For example, in a
medical dataset, the number of patients with a rare disease may be considerably lower than
that of those who are unaffected. By employing the new distance metric, we can analyze the
density differences between affected and unaffected patients. If the affected class comprises
multiple subgroups with varying characteristics, we can model this combination using
multivariate Gaussian models. The distribution of different classes is represented as a
mixture of Gaussian distributions with varying covariances. Consequently, if the sample
distribution of each class adheres to several Gaussian models, the relevant parameters for
each Gaussian can be estimated. If X = {x1,. . .,xn} denotes the set of training data, then the
multivariate Gaussian density function can be expressed as shown in Equation (2).

g
(
X; µ, ∑

)
=

1

2π
D
2 |∑|

1
2

exp
(
−1

2
(X − µ)T ∑−1

(X − µ)

)
(2)

µ =
1
n∑n

i=1 xi

∑ =
1
n∑n

i=1 (xi − µ)(xi − µ)T

In Equation (2), D is the dimensionality (the number of features in the dataset), π is
the weight (percentage of the data in one component), µ is the mean vector, and ∑ is the
covariance matrix. The covariance matrix should be symmetric and positive semi-definite
(PSD). This phase includes the following steps:

a. Estimating the initial values of GMM parameters

In the proposed method, the first step is to determine whether the distribution of
samples from each class conforms to several Gaussian models, followed by making initial
estimates of the weights, means, and covariance parameters. To achieve this, a common
clustering method is employed. Given that the focus of the proposed method is on the
density of imbalanced datasets, the DBSCAN algorithm is selected. This method clusters
data based on the density of data points, enabling it to identify clusters with complex
shapes and recognize data points that do not belong to any cluster (outliers). However,
when the data are intertwined and lack clear boundaries, DBSCAN may struggle to de-
tect clusters accurately. In such cases, GMMs, which are probabilistic models, can be
utilized to identify these types of clusters. In this step, the parameters, including weights,
means, and initial covariances of the components, are calculated for each cluster identified
by DBSCAN.

b. Maximum a posteriori (MAP) parameter re-estimation

In many applications, the maximum likelihood estimator is employed to estimate the
covariance of class distributions. However, this method performs poorly with imbalanced
datasets, where the number of samples in the minority class is significantly small. As a
result, the estimate of the covariance matrix is typically elliptical and deviates from the true
covariance matrix, which substantially diminishes classification accuracy. In the referenced
article [26], a solution to this challenge is proposed by jointly estimating the covariance
matrix for all classes, under the assumption that all classes share the same covariance.
However, in real-world applications, the variances of class distributions are often unequal.
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Therefore, this research addresses the challenge using the maximum a posteriori (MAP)
estimator, implemented in the following two steps.

First step: The probability of the training vectors to be in the components of the initial
mixture is computed by the posterior probability in Equation (3).

Pr
(
i
∣∣Xt, θprior

)
=

wig(Xt|µi, ∑i)

∑K
k=1 wkg(Xt|µk, ∑k)

(3)

In the expression Pr
(
i
∣∣Xt, θprior

)
, the probability that a data point Xt originates from

the ith Gaussian component is denoted, and θprior represents initial parameters. MAP
involves using prior knowledge or “prior beliefs” about the model parameters. This
approach allows leveraging historical information to improve parameter estimation. Using
prior information can help prevent overfitting. A GMM without prior evidence may
become overly sensitive to training data. g(Xt|µi, ∑i) is the Gaussian density function that
is expressed in Equation (2). A Gaussian mixture model is a weighted sum of K Gaussian
densities as given by the equation, ∑K

k=1 wkg(Xt|µk, ∑k), where K is the number of clusters,
Xt is a D-dimensional continuous-valued data vector, and wk, k = 1, . . ., K, are the mixture
weights. Utilizing MAP allows for more effective adjustments of cluster weights based on
prior evidence, aiding in better identification and separation of clusters.

Then, the weight, mean, and variance parameters are calculated using Equations (4)–(6).

weight : wi = ∑T
t=1 Pr

(
i
∣∣Xt, θprior

)
(4)

mean : Ei(X) =
1
ni

∑T
t=1 Pr

(
i
∣∣Xt, θprior

)
Xt (5)

variance : Ei(X2) =
1
ni

∑T
t=1 Pr

(
i
∣∣Xt, θprior

)
X2

t (6)

Second step: The previous estimates must be formulated as Equations (7)–(9) to ensure
compatibility with the ith component.

ŵi = [
αw

i ni

T
+ (1 − αw

i )wi]γ (7)

µ̂i = αm
i Ei(X) + (1 − αm

i )µi (8)

δ̂2
i = αv

i Ei

(
X2

)
+ (1 − αv

i )
(

α2
i − µ2

i

)
− µ̂2

i (9)

Each Gaussian component is composed of the following parameters: a mean µ, which
defines its center; covariance Σ, which defines its width; and mixing probability π, which
defines how big or small the Gaussian function will be. If we have a dataset composed of
N = 1000 three-dimensional points (D = 3), then x will be a 1000 × 3 matrix. µ will be a
1 × 3 vector, and Σ will be a 3 × 3 matrix. Adjustment coefficients

{
αw

i , αm
i , αv

i
}

balance the
new and old estimates. The γ normalization factor is applied to the weight of all of the
mixtures so that the sum of the weights becomes 1. For each mixture and each parameter,
the coefficients of adaptation (i.e., α

ρ
i

)
are defined in the form of Equation (10). According

to its value, the effect of new data in estimating parameters is changed.

α
ρ
i =

ni
ni + rρ (10)

The related factor rρ controls the number of new samples that must be observed in each
mixture component before the new parameters replace the old ones. MAP can effectively
estimate the means and covariances of the Gaussian distributions, especially when dealing
with limited or noisy data.



Big Data Cogn. Comput. 2024, 8, 109 9 of 27

3.1.2. The Second Phase: Calculating the Distance between the Gaussian Components
Using the Bhattacharya Distance

The Bhattacharya distance [30] measures the symmetric difference between two prob-
ability distributions. For imbalanced data, the Bhattacharyya distance is a better choice
than other divergences because it is symmetrical and its calculation method is less sen-
sitive to the differences in the number of samples in each class and focuses more on the
degree of overlap between the distributions. For Pi = (X; µi, ∑i) and Pj =

(
X; µj, ∑j

)
as

two Gaussian distributions, the Bhattacharya distance between the two distributions is in
the form of Equation (11).

Bij =
1
8
(
µi − µj

)T ∑−1
(µi − µj) +

1
2

ln(
det ∑√

det ∑i det ∑j

) (11)

In Equation (11), the variance is equal to Equation (12):

∑ =
∑i +∑j

2
(12)

3.1.3. The Third Phase: The Process of Learning the Proposed Distance Metric

To train the new distance metric (matrix A), one needs to calculate and update the
transfer matrix (linear transformation), such as W, so that A = WWT . Therefore, W is
initialized with the eigenvector of all training samples, then each sample x is replaced
with WTx, and the Bhattacharya distance between the two distributions in the new space
is calculated. The Bhattacharya distance is normalized between the Gaussian compo-
nents according to Equation (13) to describe the difference between the components of
different classes.

EA
ik jl =

qik qjl BA
(

pik ||pjl
)

∑1≤m≤ci ∑1≤n≤cj
qmqnBA(pm||pn)

(13)

where qik is the number of samples of the k-th component of the i-th class, pik represents
the Gaussian pdf of the k-th component of the i-th class, and ci denotes the number of
components in the ith class. Then, according to Equation (14), the geometric mean is taken
until the samples from different components are separated in a balanced way.

A∗ = argmax( ∏
1≤ik<jl≤z

EA
ik jl )

1
z (14)

where z is the number of components. Equation (14) is maximized when the EA values
in both desired components are equal. This equation aims to diminish the influence of
majority class components while enhancing the impact of minority class components. Con-
sequently, the optimal distance metric matrix A can account for the imbalanced distribution
of components. To further achieve this balance and reduce the effect of majority class
components while increasing the influence of minority class components, the logarithm of
the geometric mean is computed, as indicated in Equation (15).

A∗ = argmax log ( ∏
1≤ik<jl≤z

EA
ik jl )

1
z (15)

To enhance the discrimination power of A and achieve a larger margin in Equation (15), the
between-class distance must be increased, while the within-class distance should be decreased.
To ensure that the proposed distance metric learning method is both appropriate and optimal,
the following two constraints are added to the objective function in Equation (16).
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max LA = argmax log ( ∏
1≤ik<jl≤z

EA
ik jl

)
1
z

+λ1 ∑
1≤ik<jl≤N

θik jl dA
(
xik , xjl

)
− λ2 ∑

1≤i<j≤N
(1 − θ ij)dA

(
xi, xj

) (16)

S.t. A ≥ 0
g(A) = ∑

1≤i,j≤N

(
1 − θij

)
d2

A
(
xi, xj

)
≤ 1

In Equation (16), LA is the objective function, and N is the total number of samples in
the training dataset. When θij = 0, it means both samples have the same label. λ1 and λ2
are regularization parameters that can be adjusted experimentally. Matrix A should be PSD
so that it can be decomposed into A = WWT. Therefore, the constraint A ≥ 0 is considered.
So that the distance between samples of the same class does not fall below a certain value,
the limit g(A) is set. The proposed distance metric learning method treats the classes in the
imbalanced dataset equally and avoids the tendency of the learning algorithm towards the
majority class.

3.1.4. The Fourth Phase: The Optimization Process of the Proposed Objective Function

Since it is difficult to find the distance metric matrix A directly, we try to find the
transformation matrix W. First, the eigenvectors of all training samples are considered
as the initial value of W. Then, according to Equation (17), to update W, an incremental
gradient of LA is calculated with respect to W to obtain the local maximum value compared
to the current solution by stepping in the positive direction of the gradient.

Wnew = Wold + α∇wLA , α = 0.1 (step size) (17)

When matrix W is updated, A is set as WWT. The above operation is repeated until
the distance metric matrix A converges.

3.2. Evaluation

In the proposed DMLdbIm method, according to Figure 3, the datasets are mapped to
the new space based on the obtained distance metrics, and then traditional classification
algorithms are applied to determine the labels of the test samples.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 29 
 

appropriate and optimal, the following two constraints are added to the objective function 
in Equation (16). max  𝐿஺ = 𝑎𝑟𝑔𝑚𝑎𝑥   log( ෑ 𝐸௜ೖ𝑗೗஺ଵஸ௜ೖழ𝑗𝑙ஸ௭ )ଵ௭

+ 𝜆ଵ ෍ 𝜃௜ೖ𝑗೗𝑑஺ ቀ𝑥௜ೖ, 𝑥𝑗೗ቁ − λଶ ෍ (1 − 𝜃௜௝)𝑑஺൫𝑥௜, 𝑥௝൯ଵஸ௜ழ௝ஸேଵஸ௜ೖழ𝑗೗ஸே  
(16)

          S.t.       𝐴 ≥ 0  

𝑔(𝐴) = ෍ (1 − 𝜃௜௝)𝑑஺ଶ(𝑥௜, 𝑥௝) ≤ 1ଵஸ௜,௝ஸே  

In Equation (16), 𝐿஺ is the objective function, and N is the total number of samples 
in the training dataset. When 𝜃௜௝ = 0, it means both samples have the same label. λ1  and 

λ2  are regularization parameters that can be adjusted experimentally. Matrix A should be 
PSD so that it can be decomposed into A = WWT.  Therefore, the constraint A ≥ 0 is consid-
ered. So that the distance between samples of the same class does not fall below a certain 
value, the limit g(A) is set. The proposed distance metric learning method treats the classes 
in the imbalanced dataset equally and avoids the tendency of the learning algorithm to-
wards the majority class. 

3.1.4. The Fourth Phase: The Optimization Process of the Proposed Objective Function 
Since it is difficult to find the distance metric matrix A directly, we try to find the 

transformation matrix W. First, the eigenvectors of all training samples are considered as 
the initial value of W. Then, according to Equation (17), to update W, an incremental gra-
dient of LA is calculated with respect to W to obtain the local maximum value compared 
to the current solution by stepping in the positive direction of the gradient. 𝑊௡௘௪ = 𝑊௢௟ௗ + 𝛼∇௪𝐿஺  ,         𝛼 = 0.1 (𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒) (17)

When matrix W is updated, A is set as WWT. The above operation is repeated until 
the distance metric matrix A converges. 

3.2. Evaluation 
In the proposed DMLdbIm method, according to Figure 3, the datasets are mapped 

to the new space based on the obtained distance metrics, and then traditional classification 
algorithms are applied to determine the labels of the test samples. 

 

Figure 3. Evaluation of the proposed DMLdbIm model. 

New feature space 
(DMLdbIm Training Set) 

Prediction 

KNN Classifier 

Testing  
Set 

DMLdbIm 
Original  

Set 

  

Training  
Set 

Figure 3. Evaluation of the proposed DMLdbIm model.

4. Experiments
4.1. Specifications of the Datasets

In this research, we utilized 13 imbalanced datasets from KEEL (URL (accessed on
22 July 2024) https://sci2s.ugr.es/keel/imbalanced.php) [31] and 2 imbalanced datasets
from UCI (URL (accessed on 22 July 2024) https://archive.ics.uci.edu/ml/index.php) [32],
each exhibiting different imbalance ratios, for the evaluation process. The details of these

https://sci2s.ugr.es/keel/imbalanced.php
https://archive.ics.uci.edu/ml/index.php


Big Data Cogn. Comput. 2024, 8, 109 11 of 27

datasets are presented in Table 1. In the experiments, all datasets were transformed into two-
class problems using the One-Against-All (OAA) method. For each dataset, we specified
the number of samples, the number of features, the number of classes, the number of
minority class samples, the distribution of classes, and the imbalance rate (the ratio of the
number of majority class samples to the number of minority class samples). Evaluation on
these datasets was conducted using 5-fold cross-validation [35].

Table 1. The specifications of 15 evaluation datasets including the size of the datasets, class distribu-
tions, and imbalance ratios.

Dataset No. of
Samples

No. of
Features

No. of Minority
Sample

Distribution of
Classes

Imbalance
Ratio

1 Heart (uci) 270 13 120 (55.56,44.44) 1.25

2 WDBC (uci) 569 30 212 (62.74,37.26) 1.68

3 Pima 768 8 268 (65.16,34.84) 1.87

4 Glass0 214 9 70 (67.32,32.68) 2.06

5 Ecoli1 336 7 81 (75.9,24.1) 3.14

6 Ecoli2 336 7 55 (83.63,16.37) 5.1

7 newthyroid1 215 5 35 (83.72,16.28) 5.14

8 Glass6 214 9 29 (86.45,13.55) 6.37

9 Ecoli3 336 7 35 (89.58,10.42) 8.6

10 yeast-2_vs_4 514 8 51 (90.08,9.92) 9.08

11 yeast-1_vs_7 459 7 30 (93.46,6.54) 14.3

12 winequality-red-8_vs_6 656 11 18 (97.26,2.74) 35.44

13 winequality-red-8_vs_6-7 855 11 18 (97.89,2.11) 46.5

14 winequality-white-3-9_vs_5 1482 11 25 (98.31,1.69) 58.28

15 winequality-red-3_vs_5 691 11 10 (98.55,1.45) 68.1

4.2. Evaluation Criteria

In the evaluation stage, the confusion matrix, as shown in Table 2, is utilized. In
this matrix, TP (true positive) represents the number of samples accurately classified as
belonging to the positive class. TN (true negative) indicates the number of samples correctly
classified as belonging to the negative class. FP (false positive) refers to the number of
samples incorrectly classified as belonging to the positive class. FN (false negative) denotes
the number of samples mistakenly classified as belonging to the negative class.

Table 2. Confusion matrix [36] as the basis for performance comparisons.

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

The classification accuracy is obtained from Equation (18).

acc =
TP + TN

TP + FP + TN + FN
(18)

To evaluate the effectiveness of classification algorithms on imbalanced datasets, accu-
racy is not an appropriate criterion, as models tend to favor the majority class, resulting in in-
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flated overall accuracy. Instead, it is more beneficial to focus on the number of positive sam-
ples identified from the minority class. For this purpose, recall (sensitivity) and precision
criteria are used, as they account for the types of errors (false positives or false negatives)
that the model makes. Recall, as defined in Equation (19), compares the number of positive
samples to all truly positive samples, while precision, according to Equation (20), compares
the number of positive samples to all samples diagnosed as positive. Finally, the F1 mea-
sure is utilized as the harmonic mean of these two criteria, as indicated in Equation (21),
with the objective of maximizing the F1 value [37,38].

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

F1 = 2 ∗ Recall × Precision
Recall + Precision

(21)

4.3. Evaluation of the Proposed DMLdbIm Method

In this article, similar to many existing studies, the k-nearest neighbor classifier is
used as the classification method. This classifier is applied to the primary dataset with the
Euclidean distance metric and is compared against several methods, including DMBK [26],
LMNN [16,17], ITML [21], IML [27], DMLMJ [20], GMML [18], DML_eig [19], and the
proposed DMLdbIm method. Below is a brief introduction to each of the compared methods:

• LMNN: this method ensures that, for each training example, its k-nearest neighbors of
the same class (target neighbors) are closer than examples from other classes.

• ITML: The objective of this method is to minimize the differential relative entropy
between two multivariate Gaussian distributions. It utilizes LogDet regularization to
minimize (or maximize) the distance between examples of the same (or different) classes.

• GMML: the goal of this method is to minimize the total distances among similar points.
• DML_eig: this method aims to maximize the minimum squared distance between

dissimilar pairs while keeping an upper bound on the total squared distance for
similar pairs.

• DMLMJ: the objective here is to learn a linear transformation that maximizes the Jeffrey
divergence between two distributions derived from local pairwise constraints.

• IML: this method positions samples of the same class at distances of less than one
and samples of different classes at distances greater than one, aiming to reduce the
negative effects of class imbalance in the dataset.

• DMBK: the goal of DMBK is to learn a linear transformation that maximizes the
logarithm of the geometric mean of the normalized Kullback–Leibler divergence
between distributions that share the same covariance Gaussian density.

• DMLdbIm: This proposed method aims to identify components of multivariate Gaus-
sian density with varying covariances for each class. It seeks to maximize the Bhat-
tacharya distance between the Gaussian mixtures of different classes, increasing the
distance between external components while decreasing the distance between internal
components to create a wide margin between classes.

In the evaluation stage, the parameters for the objective function outlined in
Equation (16) are set according to the values specified in Table 3.

Table 3. Initial parameters of the proposed approach.

Name Value

λ1 0.00001
λ2 0.00001
α 0.1

Tol 1 × 10−3
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In Table 4, the F1 measure is used for comparison. The F1 score is computed as the
average of 10 runs of five-fold cross-validation on each dataset. Initially, the number of
neighbors in the KNN classification is set to 1. The rank of each method on each dataset is
indicated in parentheses. The Mean row presents the average efficiency of each method,
while the Average Rank row indicates their performance ranking. In the evaluation stage, a
method with a higher F1 measure and a lower rank is considered to perform better.

Table 4. Comparison of F1 measures for the 1NN classifier using the proposed DMLdbIm method
and other methods on 15 standard datasets. The numbers in parentheses indicate the rank of each
approach on the respective dataset. The last two rows show the average performance and average
rank of the approaches, providing a useful basis for comparison.

Dataset Euclidean ITML LMNN DML-eig GMML DMLMJ DMBK IML DMLdbIm

Heart 75.15
(6)

77.33
(2)

75.09
(7)

75.06
(8)

73.14
(9)

76.65
(3)

76.08
(4)

75.83
(5)

77.41
(1)

Wdbc 91.51
(8)

90.21
(9)

91.94
(7)

93.17
(5)

92.28
(6)

95.56
(1)

94.15
(3)

93.75
(4)

94.81
(2)

Pima 56.34
(4)

54.25
(9)

55.55
(7)

54.75
(8)

57.77
(2)

58.07
(1)

55.98
(6)

56.3
(5)

56.55
(3)

Glass0 67.61
(6)

63.5
(9)

64.63
(8)

74.1
(4)

68.62
(5)

75.92
(1)

75.17
(2)

67.15
(7)

74.30
(3)

Ecoli1 73.56
(6)

73.7
(4)

67.9
(9)

69.68
(8)

72.33
(7)

78.32
(1)

73.58
(5)

74.61
(2)

74.51
(3)

Ecoli2 71.43
(5)

70.28
(8)

71.35
(6)

77.1
(4)

68.65
(9)

87.12
(1)

78.26
(3)

70.37
(7)

83.93
(2)

Newthyroid1 87.07
(9)

90.25
(8)

96.77
(1)

93.79
(5)

93.34
(6)

92.52
(7)

94.61
(3)

93.82
(4)

95.96
(2)

Glass6 76.06
(8)

78.53
(5)

78.16
(7)

81.99
(3)

78.33
(6)

70.73
(9)

84.45
(2)

80.32
(4)

88.72
(1)

Ecoli3 50
(8)

52.98
(6)

54.8
(3)

52.99
(5)

50.4
(7)

58.73
(2)

54.32
(4)

45.66
(9)

60.74
(1)

Yeast-2_vs_4 69.39
(9)

73.79
(5)

74.45
(4)

70.77
(8)

71.17
(7)

75.54
(2)

75.08
(3)

71.66
(6)

78.27
(1)

Yeast-1_vs_7 26.09
(7)

23.04
(8)

33.15
(6)

36.51
(4)

37.07
(3)

NAN
(9)

39.85
(2)

34.15
(5)

47.79
(1)

winequality-red-
8_vs_6 NA 14.81

(5) NA 32.12
(3)

25.11
(4) NA 38.99

(2) NA 44.44
(1)

winequality-red-
8_vs_6-7 NA 17.25

(3) NA 25.00
(2)

12.45
(5) NA NA 16.19

(4)
40.00

(1)

winequality-white-3-
9_vs_5 NA 22.13

(2) NA 20.00
(3)

11.57
(5) NA NA 17.07

(4)
33.33

(1)

winequality-red-
3_vs_5 NA NA NA 25.00

(2)
10.78

(3) NA NA NA 40.00
(1)

Mean 49.61 53.47 50.91 58.80 54.86 51.27 56.03 53.12 66.05

AverageRank 6.53 5.8 5.8 4.8 5.6 3.93 3.66 5.06 1.6

As shown in Table 4, the proposed approach outperforms most other methods across
several datasets. However, the DMLMJ approach has outperformed the proposed method
in some cases. DMLMJ is likely to excel over DMLdbIm when dealing with simpler, linearly
separable data distributions, where computational efficiency is crucial and where a linear
transformation is sufficient to achieve good separability. In contrast, DMLdbIm performs
better in complex, multimodal distributions with varying covariances across classes, where
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capturing intricate internal structures and maximizing class separation in a non-linear
feature space are essential. The choice between the two depends on the complexity of the
data and the need for either linear or non-linear separability.

The results also indicate that when class imbalance is low, some other methods may
perform better than the proposed approach, occasionally placing it in the second or third
position. However, as the number of samples in the minority class decreases and imbalance
increases, causing existing methods to lose efficiency, the proposed approach maintains
its effectiveness. It continues to correctly identify minority class samples, showing an
efficiency of about 40%, while some methods, such as Euclidean, LMNN, DMLMJ, and
even the DMBK method, fail to function at all, indicated by NA (not available).

On the other hand, when the classifier has less complex decision boundaries (such as
with KNN when k > 1), the proposed approach has outperformed the other methods by a
wider margin. In Table 5, the F1 measure for 3NN is presented. As seen in this table, by
increasing the number of neighbors to 3, the proposed DMLdbIm method shows better
performance than other methods, and when the imbalance rate increases, although the
efficiency of the algorithm decreases, it still shows better efficiency and more stability than
other methods. As shown, the proposed approach surpasses the other methods in 14 cases,
with an average rank of 1.4, whereas for the 1NN case (as reported in Table 4), it achieved
9 better results with an average rank of 1.6. These observations confirm the insights from
the previous paragraph and provide valuable guidance for potential applications of the
proposed approach.

One of the main reasons our method performs better than others is that it considers the
data to be a combination of several different distributions with varying means and variances.
This approach is particularly effective for classes composed of multiple subgroups with
distinct characteristics. Additionally, we use MAP to estimate the parameters of the
Gaussian model, which proves to be more effective even when the number of data points
in the minority class is small.

Table 6 shows the F1 measure for the 5NN classifier. As Table 6 shows, the efficiency of
the proposed method is reduced in comparison with Table 5, but it generally performs better
than the other methods on the highly imbalanced datasets and has a better ranking. It also
can be concluded that DMLdbIm, IML, and DML_eig are particularly effective in scenarios
where class structure and distribution intricacies play a significant role. DMLdbIm excels
in complex, multimodal datasets where class distributions involve varying covariances. By
focusing on maximizing the Bhattacharya distance between Gaussian mixtures, it effectively
separates classes with intricate internal structures. IML is specifically designed to handle
class imbalance, outperforming other methods in datasets where class proportions are
skewed. Its approach of positioning same-class samples closer and different-class samples
farther apart makes it highly effective in maintaining classification performance, even when
minority classes are underrepresented. DML_eig, on the other hand, shines in situations
where ensuring a wide separation between dissimilar pairs is critical, especially when it is
essential to prevent class overlap. By maximizing the minimum squared distance between
dissimilar pairs, DML_eig is particularly useful in maintaining clear decision boundaries
in datasets with closely spaced classes.

From the other approaches, which had lower performance, LMNN is highly effective
in cases where the primary goal is to ensure that k-nearest neighbors of the same class are
closer than those of different classes, making it ideal for nearest-neighbor classification
tasks with well-defined class clusters. ITML, with its focus on minimizing differential
relative entropy and employing LogDet regularization, excels in cases where balancing
the distance between similar and dissimilar classes is essential, particularly when the data
follow a Gaussian distribution. GMML is best suited for situations where the goal is to
minimize the total distances among similar points, making it ideal for tasks that require
clustering or grouping data points within the same class while ensuring that similar points
remain close. These approaches tend to work well in more traditional classification tasks
where the data are less complex and more homogeneous.
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Table 5. Comparison of F1 measures for the 3NN classifier using the proposed DMLdbIm method
and other methods on 15 standard datasets. The numbers in parentheses indicate the rank of each
approach on the respective dataset. The last two rows show the average performance and average
rank of the approaches, providing a useful basis for comparison.

Dataset Euclidean ITML LMNN DML-eig GMML DMLMJ DMBK IML DMLdbIm

Heart 72.07
(9)

73.53
(8)

74.31
(7)

77.14
(3)

75.30
(5)

75.80
(4)

78.23
(2)

74.99
(6)

79.06
(1)

Wdbc 92.61
(7)

92.27
(9)

92.64
(6)

94.19
(5)

92.58
(8)

95.37
(2)

95.31
(3)

94.99
(4)

97.67
(1)

Pima 58.47
(7)

58.48
(6)

59.57
(4)

58.94
(5)

58.38
(8)

57.04
(9)

60.42
(3)

60.93
(2)

63.27
(1)

Glass0 70.8
(8)

70.77
(9)

73.02
(5)

76.12
(1)

71.55
(7)

74.73
(3)

73.01
(6)

73.25
(4)

75.67
(2)

Ecoli1 73.68
(6)

74.33
(5)

72.28
(8)

74.62
(4)

73.11
(7)

80.38
(3)

81.71
(2)

71.31
(9)

82.76
(1)

Ecoli2 85.60
(4)

81.68
(6)

80.41
(7)

84.95
(5)

78.28
(9)

86.27
(3)

86.68
(2)

80.24
(89)

89.88
(1)

Newthyroid1 90.51
(9)

97.15
(1)

95.95
(4)

94.56
(5)

96.37
(3)

93.80
(7)

92.73
(8)

97.14
(2)

94.42
(6)

Glass6 74.88
(8)

75.92
(7)

76.99
(6)

81.57
(2)

74.04
(9)

79.51
(4)

79.87
(3)

77.25
(5)

83.33
(1)

Ecoli3 53.12
(7)

49.32
(9)

55.22
(5)

51.19
(8)

53.82
(6)

59.27
(2)

58.77
(3)

58.08
(4)

60.97
(1)

Yeast-2_vs_4 75.56
(8)

77.85
(5)

78.99
(2)

74.76
(9)

78.12
(4)

76.35
(7)

78.38
(3)

77.32
(6)

80.56
(1)

Yeast-1_vs_7 22.22
(8)

31.79
(5)

28.49
(6)

36.61
(4)

21.76
(9)

39.21
(2)

39.04
(3)

26.87
(7)

46.38
(1)

winequality-red-
8_vs_6 NA 5.88

(4) NA 22.22
(2)

8.00
(3) NA NA NA 39.39

(1)

winequality-red-
8_vs_6-7 NA NA NA NA NA NA NA NA 28.58

(1)

winequality-white-3-
9_vs_5 NA NA NA 22.00

(2)
15.78

(3) NA NA 3.21
(4)

28.57
(1)

winequality-red-
3_vs_5 NA NA NA NA NA NA NA NA 36.71

(1)

Mean 51.30 52.59 52.52 56.59 53.13 54.51 54.94 53.03 65.80

Average Rank 6.33 5.53 4.93 3.93 5.66 4 3.46 4.66 1.4

Figure 4 shows the average F1 measure of the proposed DMLdbIm method compared
to other methods for overall performance comparison. In general, the proposed method
outperforms all other methods. Additionally, as observed, the DML-eig approach ranks
second on average for the reasons previously mentioned.

Figure 5 shows the accuracy, precision, recall, and F1 criteria of the evaluated ap-
proaches when the 3NN classifier is applied to the Heart dataset. As Figure 5 shows, the
proposed DMLdbIm method has higher performance in terms of accuracy and precision
compared to other methods, and because it has less FP error, negative samples are correctly
identified in most cases. This situation arises from a strict classification threshold, which
prioritizes accurate positive predictions while potentially missing some true positives,
thus lowering recall. Additionally, it shows that the approach is designed to address class
imbalance by focusing on precision, so it might effectively reduce false positives but at
the cost of capturing fewer positive instances overall. This trade-off suggests that while
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the method is accurate in its positive classifications, it may not cover all positive cases,
reflecting a balance between precision and recall.

Table 6. Comparison of F1 measures for the 5NN classifier using the proposed DMLdbIm method
and other methods on 15 standard datasets. The numbers in parentheses indicate the rank of each
approach on the respective dataset. The last two rows show the average performance and average
rank of the approaches, providing a useful basis for comparison.

Dataset Euclidean ITML LMNN DML-eig GMML DMLMJ DMBK IML DMLdbIm

Heart 75.44
(8)

75.72
(7)

79.1
(3)

79.94
(1)

77.60
(6)

73.48
(9)

78.14
(5)

79.63
(2)

78.62
(4)

Wdbc 95.16
(4)

92.12
(9)

94.32
(8)

94.98
(5)

95.32
(3)

94.43
(7)

94.58
(6)

95.67
(2)

96.58
(1)

Pima 57.52
(8)

61.05
(3)

57.32
(9)

60.48
(5)

57.65
(6)

57.53
(7)

60.75
(4)

61.78
(1)

61.08
(2)

Glass0 71.28
(7)

66.24
(9)

71.75
(4)

75.85
(1)

70.45
(8)

71.54
(5)

73.83
(3)

71.46
(6)

74.10
(2)

Ecoli1 69.44
(7)

69.69
(6)

65
(8)

83.12
(1)

70.52
(5)

82.27
(2)

78.72
(4)

63.62
(9)

79.99
(3)

Ecoli2 85.96
(7)

83.01
(9)

91.34
(1)

86.30
(6)

85.21
(8)

88.45
(3)

86.36
(5)

87.02
(4)

88.74
(2)

Newthyroid1 84.73
(9)

89.28
(6)

97.24
(2)

88.03
(8)

92.16
(4)

88.96
(7)

90.92
(5)

98.92
(1)

92.27
(3)

Glass6 74.1
(9)

82.9
(5)

86.37
(3)

85.28
(4)

89.39
(2)

79.32
(7)

78.06
(8)

91.2
(1)

79.87
(6)

Ecoli3 55.69
(9)

57.82
(8)

60.78
(7)

63.25
(3)

62.56
(4)

60.94
(6)

62.17
(5)

64.65
(2)

65.43
(1)

Yeast-2_vs_4 75
(8)

69.33
(9)

76.34
(5)

78.01
(2)

75.9
(6)

75.45
(7)

77.25
(4)

78.24
(1)

77.38
(3)

Yeast-1_vs_7 NA 14.42
(6)

3.83
(8)

29.39
(3)

23.38
(5)

30.12
(2)

27.14
(4)

10.77
(7)

35.39
(1)

winequality-red-
8_vs_6 NA NA NA NA NA NA NA NA 28.57

(1)

winequality-red-
8_vs_6-7 NA NA NA NA NA NA NA NA 25

(1)

winequality-white-3-
9_vs_5 NA NA NA 25

(2)
7.4
(4) NA NA 10.29

(3)
27.14

(1)

winequality-red-
3_vs_5 NA 1.19

(3) NA NA NA NA NA 9.36
(2)

31.08
(1)

Mean 49.62 50.85 52.22 56.64 53.83 53.49 53.86 54.84 62.74

Average Rank 6.53 5.93 4.73 3.26 4.6 5 4.4 3 2.13

Figures 6–19 illustrate the detailed performance of various algorithms on different datasets
using the 3NN classifier. As shown in Figure 6, the proposed approach significantly outper-
forms the other methods on the WDBC dataset, indicating its superiority. We hypothesize that
the multimodal representation of the classes contributes to this improved performance.
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Figure 4. Comparison of the mean F1 measure for different neighborhood sizes in the KNN algorithm.
k represents the number of nearest neighbors used. Blue denotes k = 1, while red and gray denote
k = 3 and k = 5, respectively.
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Figure 5. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with 3NN
classifier on Heart dataset.
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Figure 6. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with 3NN
classifier on WDBC dataset.
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Figure 7. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with 3NN
classifier on Pima dataset.
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Figure 8. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with 3NN
classifier on Glass0 dataset.
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Figure 9. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with 3NN
classifier on Ecoli1 dataset.
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Figure 10. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Ecoli2 dataset.
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Figure 11. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Newthyroid1 dataset.
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Figure 12. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Glass6 dataset.
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Figure 13. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Ecoli3 dataset.
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Figure 14. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Yeast-2_vs_4 dataset.
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Figure 15. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on Yeast-1_vs_7 dataset.
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3NN classifier on winequality-red-8_vs_6 dataset. As seen, the other approaches actually fail in
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Figure 17. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on winequality-red-8_vs_7 dataset. As seen, the other approaches actually fail in
recognizing the minority class.

Similar observations are noted in Figure 7 and with the Pima dataset. The proposed
approach again shows a significant improvement over other methods, though precision
remains considerably higher than recall. This reinforces the previous findings. However,
the lower recall could be a drawback in medical datasets, possibly due to a high imbalance
ratio. To address this issue, oversampling techniques could be employed to reduce the
imbalance and potentially improve recall.

The average superiority of the proposed approach is also evident in Figures 8 and 9.
Comparing these figures, the proposed approach surpasses the other methods by a wider
margin in Figure 9, which is attributed to the higher imbalance ratio of the Ecoli1 dataset.
This demonstrates the approach’s effectiveness in handling highly imbalanced problems.
The same observations can be seen in Figure 10 and on the Ecoli2 dataset, which has an
imbalance ratio of 5.1.

Figure 11 suggests that the proposed approach fails in comparison with other ap-
proaches. Besides the aforementioned reasons, this observation may be due to the prior
assumptions on the parameters, especially the number of components.
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Figure 18. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on winequality-white-3-9_vs_5 dataset. As seen, the other approaches actually fail in
recognizing the minority class.
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Figure 19. Comparison of the accuracy, precision, recall, and F1 of the evaluated approaches with
3NN classifier on winequality-red-3_vs_5 dataset. As seen, the other approaches actually fail in
recognizing the minority class.

Figures 12–14 suggest the better performance of the proposed approach on the Glass6,
Ecoli3, and Yeast-2_vs_4 datasets. However, the performance superiority of the proposed
approach is more visible in Figures 15–19, which are categorized under highly imbalanced
problems. Even for winequality-red-8_vs_6, winequality-red-8_vs_7, winequality-white-3-
9_vs_5, and winequality-red-3_vs_5, which are very highly imbalanced with imbalance
ratios of 35.44, 46.5, 58.28, and 68.1, respectively, most of the previous approaches have
failed to provide results. In contrast, the proposed approach has achieved acceptable
outcomes, demonstrating both its robustness against high imbalance and its applicability
in such problems.

As seen in Figures 5–19, when the imbalance ratio increases, methods that ignore the
minority class still have higher accuracy. This is why the accuracy criterion is not suitable
for evaluating the efficiency of classification algorithms on imbalanced datasets. However,
the proposed DMLdbIm method is still able to identify minority class samples in cases of
higher imbalance ratios. In Table 7, the mean and rank of accuracy, precision, recall, and F1
measures of different methods for 3NN classification are given. According to Table 7, the
proposed DMLdbIm method generally has higher accuracy, precision, recall, and F1 and
better ranking than other methods.
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Table 7. Comparison of average accuracy, precision, recall, and F1 of 3NN classifier with the proposed
DMLdbIm method and other methods on 15 standard datasets.

Evaluation Criteria Euclidean ITML LMNN DML-eig GMML DMLMJ DMBK IML DMLdbIm

Average Accuracy 91.40 91.28 91.31 92.04 90.98 92.37 92.31 91.51 92.83

Average Precision 57.57 58.87 55.67 61.56 58.57 60.44 59.23 55.53 73.25

Average Recall 48.7 50.18 51.36 54.33 50.96 52.19 53.45 55.8 62.3

Average F1 Measure 51.30 52.59 52.52 56.59 53.13 54.51 54.94 53.03 65.80

Accuracy Average
Rank 5.53 6.13 6.26 4.6 6.46 3.33 3.4 5.73 3.13

Precision Average
Rank 4.4 4.8 5.8 4.53 5.26 3.01 3.53 5.53 3

Recall Average Rank 6.26 5.66 4.66 4.4 5.4 4.53 3.6 3.46 2.13

F1 Average Rank 6.33 5.53 4.93 3.93 5.66 4 3.46 4.66 1.4

4.4. Comparison with Deep Learning

In the continuation of the experiments, we compared our proposed method with
another method that uses a deep neural network on an unbalanced dataset. Wang et al. [34],
discussed in the related works section, present an imbalance classification method based on
deep learning and fuzzy support vector machine, named DFSVM. This method first uses a
deep neural network to obtain an embedding representation of the data. The deep neural
network is trained using triplet loss to enhance similarities within classes and differences
between classes. In Table 8, the F1 measure for the 3NN is shown.

Table 8. Comparison of F1 measure of 3NN classifier for the proposed DMLdbIm method and
DFSVM method on evaluation datasets.

# Dataset No. of
Samples

No. of
Feature

Imbalance
Ratio DFSVM DMLdbIm

1 Glass1 214 9 1.82 62.9 64.52

2 Glass6 214 9 6.38 83.1 90.91

3 Yeast1vs7 459 8 14.3 47.6 47.79

4 Yeast3 1484 8 8.1 78.1 67.74

5 Yeast6 1484 8 41.4 50.1 83.33

6 Ecoli0147vs2356 336 7 10.56 71.6 86.15

7 Ecoli01vs235 244 7 9.17 80.9 90.91

8 Ecoli0267vs35 224 7 9.18 76.4 80.23

9 Vehcle3 846 18 2.99 73.7 81.53

10 Pageblocks0 5472 10 8.79 80.5 79.21

Average 63.29 77.23

As can be seen in Table 8, the proposed DMLdbIm method performs better than
the DFSVM method in most cases, demonstrating the effectiveness of the approach even
when compared to a recent deep learning-based method. Table 8 shows that the deep
learning-based approach is very sensitive to the amount of available data and has superior
performance compared to the proposed approach only when a good amount of data are
available. In other cases, the proposed approach has outperformed the DFSVM approach
by a very wide margin.
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4.5. Computational Complexity Analysis

The computational complexity of the proposed DMLdbIm method is analyzed in this
section. The approach starts with DBSCAN clustering. With N datapoints, the time complexity
of the DBSCAN algorithm is O(NlogN). Additionally, the time complexity of GMM construc-
tion is O(N.K.D3), where K represents the number of Gaussian components. Subsequently,
the covariance matrices are updated with a time complexity of O(K.N.D2). The generalized
eigenvalue decomposition of the covariance matrices can be performed in O(D3).

Following the previously described phases, the optimization phase of LA commences.
This phase involves calculating the Bhattacharya distance between two probability dis-
tributions with a computational complexity of O(K2.C2), where C represents the number
of classes. This is followed by the computation of LA, which has a complexity of O(N2).
If we assume there are I iterations in the optimization process, the overall computational
complexity for this phase will be O(I.(K2.C2 + N2)). Given that N is significantly larger than
both K and C, the computational complexity can be simplified to O(I.N2).

With the aforementioned steps in mind, the overall time complexity of the proposed
method is O(NlogN + N.K.D3 + K.N.D2 + D3 + I.N2). Since the first five steps are executed
only once, their computational complexity can be considered negligible. Consequently, we
can conclude that the computational complexity of the proposed method is O(I.N2), which
is primarily influenced by the number of data points. This complexity is comparable to that
of some earlier works, such as DMLMJ [20], which has a complexity of O(N2.D + k.N3),
where k denotes the number of k-nearest neighbors.

In Figure 20, the execution time of different methods on various datasets is given in
seconds. All methods were implemented in MATLAB R2015b (64-bit) on a personal laptop
with an Intel Core i5 processor (2.30 GHz) and 4 GB of main memory, running the Windows
7 operating system.
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Figure 20. The average execution time of different distance metric learning methods (in seconds)
with 3NN as the classifier.
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As Figure 20 suggests, although the proposed approach is expected to have a high
computational cost compared to some other approaches, the computational speed of the
proposed DMLdbIm method is several times faster than commonly used methods such as
ITML and LMNN.

5. Conclusions

This article proposes a new distance metric learning approach called DMLdbIm, which
is most efficient on highly imbalanced datasets. In the proposed method, the distribution
of classes is assumed to be in the form of a mixture of Gaussians. This assumption is based
on the possibility that the data are composed of several normal distributions with different
parameters, each having a different mean and variance. The proposed approach aims to
increase the discrimination power of the learned metric by increasing the between-class
distance of the external Gaussian components and decreasing the distance between the
internal ones. For this purpose, MAP estimation is used to calculate the parameters of the
components, even when the number of samples in a class is very small.

In the experiments, the proposed DMLdbIm method shows better performance com-
pared to other distance metric learning methods in increasing the efficiency of the k-nearest
neighbor classifier, especially when the imbalance ratio increases. In these cases, when other
methods are not effective at all, the proposed method provides acceptable performance.
Therefore, in fields where accurately identifying exceptional cases is highly important,
this capability is extremely valuable, for example, in detecting low-prevalence cancers,
identifying real financial fraud (where mistakes can lead to huge financial losses), and
detecting cybercrimes in the virtual space. Additionally, the approach has a higher speed
than some commonly used methods. In the future, one may plan to use non-linear and
kernel-based variations of the proposed distance metric learning model. Also, since deep
metric learning is a relatively new field in the literature, it would be worthwhile to imple-
ment the proposed approach with a deep learning architecture. Deep neural networks can
find complex patterns in data, which helps in identifying scarce samples. Deep models
with retraining capabilities can adapt well to scarce data.
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