
Citation: Abdelhamid, S.; Hegazy, I.;

Aref, M.; Roushdy, M. Attention-

Driven Transfer Learning Model for

Improved IoT Intrusion Detection. Big

Data Cogn. Comput. 2024, 8, 116.

https://doi.org/10.3390/

bdcc8090116

Academic Editors: Qasem Abu

Al-Haija, Ammar Odeh, Abdulaziz

Alsulami and Nik Bessis

Received: 2 July 2024

Revised: 2 August 2024

Accepted: 28 August 2024

Published: 9 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Attention-Driven Transfer Learning Model for Improved IoT
Intrusion Detection
Salma Abdelhamid 1,* , Islam Hegazy 2 , Mostafa Aref 2 and Mohamed Roushdy 2

1 Computer Science Department, Faculty of Computers and Information Technology, Future University in
Egypt, Cairo 11835, Egypt

2 Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University,
Cairo 11566, Egypt; islheg@cis.asu.edu.eg (I.H.); mostafa.aref@cis.asu.edu.eg (M.A.);
mroushdy@cis.asu.edu.eg (M.R.)

* Correspondence: salma.abdelhamed@fue.edu.eg

Abstract: The proliferation of Internet of Things (IoT) devices has become inevitable in contemporary
life, significantly affecting myriad applications. Nevertheless, the pervasive use of heterogeneous IoT
gadgets introduces vulnerabilities to malicious cyber-attacks, resulting in data breaches that jeopar-
dize the network’s integrity and resilience. This study proposes an Intrusion Detection System (IDS)
for IoT environments that leverages Transfer Learning (TL) and the Convolutional Block Attention
Module (CBAM). We extensively evaluate four prominent pre-trained models, each integrated with an
independent CBAM at the uppermost layer. Our methodology is validated using the BoT-IoT dataset,
which undergoes preprocessing to rectify the imbalanced data distribution, eliminate redundancy,
and reduce dimensionality. Subsequently, the tabular dataset is transformed into RGB images to
enhance the interpretation of complex patterns. Our evaluation results demonstrate that integrating
TL models with the CBAM significantly improves classification accuracy and reduces false-positive
rates. Additionally, to further enhance the system performance, we employ an Ensemble Learning
(EL) technique to aggregate predictions from the two best-performing models. The final findings
prove that our TL-CBAM-EL model achieves superior performance, attaining an accuracy of 99.93%
as well as high recall, precision, and F1-score. Henceforth, the proposed IDS is a robust and efficient
solution for securing IoT networks.

Keywords: attention mechanism; deep learning; ensemble learning; Internet of Things; intrusion
detection; transfer learning

1. Introduction

The Internet of Things (IoT) has recently become indispensable to our daily lives.
IoT wireless devices are embedded in extensive domains, such as intelligent residences,
healthcare, agriculture, transportation, and manufacturing. The IoT market was estimated
globally at USD 544.38 billion in 2022 and is anticipated to rise from USD 662.21 billion
in 2023 to USD 3352.97 billion by 2030 [1]. This expanding technology has profoundly
affected numerous applications and businesses. However, low-power and heterogeneous
IoT devices form a breeding environment for network intrusions, resulting in a plethora of
security attacks that threaten the credibility and continuity of the entire network. Conse-
quently, Intrusion Detection Systems (IDS) have attracted the focus of several scientists as
countermeasures against security penetrations. This defense system audits network traffic
and generates an alarm when suspicious behavior is detected. This security approach is
important for boosting the continuity of IoT applications in an extensive range of domains.
IoT networks differ from traditional networks because they include heterogeneous devices
with diverse operating systems and infrastructure, which add complexity to the applied
security schema [2,3]. Moreover, the network topology changes frequently, which requires

Big Data Cogn. Comput. 2024, 8, 116. https://doi.org/10.3390/bdcc8090116 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8090116
https://doi.org/10.3390/bdcc8090116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0001-5758-2775
https://orcid.org/0000-0002-1572-463X
https://orcid.org/0000-0002-9655-3229
https://doi.org/10.3390/bdcc8090116
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8090116?type=check_update&version=2

Big Data Cogn. Comput. 2024, 8, 116 2 of 23

a dynamic configuration [2] and increases the threat of unknown attacks for newly intro-
duced devices. Furthermore, IoT networks are large-scale networks in which devices are
embedded in open vicinities and transfer a sheer amount of data, making them vulnerable
to different attacks [3]. Consequently, numerous studies have started deploying Machine
Learning (ML) and Deep Learning (DL) techniques to conquer IoT barriers and strengthen
the performance of IDSs in IoT networks [4,5]. The Intelligence of these techniques and their
learning potential are used to analyze the system and distinguish any suspicious behavior.
Nonetheless, both ML and DL approaches assume similar data distributions for labeled and
unlabeled data [6]. In addition, the training process is time-consuming, which limits the
use of real-time applications. Therefore, to improve ML and DL techniques, scientists have
proposed Transfer Learning (TL). TL uses information developed from previous training
to perform a specific task. It takes advantage of earlier knowledge to avoid the scarcity of
substantial training data and to reduce the long training and computation time required by
ML and DL techniques, making it practical for real-time or time-sensitive applications.

Nevertheless, most TL models are based on Convolutional Neural Networks (CNN)
that are trained using massive amounts of data. CNNs have been effective in an assortment
of applications, such as image classification, Natural Language Processing (NLP), detection
of traffic signals, and self-driving vehicles [4]. Despite its remarkable results, the CNN
architecture performs better when crucial data information is encoded within patterns,
such as in voice applications and imaging [7]. Thus, to make the best out of CNNs, we
convert our tabular data into images. Transforming tabular data into images allows the
representation of features through spatially coherent pixels, making it possible to use
the powerful feature extraction capabilities of CNNs. This approach allows the network
to deduce useful patterns from pixel values. Furthermore, image-based representations
provide better interpretability, allowing researchers to visually analyze the representations
and comprehend the underlying relationships between data. Several studies have demon-
strated the efficacy of this approach. For instance, the DeepInsight method has shown
enhanced performance by converting diverse types of data, including gene expression and
text, into images to leverage the CNNs’ feature extraction capabilities [8]. Similarly, the
IGTD algorithm [7] and the REFINED approach [9] have successfully applied image-based
representations for drug response prediction and feature visualization. Moreover, algo-
rithms for converting tabular data into images are flexible and scalable, requiring minimal
prior knowledge of features, thus making them applicable across various datasets and
applications. This versatile approach shows the potential for enhancing the performance
and generalization of CNN models across different tabular datasets, which are widely used
in diverse fields. Additionally, converting the dataset into images benefits from the power
of transfer learning by utilizing powerful pre-trained models.

This study presents a TL-based IDS for IoT environments. We explore four prevalent
deep transfer learning models: Visual Geometry Group (VGG) [10], Residual Network
(ResNet) [11], MobileNet [12], and EfficientNet [13]. Each of these models represents a
state-of-the-art technique in deep learning, which provides a thorough comparison of pre-
trained leading-edge technologies. Moreover, these models have proven their effectiveness
in image classification tasks, providing a reliable foundation for our study. In our approach,
we integrate a standalone Convolutional Block Attention Module (CBAM) with each model.
CBAM is a neural network module that enhances feature representations by applying
sequential channel attention and spatial attention [14]. It enables models to focus on the
most relevant parts of the input data, improving the performance on various vision tasks.
This integration leads to the creation of eight distinct models for evaluation. Finally, we
aggregate the predictions of the two best models using an average ensemble strategy for
more accurate final predictions. We train the models and validate them using the Bot-IoT
network dataset [15]. This dataset combines four diverse attacks: Denial of Service (DoS),
Distributed Denial of Service (DDoS), Reconnaissance, and Theft attacks. The foremost
contributions of this study are as follows:

Big Data Cogn. Comput. 2024, 8, 116 3 of 23

• Introducing a novel use of the CBAM as a standalone top layer block. This innovative
approach emphasizes the extraction of discriminative features and informative regions
within both the spatial and channel domains of the generated images. This approach
strengthens the performance of the models without adding computational complexity
or compromising the generalization of the system.

• Leveraging the knowledge of pre-trained models to overcome the long training
time and provide a robust foundation for IoT attack classification with minimal
labeled data.

• Transforming the dataset into RGB images to facilitate the visualization of tabular data,
improve data interpretation, and empower the extraction of meaningful patterns from
complex feature relationships.

• Aggregating the predictions of diverse individual models through Ensemble Learning
(EL) to enhance the results and increase the robustness of the intrusion detection system.

• Proposing a new methodology that explores four widely used, state-of-the-art mod-
els. Our study can be effectively used in image classification tasks across various
domains with diverse data types, offering a versatile approach for future applications
and research.

Following the introduction, the structure of this paper is as follows: Section 2 overviews
the background and related studies in the field of IoT IDSs. Section 3 introduces the pro-
posed methodology, along with TL, CBAM, and EL practices. Section 4 presents the
experimental results. We discuss the results in Section 5. Finally, Section 6 presents the
conclusions of the study.

2. Background and Related Work

With the accelerated reliance on IoT networks worldwide, the massive amount of
data they generate demands robust security systems to counter increasing network attacks.
Intelligent-based IDSs utilize ML and DL algorithms to recognize unusual patterns within
the network traffic and detect any illegal intrusions. Moreover, deep transfer learning en-
hances the performance of DL and ML learning models by reusing the existing information
from previously trained models. This section outlines the main concepts of our system and
reviews previously proposed work that adopted ML, DL, TL, and EL approaches for IoT
intrusion detection.

2.1. ML-BASED and DL-BASED IDSs for IoT

ML and DL algorithms offer significant advantages in intrusion detection in IoT
systems. These techniques excel at processing and analyzing large volumes of data and
identifying patterns that are crucial for detecting potential security breaches or intrusion
attempts [4]. This subsection overviews the previously proposed ML-based and DL-based
IDSs for IoT environments.

Alkadi et al. [16] presented a Collaborative IDS (CIDS) that adopts Bidirectional
Long Short-Term Memory (BiLSTM) with Recurrent Neural Network (RNN) techniques to
detect attacks in IoT environments. The model relied on blockchain technology to record
information and ensure secure data transmission between the detection system and the
cloud or IoT infrastructure. The authors assessed their model using the UNSW-NB15 and
BoT-IoT datasets. They used different numbers of hidden layers, resulting in an accuracy
that ranged from 97.26% to 99.41% and 96.71% to 98.91% for the UNSW-NB15 and the
BoT-IoT datasets, respectively.

Ullah et al. [17] used CNNs to design multi-dimensional models for IoT Intrusion
classification. The authors used raw network data from four intrusion datasets: BoT-IoT,
MQTT-IoT-IDS2020, IoT Network Intrusion, and IoT-23. They extracted the features from
the Packet CAPture (PCAP) data using the open-source CICFlowmeter, selected the most
significant features using the Recursive Feature Elimination (RFE) technique, and then
converted the dataset into images. The model outperformed earlier models, achieving
minimum detection rates of 99.74%, 99.42%, and 99.03% for the CNN1D, CNN2D, and

Big Data Cogn. Comput. 2024, 8, 116 4 of 23

CNN3D models, respectively. For multiclass classification in the BoT-IoT, the accuracy
percentage was 99.97% for CNN1D, 99.95% for CNN2D, and 99.94% for CNN3D, with a
maximum precision and F1-score of 99.96%.

Yang et al. [18] proposed an approach for distinguishing malicious traffic using a
self-supervised Contrastive Learning (CL) approach. They preprocessed the raw data of
the BoT-IoT dataset and transformed the unlabeled data into vector traffic data. Their
model used a self-attention mechanism and a GELU-LSTM module to learn information
and extract features of malicious data. The experimental work resulted in 99.48% accuracy
and 99.46% F1-Score.

Awajan [19] presented a fully connected four-layer network architecture for malicious
detection in IoT environments. The communication protocol-independent model achieved
high precision in sinkhole attacks, with an average accuracy of 93.74%, precision of 93.172%,
recall of 93.824%, and an F1-score of 93.472%. However, the authors trained and evaluated
the models using an experimental dataset without using a benchmark dataset. Moreover,
each new deployment of the IDS required retraining with a dataset exclusive to that
specific system.

He et al. [20] introduced a lightweight IDS based on feature grouping for securing
IoT. Their optimized model used ML and DL for attack detection. Their method involved
designing semantic-based features, implementing a fast protocol parsing method, and
proposing session merging and feature grouping. Their IDS achieved a classification
accuracy of 99% on three public IoT datasets: MedBIoT, MQTT-IoT-IDS2020, and BoT-IoT.
Their model was suitable for constrained-processing IoT devices; however, further training
for each attack was required.

2.2. TL-BASED IDS for IoT

Bozinovski et al. [21] first outlined the notion of transfer learning in 1976. According
to Pan and Yang [22], TL is declared as: “Given a source domain DS and learning task TS, a
target domain DT and learning task TT, transfer learning aims to help improve the learning
of the target predictive function ƒT(·) in DT using the knowledge in DS and TS, where
DS ̸= DT, or TS ̸= TT”. In transfer learning, the system uses the knowledge gained to over-
come the shortness of substantial data and reduce computation and training time. Moreover,
we can use pre-trained models with optimized weights, reducing training costs compared
to traditional learning, which randomizes and adjusts weights during training. This sub-
section briefly introduces earlier studies that adopted TL for IoT intrusion detection.

Vu et al. [23] proposed a deep TL model that comprised two encoders; one applied a
supervised learning algorithm using the source data, whereas the other used unlabeled
target data in its training. The results stated that their approach enhanced the Area Under
the Curve (AUC) score for attack detection. However, training the model was expensive,
which made it challenging for time-sensitive applications.

Hussain et al. [24] developed a ResNet18 model IDS. They preprocessed the CICD-
DoS2019 dataset, resulting in 60 features, which were then converted into images. In binary
classification, their model scored an accuracy of 99.9% and 87% precision in detecting
11 forms of DoS and DDoS, respectively. Despite using data visualization and the TL
approach, the model provided a low accuracy for multiclass classification.

Fan et al. [25] combined federated and transfer learning in 5G IoT networks. They
allowed secure data aggregation through federated learning and detected intrusions via a
CNN-based TL model. Their experimental work showed an average accuracy of 91.93%.

Guan et al. [26] presented another TL model for intrusion detection. The authors
trained the model by transferring weights and fine-tuning the neural network. They used
LeNeT, EfficientNet, and Big Transfer (BiT) on the USTC-TFC2016 dataset. The experiments
showed traffic classification accuracies of 95.47%, 96.22%, and 96.40% for LeNet-5, BiT, and
EfficientNetB0, respectively.

Ge et al. [27] adopted TL for multi-category classification in IoT networks. They
employed the original raw data of the BoT-IoT dataset and then extracted information with

Big Data Cogn. Comput. 2024, 8, 116 5 of 23

the Tshark network analyzer. They employed Feed Forward Neural Network (FNN) for
both binary classification (bFNN) and multiclass classification (mFNN). Their optimized
and fine-tuned model delivered accuracies of 99.99% in binary classification and 99.79% in
multi-classification.

Ullah et al. [17] also proposed an IDS based on TL, which reduced the model’s com-
plexity. However, the accuracies of their experimental work degraded to 99.3%, 98.6%, and
98.13% for the 1D, 2D, and 3D CNNs, respectively. The limitation of this study was the
high False Negative Rate (FNR) in the results.

2.3. EL-Based IDS for IoT

Ensemble learning aims to improve the classification and prediction accuracies and
minimize the potential errors or biases of a single model by combining predictions from
various models. The integration of multiple models’ predictions has made ensemble
learning a powerful tool for forecasting in various fields and has provided more robust
predictions [28]. Recent studies in the field of intrusion detection have proven that the
EL-based model, which incorporates multiple algorithms, outperforms a single learning
algorithm. Recent models of EL-based IDS are presented below.

Thakkar et al. [29] used EL to overcome the problem of imbalanced data. For ensemble
learning, the authors used a DNN as the base learner for the bagging estimator. The
experiments demonstrated an enhancement in the evaluation metrics, and they achieved
an accuracy of 98.99% when using the BoT-IoT dataset.

Awotunde et al. [30] proposed different ensemble approaches for intrusion detection
in Industrial IoT (IIoT). They used Extra Trees, Adaboost, Bagging, RF, and XGBoost (XGB)
algorithms, with the latter providing superior performance in both binary and multiclass
classification. The authors used the Chi-Square statistical method to extract features from
the Telemetry data of the TON_IoT dataset. For the binary classification, the accuracy rate
of XGBoost was 100%, with an average precision, recall, and F1-score of 98%. Adaboost
scored the lowest, with an average score of less than 70% across all metrics. Despite the
satisfactory results in binary classification, the results showed a high FPR in multiclass
classifications, as well as skewed results owing to the imbalanced dataset.

Alotaibi et al. [31] employed voting and stacking ensemble learning approaches to
enhance the IoT security system. They used RF, DT, Logistic Regression (LR), and K-Nearest
Neighbor (KNN). They trained the models using the TON-IoT network traffic datasets. The
experimental results proved that the ensemble classifiers surpassed the individual models,
achieving an accuracy of 98.63%.

Previous studies are encapsulated in Table 1, and for studies with more than a single
dataset, we only include the BoT-IoT in the table. Although the reviewed studies pro-
vide high accuracies, there is still significant potential for improved performance. The
imbalanced datasets are also considered a barrier that needs to be addressed, requiring
convenient data preprocessing. Moreover, in the context of zero-day attacks, false positives
remain a problematic challenge because IDSs may generate a high number of false alarms,
leading to unnecessary disruptions and wasting resources. Therefore, despite the significant
progress in recent studies, it is vital to continue creating innovative and efficient IDSs.

Table 1. Summary of related work.

Reference Year Approach Algorithm Dataset Used Accuracy %

[16] 2021 DL RNN-BiLSTM BoT-IoT 98.91

[17] 2021 DL CNN BoT-IoT
1D: 99.97
2D: 99.95
3D: 99.94

[18] 2023 DL GELU-LSTM BoT-IoT 99.48

[19] 2023 DL DNN Experimental dataset 93.74

Big Data Cogn. Comput. 2024, 8, 116 6 of 23

Table 1. Cont.

Reference Year Approach Algorithm Dataset Used Accuracy %

[20] 2024 ML/DL

DT

BoT-IoT

98.89
RF 99.62

KNN 94.95
XGB 99.74
CNN 83.48
DNN 45.51

[23] 2020 TL auto-encoders N-BaIoT Not mentioned

[24] 2020 TL ResNet18 CICDDoS2019 87.06

[25] 2020 TL CNN CICIDS2017 91.93

[26] 2021 TL
LeNet-5

USTC-TFC2016
95.47

BiT 96.22
EfficientNetB0 96.40

[27] 2021 TL FNN BoT-IoT 99.79

[17] 2021 TL CNN BoT-IoT
1D: 99.3
2D: 98.6
3D: 98.1

[29] 2023 EL DNN BoT-IoT 98.99

[30] 2023 EL
Extra Trees,

Adaboost, RF,
XGBoost

TON-IoT 70 to 100

[31] 2023 EL RF, DT, LR,
KNN TON-IoT 98.63

3. Proposed Methodology

This section discusses the proposed IDS and provides an overview of the implemented
techniques and approaches.

3.1. System Architecture

This paper presents an image-based transfer learning IDS. It aims to detect four
types of attacks: DoS, DDoS, Reconnaissance, and Theft. The proposed experimental
system exploits transfer learning models to obtain accurate results while decreasing the
false positive rate. Figure 1 illustrates the proposed IDS model framework used in our
experiments. In IoT, training involves developing machine learning models using collected
data to recognize patterns and make predictions, often conducted on high-specification
devices or data centers before deployment. This approach helps mitigate the challenges of
computational cost and facilitates the deployment of the models. Inference is the real-time
application of these trained models on IoT devices to analyze new data and generate
actionable insights. The system initiates its operation by preprocessing the BoT-IoT dataset.
Then, it transforms the compact tabular data into RGB images and splits them into 80%
for training, while 20% is equally subdivided for testing and validation processes. The
validation subset is used to ensure that no over-fitting occurs. The next stage is the training
stage, in which we train our models using the generated training images. The primary goal
of using pre-trained models is to reuse the acquired knowledge and weights from previous
training; thus, the layers of these models are all frozen. We add trainable top layers to
manage the classification of the new data. Moreover, we integrate an attention module into
the models. This human-inspired mechanism works by exclusively emphasizing the key
input elements, thus improving the prediction accuracy and computational efficiency of
intelligent models. In the last stage, we select the two best models to generate the base
estimators of an ensemble learning approach that delivers enhanced classification results.

Big Data Cogn. Comput. 2024, 8, 116 7 of 23Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 7 of 23

Figure 1. The proposed IDS model for experimental work.

3.2. Deep Transfer Pre-Trained Models
Pre-trained models provide solid ground for additional training and perform effec-

tively in many areas, such as image recognition, fraud detection, and natural language
processing [32]. Researchers have developed these models to address comparable tasks
through refinement or fine-tuning. They are beneficial for minimizing the time and re-
sources required to solve complex problems. This study investigates the performance of
four pre-trained models: ResNet50, VGG16, MobileNetV1, and EfficientNetB0. Each
model has a different approach and unique architecture, thereby ensuring that our re-
search benefits from a broad spectrum of advanced techniques and methodologies. The
models are pre-trained using the ImageNet dataset [33]. This huge dataset includes 1000
classes and 14,197,122 arranged according to the WordNet structure. It contains 1,281,167
training images, 50,000 validation images, and 100,000 test images. Many tools and

Figure 1. The proposed IDS model for experimental work.

3.2. Deep Transfer Pre-Trained Models

Pre-trained models provide solid ground for additional training and perform effec-
tively in many areas, such as image recognition, fraud detection, and natural language
processing [32]. Researchers have developed these models to address comparable tasks
through refinement or fine-tuning. They are beneficial for minimizing the time and re-
sources required to solve complex problems. This study investigates the performance
of four pre-trained models: ResNet50, VGG16, MobileNetV1, and EfficientNetB0. Each
model has a different approach and unique architecture, thereby ensuring that our research
benefits from a broad spectrum of advanced techniques and methodologies. The models are
pre-trained using the ImageNet dataset [33]. This huge dataset includes 1000 classes and
14,197,122 arranged according to the WordNet structure. It contains 1,281,167 training im-
ages, 50,000 validation images, and 100,000 test images. Many tools and platforms provide

Big Data Cogn. Comput. 2024, 8, 116 8 of 23

models already trained on the ImageNet dataset, such as TensorFlow [34], PyTorch [35], and
Keras Application [36]. The availability of such trained models facilitates their implementa-
tion, as we directly load the models with the saved weights, which eliminates the need for
long training time pre-training time and with a starting point to build our system. In our
implementation, we freeze the layers of the pre-trained modes. This approach reduces the
number of parameters that need to be stored in memory in forward and backward propa-
gation and eliminates the need to calculate the gradients of the loss function. With respect
to the number of parameters, freezing the layers leads to a reduced complexity percentage
of 11% for VGG16, 92% for ResNet50, 76% for MobileNetV1, and EfficientNetB0.

• VGG: This model can classify more than a thousand images into thousands of cat-
egories and is one of the most important milestones in the object recognition field.
VGG has many variants, among which VGG16 is the most well-known. The number
“16” refers to the total number of weight layers. It requires an input size of 224 × 224.
Despite applying stacked small-sized convolution filters of size 3 × 3, these filters
made an effective receptive field like large-sized filters. The hidden layers of this
model use the Rectified Linear Units (ReLu) activation function. The model ends with
three fully connected layers with 4096, 4096, and 1000 channels, respectively. The final
activation function is the softmax function.

• ResNet: Amongst TL models, ResNet has shown outstanding performance. It is a
CNN with skip connections in its architecture. These skip connections allow the
gradient to flow smoothly and maintain the key features until the last layer of the
model. ResNet has different versions; the premier version is ResNet34, which has
34 weighted layers and a 3 × 3 filter inspired by the VGG model. The most widely
used model is ResNet50. It includes 50 layers: 48 convolutional layers, 1 MaxPool
layer, 1 average pooling layer, and 1 fully connected layer with 1000 nodes. This model
uses the softmax activation function.

• MobileNet: This is a lightweight DNN-based model for low-resource devices. It
applies two convolution techniques. The first one is a 3 × 3 depth-wise convolution to
filter the inputs. The second convolution technique is a 1 × 1 point-wise convolution
layer that combines the filtered inputs. MobileNetV1 is the earliest version of this
family and encompasses 28 convolutional layers followed by a fully connected layer
that is activated by the softmax function.

• EfficientNet: Proposed by Tan et al. [13], this model aims to achieve better results by
balancing the depth, width, and resolution of the network via compound scaling. The
main block of the model is a mobile inverted residual block (also called MBConv). The
authors demonstrated the effectiveness of their model by scaling up the well-known
ResNet and MobileNet Architectures, in addition to scaling up a newly proposed
network, EfficientNetB0, to induce a family of EfficientNet models. The baseline
architecture of this family comprises two convolution layers with sixteen MBConv
modules in between.

Table 2 summarizes the base architectures of these models. In this table, “Model size”
denotes the size of memory required by the model. “Depth” refers to all layers that have
parameters within the model. Lastly, top-1 and top-5 accuracies refer to the accuracies of
the model with the ImageNet dataset [36]. All the models have an input size of 224 × 224
for RGB images.

Table 2. Summary of the base architectures of the implemented pre-trained models.

Model Size (MB) Parameters
in Millions Depth Top 1

Accuracy %
Top 5

Accuracy %

VGG16 528 138.4 23 71.3 90.1
ResNet50 98 25.6 107 74.9 92.1

MobileNetV1 16 4.2 55 70.6 89.5
EfficientNetB0 29 5.3 132 77.1 93.3

Big Data Cogn. Comput. 2024, 8, 116 9 of 23

3.3. Convolutional Block Attention Module (CBAM)

The attention mechanism is an evolving technique that enhances the performance
of the model by refining the neural network feature map [14]. It was inspired by the
human visual attention system. To capture an entire scene, humans naturally focus on
areas of interest by selecting significant objects or regions in the scene while filtering out
distractions [37]. This biological mechanism has inspired researchers to develop attention
mechanisms in neural networks, and they have been widely used in many fields, such as
NLP, computer vision, voice recognition, and robotics. Amongst diverse types of developed
attention mechanisms, Woo et al. [14] proposed the CBAM as an effective and simple
module that brings attention to key features in feed-forward CNNs. It sequentially applies
channel and spatial attention mechanisms to refine feature maps. This dual attention
mechanism refines the features by emphasizing important channels and spatial locations,
thereby improving the model’s performance across various tasks. CBAM has demonstrated
effective results in various domains [38–40]. The CBAM study highlights that this attention
mechanism can be seamlessly integrated into any CNN structure. Moreover, the CBAM
method is well-suited for resource-constrained devices, as it requires minimal additional
parameters. The CBAM entails two sequential submodules: a Channel Attention Module
(CAM) followed by a Spatial Attention Module (SAM). The channel module works as a
feature identifier as it focuses on what is significant in the input image. It takes a feature
map F ∈ RC×H×W as an input, where C denotes the number of channels, and H and W are
the height and width of the map, respectively. The block deduces a 1D channel attention
map Mc ∈ RC×1×1, and it applies maximum and average pooling on each channel feature
across the spatial dimension, resulting in two spatial descriptors: Fc

avg and Fc
max. Afterward,

they are passed to a shared Multi-Layer Perceptron (MLP) with a hidden activation size
equal to R(C/r)×1×1, where r stands for the reduction ratio. Element-wise summation
merges the feature vectors, then a sigmoid activation function (σ) maps the values between
0 and 1. The overall structure of the CBAM is shown in Figure 2.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 9 of 23

EfficientNetB0 29 5.3 132 77.1 93.3

3.3. Convolutional Block Attention Module (CBAM)
The attention mechanism is an evolving technique that enhances the performance of

the model by refining the neural network feature map [14]. It was inspired by the human
visual attention system. To capture an entire scene, humans naturally focus on areas of
interest by selecting significant objects or regions in the scene while filtering out distrac-
tions [37]. This biological mechanism has inspired researchers to develop attention mech-
anisms in neural networks, and they have been widely used in many fields, such as NLP,
computer vision, voice recognition, and robotics. Amongst diverse types of developed at-
tention mechanisms, Woo et al. [14] proposed the CBAM as an effective and simple mod-
ule that brings attention to key features in feed-forward CNNs. It sequentially applies
channel and spatial attention mechanisms to refine feature maps. This dual attention
mechanism refines the features by emphasizing important channels and spatial locations,
thereby improving the model’s performance across various tasks. CBAM has demon-
strated effective results in various domains [38–40]. The CBAM study highlights that this
attention mechanism can be seamlessly integrated into any CNN structure. Moreover, the
CBAM method is well-suited for resource-constrained devices, as it requires minimal ad-
ditional parameters. The CBAM entails two sequential submodules: a Channel Attention
Module (CAM) followed by a Spatial Attention Module (SAM). The channel module
works as a feature identifier as it focuses on what is significant in the input image. It takes
a feature map F ∈ ℝC×H×W as an input, where C denotes the number of channels, and H and
W are the height and width of the map, respectively. The block deduces a 1D channel
attention map Mc ∈ ℝC×1×1, and it applies maximum and average pooling on each channel
feature across the spatial dimension, resulting in two spatial descriptors: Fୟ୴ୡ and F୫ୟ୶ୡ .
Afterward, they are passed to a shared Multi-Layer Perceptron (MLP) with a hidden acti-
vation size equal to ℝ(C/r)×1×1, where r stands for the reduction ratio. Element-wise summa-
tion merges the feature vectors, then a sigmoid activation function (𝜎) maps the values
between 0 and 1. The overall structure of the CBAM is shown in Figure 2.

Figure 2. The overall CBAM structure.

The functionalities of the CAM are expressed as follows:

Favg
c = AvgPoolc(F) (1)

Fmax
c = MaxPoolc(F) (2)

McሺFሻ = σ(W1 ቀW0൫Favg
c ൯ቁ + W1൫W0ሺFmax

c ሻ൯) (3)

where σ is the sigmoid function, and W0 ∈ ℝ(C/r)×C and W1 ∈ ℝC×(C/r) are the MLP weights,
respectively [14].

The SAM uses average and maximum pooling as well, but it is associated with a con-
volution layer instead of the MLP. It generates two 2D maps: Favg

s ∈ ℝ1×H×W and Fmax
s ∈ ℝ1×H×W. It employs a sigmoid activation function and element-wise multiplication to infer

a spatial attention map Ms ∈ ℝC×H×W. The operations of the spatial attention module on an
input feature map (F) are expressed as follows [14]:

Figure 2. The overall CBAM structure.

The functionalities of the CAM are expressed as follows:

Fc
avg = AvgPoolc(F) (1)

Fc
max = MaxPoolc(F) (2)

Mc(F) = σ(W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(3)

where σ is the sigmoid function, and W0 ∈ R(C/r)×C and W1 ∈ RC×(C/r) are the MLP
weights, respectively [14].

The SAM uses average and maximum pooling as well, but it is associated with
a convolution layer instead of the MLP. It generates two 2D maps: Fs

avg ∈ R1×H×W

and Fs
max ∈ R1×H×W. It employs a sigmoid activation function and element-wise mul-

tiplication to infer a spatial attention map Ms ∈ RC×H×W. The operations of the spatial
attention module on an input feature map (F) are expressed as follows [14]:

Fs
avg = AvgPools(F) (4)

Fs
max = MaxPoolc(F) (5)

Big Data Cogn. Comput. 2024, 8, 116 10 of 23

Ms(F)= σ (f
([

Fs
avg, Fs

max

]))
(6)

The final outputs of the CBAM are given in Equations (7) and (8).

F′ = Mc(F) (7)

F′′ = Ms
(
F′) (8)

The integration of these two modules allows the CBAM to effectively acquire channel-
wise and spatial contextual information. It improves the classification ability of CNN-
based models by highlighting relevant features while suppressing irrelevant ones and any
existing noises. Furthermore, because of its lightweight design, CBAM is ideally suited
for implementation in resource-constrained situations, such as Internet of Things devices,
where computational simplicity and energy economy are crucial [14].

In our approach, we integrate the CBAM on top of our implemented pre-trained
models such that it takes the final feature map of the models as an input to highlight
regions of interest and determine crucial features. This approach has not been applied in
the intrusion detection field before. To illustrate the efficacy of our suggested approach, we
examine two scenarios for each model: the pre-trained model with modified top layers and
the model with the plugged CBAM, as shown in Figure 3.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 10 of 23

Favg
s = AvgPools(F) (4)

Fmax
s = MaxPoolc(F) (5)

MsሺFሻ = σ (f ൫ൣFavg
s , Fmax

s ൧൯) (6)

The final outputs of the CBAM are given in Equations (7) and (8).

F′ = Mc(F) (7)

Fᇳ = Ms(F’) (8)

The integration of these two modules allows the CBAM to effectively acquire chan-
nel-wise and spatial contextual information. It improves the classification ability of CNN-
based models by highlighting relevant features while suppressing irrelevant ones and any
existing noises. Furthermore, because of its lightweight design, CBAM is ideally suited for
implementation in resource-constrained situations, such as Internet of Things devices,
where computational simplicity and energy economy are crucial [14].

In our approach, we integrate the CBAM on top of our implemented pre-trained
models such that it takes the final feature map of the models as an input to highlight re-
gions of interest and determine crucial features. This approach has not been applied in the
intrusion detection field before. To illustrate the efficacy of our suggested approach, we
examine two scenarios for each model: the pre-trained model with modified top layers
and the model with the plugged CBAM, as shown in Figure 3.

(a) (b)

Figure 3. The architecture of the proposed model: (a) the pre-trained model with customized top
layers; (b) the pre-trained model with customized top layers and plugged CBAM.

3.4. Ensemble Learning
Ensemble learning is the last stage in our proposed system. It aggregates an assort-

ment of base learning models to reach an enhanced overall performance. The two broad
techniques of ensemble learning are parallel and sequential learning [28]. In the parallel
approach, different base learners are trained independently, and then their predictions are
combined via a combiner. The sequential approach, on the other hand, trains the base
models sequentially, such that each model optimizes the errors of its precedent. The Ran-
dom Forests algorithm is a widely used parallel ensemble model, while the Boosting al-
gorithm is an example of a sequential ensemble. Ensemble techniques could combine ho-
mogenous or heterogeneous classifiers. Homogenous ensembles use the same ML algo-
rithm for the base learners, while heterogeneous ensembles employ diverse ML algo-
rithms [28]. Combining the predictions of the base models is divided into voting

Figure 3. The architecture of the proposed model: (a) the pre-trained model with customized top
layers; (b) the pre-trained model with customized top layers and plugged CBAM.

3.4. Ensemble Learning

Ensemble learning is the last stage in our proposed system. It aggregates an assort-
ment of base learning models to reach an enhanced overall performance. The two broad
techniques of ensemble learning are parallel and sequential learning [28]. In the parallel
approach, different base learners are trained independently, and then their predictions are
combined via a combiner. The sequential approach, on the other hand, trains the base mod-
els sequentially, such that each model optimizes the errors of its precedent. The Random
Forests algorithm is a widely used parallel ensemble model, while the Boosting algorithm is
an example of a sequential ensemble. Ensemble techniques could combine homogenous or
heterogeneous classifiers. Homogenous ensembles use the same ML algorithm for the base
learners, while heterogeneous ensembles employ diverse ML algorithms [28]. Combining
the predictions of the base models is divided into voting techniques and meta-learning
techniques. In the voting approach, each base classifier independently predicts the class
label for a given input, and the final prediction is determined by aggregating the individual
predictions using a specific rule, such as maximum voting, average voting, or weighted
average voting. Meta-learning techniques, on the other hand, involve multiple learning
stages in which the output of the base learners is used to train meta-models. These meta-

Big Data Cogn. Comput. 2024, 8, 116 11 of 23

models aim to enhance the overall performance using the knowledge they acquired from
previous outputs.

In our study, we apply the ensemble averaging approach. The approach fuses the
predictions of the base learner and decides the class based on the highest probability. The
final probability of a class is the arithmetic mean of all base learners’ probabilities for this
class. Given the diverse structures of the network, the inference may take place directly
on the devices. The averaging approach is well-suited to this scenario as it requires less
computational overhead and memory compared to more complex methods like stacking
or boosting. This ensures quicker inference times and lower energy consumption, making
it a practical choice for resource-constrained IoT devices. Our models use the softmax
activation function to obtain the probability of each class, which is calculated as follows:

s(z)j =
ezj

∑K
K=1 ezK

for j = 1, 2, . . . , K (9)

where z denotes the input vector, K is the total number of classes, and ezj and ezK are the
exponential functions of the input and output vectors, respectively.

4. Experimental Work
4.1. Environmental Setup and Hyperparameters

We conducted our experimental work on Google Colaboratory (Colab) [41], which
is a cloud-based Jupyter notebook environment that provides free-of-charge access to
substantial computing resources. The hardware allocated for a user is Intel(R) Xeon vCPU
@2.3 GHz, 2 cores, and 13 GB RAM. Nevertheless, Colab does not guarantee the assigned
resources over time, which eliminates the legitimate comparison of the training and testing
time taken by each model. We implemented and wrote the models in Python 3.10 language,
along with Keras 2.12 API running on Tensorflow 2.13 backend. In addition, we used
NumPy [42], Pandas [43], and Matplotlib [44] libraries. We evaluated the classification
results using the Scikit-Learn (sklearn) library [45].

The number of epochs was set to 20 epochs, and the number of batches was set to
64. To save resources and reduce the training time, we monitored the validation accuracy,
and the model triggered an early stop callback if it witnessed no improvement for two
consecutive epochs. We applied a dynamic learning rate approach, in which we reduced
the learning rate at higher epochs. Starting at 0.01, the learning rate was reduced every
2 consecutive epochs to 0.005, 0.001, and 0.0005 until it was set at a minimum value of
0.0001. Regarding the CBAM, we set the kernel size to 3 × 3 and the reduction ratio to
1. For the loss function, we used the sparse categorical cross-entropy, and the optimizer
used was the “Adam Optimizer”. In the pre-trained models, and as aforementioned, we
froze the trainable layers of the models and removed their top layers. These top layers
are responsible for the classification process and were originally designed to match the
1000 classes within the ImageNet dataset. To adapt the VGG16, we removed the final
Flatten layer, 2 dense layers, each with 4096 neurons and a ReLU activation layer, and
the final dense layer, which compromises 1000 neurons representing the categories of the
ImageNet dataset. The top layer becomes a MaxPooling layer that passes an output of size
7 × 7 × 512 to the CBAM, where 512 is the number of channels. For ResNet50, we removed
the global average pooling (GAP) layer and the final dense layer with 1000 output units and
a softmax activation function. The output feature map of its block is passed as an input to
the CBAM, with a size 7 × 7, and 2048 channels. We excluded the top average pooling layer
and the fully connected layer, which had 1000 neurons and softmax activation functions
from MobileNetV1. The output of its top point-wise convolution block is a 7 × 7 feature
map with 1024 channels. For EfficientNetB0, we also excluded the average pooling layer,
along with the 1000 neurons fully connected layer that is activated by a sigmoid function.
This model passes to the CBAM a feature map of 7 × 7 × 1280, where the latter represents
the number of channels.

Big Data Cogn. Comput. 2024, 8, 116 12 of 23

4.2. Dataset

We validated our intelligent system using the Bot-IoT dataset. It is a real IoT network
representation generated at the University of New South Wales (UNSW), Canberra. The
raw dataset holds around 70 GB of PCAP files that are processed using a network audit
tool, namely Argus. The full dataset has more than 72 million instances and is represented
by 43 independent features. The dataset entails both legitimate and adversary traffic. The
authors created two subsets of the original BoT-IoT dataset, the 5% subset and the 10-Best
features subsets. The first subset includes around 3.6 million records, representing 5% of
the full dataset instances. The authors provided this subset as a manageable and compact
version for easier implementation. On the other hand, the 10-Best subset encompasses only
10 features out of the 43 elementary independent features. The authors determined these
best 10 features by mapping the average correlation coefficient and joint entropy and then
selecting the features with the best scores. We used the 10-Best Bot-IoT subset, which is
available for public use in a CSV file format. In addition to the 10 selected features, this
dataset encloses 5 independent flow identifiers and 3 dependent features [15]. The flow
identifiers are “saddr”, “sport”, “daddr”, “dport”, and “proto”. The three dependent fea-
tures are “attack”, “category”, and “subcategory”. The authors also implanted “pkSeqID”,
a numerical feature that serves as a row identifier. The descriptions and datatypes of all
features in this subset are depicted in Table 3.

Table 3. Descriptions and datatypes of the 10-Best Bot-IoT dataset features.

Features Description Data Type

pkSeqID Row identifier int64

proto Textual representation of transaction protocols
existing in network flow object

saddr Source IP address object

sport Source port number object

daddr Destination IP address object

dport Destination IP address object

seq Argus sequence number int64

stddev Standard deviation of aggregated records float64

N_IN_Conn_P_SrcIP Number of inbound connections per source IP int64

min Minimum duration of aggregated records float64

state_number Numerical representation of feature state int64

mean Average duration of aggregated records float64

N_IN_Conn_P_DstIP Number of inbound connections per destination IP int64

drate Destination-to-source packets per second float64

srate Source-to-destination packets per second float64

max Maximum duration of aggregated records float64

attack Numerical representation of instance nature
(0 = Normal, 1 = attack) int64

category Attack category object

subcategory Attack subcategory object

In ML and DL, data preprocessing is an essential phase as it ensures that the input
data are consistent and properly formatted, both of which have a direct impact on the per-
formance and accuracy of the model. It also helps in handling missing values, outliers, and
feature scaling, making the training process more efficient and the results more reliable [46].
The preprocessing steps are as follows:

Big Data Cogn. Comput. 2024, 8, 116 13 of 23

• Data Cleaning: In the early data preprocessing stages, we cleared the dataset from
null, duplicate, and infinite values. We used the “drop_duplicates()”, “isinf()”, and
“isnull()” methods to carry out this process.

• Dimensionality Reduction: Reducing the dimensions plays a vital role in learning-
based IoT IDSs, as it removes redundant information that negatively impacts the
results of the model. It also decreases the computational and training time costs. We
reduced the dimensionality of the dataset by dropping the flow identifiers features.
These features provide local information that cannot be generalized and can lead to
biased predictions toward the nodes of the networks [47]. The “pkSeqID” feature is
also dropped as it has the same task as the automatically created index. Furthermore,
since this study aims to detect the main attack category, we dropped the “subcategory”
feature along with the “attack” feature, noting that the information provided by the
latter is implicitly expressed by the “category” feature.

• Data Transformation: In this step, we converted any categorical features to numerical
ones for additional processing. The “category” feature is the only remaining categor-
ical feature after dropping the previously mentioned features. It holds five textual
representations of the instance category, which are DoS, DDoS, Reconnaissance, Theft,
and Normal. We used the LabelEncoder class from the sklearn library to encode a
unique number for each of these five classes. Integer labels require less memory than
textual representations, which is beneficial for reducing memory consumption and
managing large datasets. Label encoding is also a computationally efficient method
that matches most deep learning framework requirements and streamlines the prepa-
ration of data. Moreover, most ML models operate on numerical data, making this
conversion a necessary step in data preprocessing [48].

• Data Balancing: Table 4 presents the class distribution of the BoT-IoT dataset. As
shown, over 98% of data instances fall under DoS and DDoS classes. This data imbal-
ance is a major challenge to accurate detection, as it leads to models that are biased
towards the majority classes, reducing the overall predictive performance and gen-
eralizability [48]. Therefore, for enhanced performance, the dataset should enclose a
consistent number of samples in each class [48,49]. To overcome this problem, many
studies have used the oversampling of the minority classes along with the under-
sampling of the majority ones [49]. We used a random under-sampling technique to
reduce the “DDoS” and “DoS” classes, and we used the Synthetic Minority Oversam-
pling Technique (SMOTE) [50] to augment the minority classes. SMOTE is a k-nearest
clustering-based algorithm that creates synthetic data points that are vaguely different
from the original data points. The primary benefit of this strategy is that dataset
augmentation depends on newly created data points instead of duplicating existing
data. Rather than randomly oversampling the minority classes, SMOTE creates for
each minority sample xi, a new sample x′i, that is dependent on xj, which is randomly
selected from xi’s nearest neighbors (k), and λ is a random value ranged in [0, 1]. The
two classes, “Normal” and “Theft”, are oversampled to reach our target number of
samples. SMOTE is the most used oversampling technique and is compatible with
a wide range of data types [51]. We used the SMOTE class of the Python imbalance
library to sample up the minority classes of the dataset automatically with k = 2.
Equation (10) defines the generated samples of SMOTE [50].

x′i = x′i + λ
(

x′j − x′i
)

(10)

• Data Standardization: Upon examination of the 10-Best Bot-IoT dataset, we deduced
that notable skewness and a high frequency of outliers are present in many features,
such as “seq”, “min”, “srate”, and “drate”. These findings indicate non-uniform
distributions and imbalanced ranges within the dataset, which may lead to a biased
classification [52]. Therefore, we scaled our data to a uniform range using the quantile
transformer. It is a non-linear transformer that changes the range of each feature’s

Big Data Cogn. Comput. 2024, 8, 116 14 of 23

original distribution to follow a normal or a uniform one. The quantile transformer
has shown effective results in overcoming skewed values and outliers [52]. This
transformation leads to improved model training, enhanced robustness, and reliable
classification performance [46,52].

• Data Visualization: CNN models process images better than tabular data [7,24]. This
visual representation allows the combining of multifaceted relationships between the
features within pixels or regions of the image, allowing the model to capture complex
patterns that are challenging to represent in tabular form. Additionally, converting our
tabular data into images leverages the power of selected pre-trained image models.
Therefore, after preprocessing the dataset, we transformed our tabular data into a set
of images and used them as input for the learning-based model. We first assorted the
dataset into five categories, which are DoS, DDoS, Reconnaissance, Theft, and Normal.
Afterward, we divided each category into blocks of 30 samples, where each sample
had 10 features, and all these 30 × 10 feature vectors were concatenated in a 1D vector
of length 300. The vector was then reshaped into a 3D array of size 10 × 10 × 3. In this
reshaping process, we grouped 3 consecutive feature values into one pixel to represent
the three-color channels of the image. Afterward, we scaled the data from 0 to 255,
which is the range of an 8-bit image pixel. The process of transforming a category
subset is depicted in Figure 4. The total number of created images is 14,715 images.
Figure 5 shows the transformed images.

Table 4. Class distribution of “Bot-IoT 10-Best Features”.

Class Sub-Class Number of Instances
Total Class Instances

Original After Data Cleaning After Resampling

Normal Normal 477 477 430 91,156

DDoS

TCP 977,380

1,926,624 1,926,589 91,156UDP 948,255

HTTP 989

DoS

UDP 615,800

1,650,260 1,650,211 91,156TCP 1,032,975

HTTP 1485

Reconnaissance
Service Scan 73,168

91,082 91,004 91,156
OS Fingerprint 17,914

Theft
Key-logging 73

79 75 91,156
Data Exfiltration 6

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 14 of 23

Table 4. Class distribution of “Bot-IoT 10-Best Features”.

Class Sub-Class Number of Instances
Total Class Instances

Original After Data
Cleaning

After
Resampling

Normal Normal 477 477 430 91,156

DDoS
TCP 977,380

1,926,624 1,926,589 91,156 UDP 948,255
HTTP 989

DoS
UDP 615,800

1,650,260 1,650,211 91,156 TCP 1,032,975
HTTP 1485

Reconnaissance
Service Scan 73,168

91,082 91,004 91,156
OS Fingerprint 17,914

Theft
Key-logging 73

79 75 91,156
Data Exfiltration 6

• Data Standardization: Upon examination of the 10-Best Bot-IoT dataset, we deduced
that notable skewness and a high frequency of outliers are present in many features,
such as “seq”, “min”, “srate”, and “drate”. These findings indicate non-uniform dis-
tributions and imbalanced ranges within the dataset, which may lead to a biased clas-
sification [52]. Therefore, we scaled our data to a uniform range using the quantile
transformer. It is a non-linear transformer that changes the range of each feature’s
original distribution to follow a normal or a uniform one. The quantile transformer
has shown effective results in overcoming skewed values and outliers [52]. This trans-
formation leads to improved model training, enhanced robustness, and reliable clas-
sification performance [46,52].

• Data Visualization: CNN models process images better than tabular data [7,24]. This
visual representation allows the combining of multifaceted relationships between the
features within pixels or regions of the image, allowing the model to capture complex
patterns that are challenging to represent in tabular form. Additionally, converting
our tabular data into images leverages the power of selected pre-trained image mod-
els. Therefore, after preprocessing the dataset, we transformed our tabular data into
a set of images and used them as input for the learning-based model. We first assorted
the dataset into five categories, which are DoS, DDoS, Reconnaissance, Theft, and
Normal. Afterward, we divided each category into blocks of 30 samples, where each
sample had 10 features, and all these 30 × 10 feature vectors were concatenated in a
1D vector of length 300. The vector was then reshaped into a 3D array of size 10 × 10
× 3. In this reshaping process, we grouped 3 consecutive feature values into one pixel
to represent the three-color channels of the image. Afterward, we scaled the data from
0 to 255, which is the range of an 8-bit image pixel. The process of transforming a
category subset is depicted in Figure 4. The total number of created images is 14,715
images. Figure 5 shows the transformed images.

Figure 4. Transformation of the tabular data into RGB images, in which each 3 consecutive feature
values represent a color channel of a single pixel.

Figure 4. Transformation of the tabular data into RGB images, in which each 3 consecutive feature
values represent a color channel of a single pixel.

Big Data Cogn. Comput. 2024, 8, 116 15 of 23
Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 15 of 23

Figure 5. Samples of the generated 10 × 10 × 3 images for each attack. The RGB color variations in
the images reveal distinct patterns for each attack type, with bright and scattered RGB distributions
for DoS and DDoS, dispersed patterns for Reconnaissance, and block-like RGB clusters for Theft.

4.3. Evaluation Metrics
Evaluation metrics assist in comparing different models or algorithms and offer in-

sight into how well the model works. We quantitatively measure the functionality and
efficiency of a learning-based model based on True Negative (TN), True Positive (TP),
False Positive (FP), and False Negative (FN) predictions. The combination of these
measures results in our main evaluation metrics, which are accuracy, precision, recall, F1-
score, and Area Under the Curve (AUC). These metrics are calculated as follows: Accuracy = No. of correct predictions

 Total predictions
= TP + TN

TP + TN + FP + FN
 (11)

Precision = No. of correct positive predictions
Total positive predictions

= TP
TP + FP

 (12)

Recall = No. of correct positive predictions
Total No. of positive instances

= TP
TP + FN

 (13)

F1-score = 2 × Precision × Recall
Precision + Recall

 (14)

AUC =
1

n (n − 1) (AUC(j | k) + AUC(k | j))
n

k>j

n

j=1

 (15)

where n denotes the number of classes, and AUC(j|k) is the AUC with class j as the posi-
tive class and class k as the negative class.

5. Results and Discussion
5.1. Fundamental Models’ Parameters

Since the proposed IDS targets IoT environments, we examine key parameters that
affect the resource consumption of network devices. These parameters include the num-
ber of parameters per model, the memory used to save the models and weights, and the
number of Floating-point Operations (FLOPs). FLOPs denote prevalent mathematical op-
erations such as addition, subtraction, and multiplication and are widely used to estimate
and compare the complexity and computational cost of ML models. Table 5 shows the
values of our selected parameters for each model. As indicated, VGG16 is a heavy model
with a significantly high FLOP number. Despite having only 16 layers and the same input
size as the other models, this model depends on Flatten layers in its optimized function-
ality, leading to a substantial increase in the number of model parameters and complexity.
The ResNet50 model has more than 7700 FLOPs, which is almost seven times that of the
MobileNetV1 model and ten times that of the EfficientNetB0. As previously mentioned,
the CBAM aims to enhance the model performance without adding computational com-
plexity, and the increase in FLOPs after integrating the attention module is negligible.

Figure 5. Samples of the generated 10 × 10 × 3 images for each attack. The RGB color variations in
the images reveal distinct patterns for each attack type, with bright and scattered RGB distributions
for DoS and DDoS, dispersed patterns for Reconnaissance, and block-like RGB clusters for Theft.

4.3. Evaluation Metrics

Evaluation metrics assist in comparing different models or algorithms and offer insight
into how well the model works. We quantitatively measure the functionality and efficiency
of a learning-based model based on True Negative (TN), True Positive (TP), False Positive
(FP), and False Negative (FN) predictions. The combination of these measures results in our
main evaluation metrics, which are accuracy, precision, recall, F1-score, and Area Under
the Curve (AUC). These metrics are calculated as follows:

Accuracy =
No. of correct predictions

Total predictions
=

TP + TN
TP + TN + FP + FN

(11)

Precision =
No. of correct positive predictions

Total positive predictions
=

TP
TP + FP

(12)

Recall =
No. of correct positive predictions

Total No. of positive instances
=

TP
TP + FN

(13)

F1-score = 2 ×Precision × Recall
Precision + Recall

(14)

AUC =
1

n (n − 1)

n

∑
j=1

n

∑
k>j

(AUC(j | k) + AUC(k | j)) (15)

where n denotes the number of classes, and AUC(j|k) is the AUC with class j as the positive
class and class k as the negative class.

5. Results and Discussion
5.1. Fundamental Models’ Parameters

Since the proposed IDS targets IoT environments, we examine key parameters that
affect the resource consumption of network devices. These parameters include the number
of parameters per model, the memory used to save the models and weights, and the number
of Floating-point Operations (FLOPs). FLOPs denote prevalent mathematical operations
such as addition, subtraction, and multiplication and are widely used to estimate and
compare the complexity and computational cost of ML models. Table 5 shows the values
of our selected parameters for each model. As indicated, VGG16 is a heavy model with a
significantly high FLOP number. Despite having only 16 layers and the same input size
as the other models, this model depends on Flatten layers in its optimized functionality,
leading to a substantial increase in the number of model parameters and complexity. The
ResNet50 model has more than 7700 FLOPs, which is almost seven times that of the
MobileNetV1 model and ten times that of the EfficientNetB0. As previously mentioned, the
CBAM aims to enhance the model performance without adding computational complexity,
and the increase in FLOPs after integrating the attention module is negligible.

Big Data Cogn. Comput. 2024, 8, 116 16 of 23

Table 5. Fundamental model parameters affecting resource consumption of network devices.

Model Total Parameters Memory (MB) FLOPs

VGG16 27,562,821 105.143 30,725.07

VGG16 + CBAM 66,623,319 254.147 30,802.25

ResNet50 24,639,365 93.991 7734.25

ResNet50 + CBAM 33,032,087 126.007 7734.46

MobileNetV1 3,756,229 14.328 1136.79

MobileNetV1 + CBAM 5,855,447 22.336 1136.90

EfficientNetB0 4,708,008 17.959 774.71

EfficientNetB0 + CBAM 7,987,386 30.469 774.84

5.2. Classification Results

Table 6 shows the classification results of the implemented models. As recorded, the
performance of the models with the plugged CBAM surpasses that of the baseline models
in all the evaluation metrics. The accuracy of the VGG16, ResNet50, MobileNetV1, and
EfficientNetB0 increases by 0.54%, 0.28%, 0.21%, and 0.4%, respectively. We also witnessed
improvements in precision, which ascertains that the CBAM promotes the identification
of relevant information from the input images and helps minimize false positives. The
precision of the VGG16 improves from 99.13% to 99.67%, the ResNet50 increases from
99.25% to 99.6%, and that of the MobileNetV1 and the EfficientNetB0 increases by 0.21%
and 0.34%, respectively. The recall of each model is also increased by the same percentage
of its precision, which implies that the model efficiently exploits the relevant information
in its prediction. Moreover, the increase in the F1-score after introducing the CBAM refers
to enhanced detection of both the positive and negative classes at each category level.

Table 6. Performance evaluation of the TL models, the two best models that we aggregate, are
indicated in bold.

Model Accuracy Precision Recall F1-Score AUC

VGG16 99.12 99.13 99.12 99.12 0.99987
VGG16 + CBAM 99.66 99.67 99.66 99.66 0.99999

ResNet50 99.25 99.25 99.25 99.25 0.99988
ResNet50 + CBAM 99.53 99.60 99.60 99.60 0.99997

MobileNetV1 99.59 99.59 99.59 99.59 0.99998
MobileNetV1 + CBAM 99.80 99.80 99.80 99.80 0.99998

EfficientNetB0 99.53 99.53 99.53 99.52 0.99999
EfficientNetB0 + CBAM 99.87 99.87 99.87 99.87 1.0

TL-CBAM-EL 99.93 99.93 99.93 99.93 1.0

The AUC scores for all the models in this study are impressively high, with values
ranging from 0.99987 to 1.0, demonstrating their strong ability to distinguish between
positive and negative instances. The integration of the CBAM leads to even higher AUC
scores, highlighting its effectiveness in refining feature extraction and enhancing model
performance. Specifically, EfficientNetB0 + CBAM and TL-CBAM-EL both achieved a
perfect AUC of 1.0, indicating flawless classification. This score can be attributed to the
effectiveness of EfficientNetB0, combined with CBAM’s ability to focus on critical features.
The TL-CBAM-EL model benefits from ensemble learning, aggregating predictions from
the best-performing models to achieve robust classification results. The consistently high
AUC scores reflect the effectiveness of both the model architectures and the preprocessing
techniques employed, ensuring high-quality data input and optimal learning conditions.

By studying the data in Tables 5 and 6, we deduce that the most convenient base
learners for ensemble learning are the MobileNetV1 + CBAM and EfficientNetB0 + CBAM.

Big Data Cogn. Comput. 2024, 8, 116 17 of 23

Moreover, opting for these models is advantageous due to their lightweight design, ensur-
ing efficient resource utilization and swift performance. As previously mentioned, ensemble
learning combines the strengths of multiple models to improve overall performance and
robustness. Therefore, we average the predictions of these two models to mitigate any
existing weaknesses and provide a more accurate and reliable prediction [53]. As illustrated
in Table 6, the aggregation of these two selected models via average ensemble learning
outperforms all the single models and succeeds in reaching a 99.93% classification accuracy.

5.3. Overfitting Inspection

To ensure that both base learners generalize well and do not entail any overfit-
ting, we examine their learning curves. Figure 6 shows the training accuracy, valida-
tion accuracy, training loss, and validation loss curves of the EfficientNetB0 + CBAM
and MobileNetV1 + CBAM models. As depicted, the training loss curves show a good fit,
and neither model suffers from overfitting. In each model, the training loss curve decreases
until it reaches a stable state, indicating that no further learning is required. Moreover, the
training loss and validation loss curves converge and stabilize at similar values, proving
consistent performance on the training and validation data [54]. The curves illustrate that
the early stop forces the models to stop training when the validation accuracy stabilizes.
The decision to terminate training after two stagnant epochs balances computational effi-
ciency with the potential benefits of learning rate adjustments. This approach optimizes
efficiency, reduces training time, and minimizes energy consumption.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 17 of 23

ResNet50 + CBAM 99.53 99.60 99.60 99.60 0.99997
MobileNetV1 99.59 99.59 99.59 99.59 0.99998

MobileNetV1 + CBAM 99.80 99.80 99.80 99.80 0.99998
EfficientNetB0 99.53 99.53 99.53 99.52 0.99999

EfficientNetB0 + CBAM 99.87 99.87 99.87 99.87 1.0
TL-CBAM-EL 99.93 99.93 99.93 99.93 1.0

5.3. Overfitting Inspection
To ensure that both base learners generalize well and do not entail any overfitting,

we examine their learning curves. Figure 6 shows the training accuracy, validation accu-
racy, training loss, and validation loss curves of the EfficientNetB0 + CBAM and Mo-
bileNetV1 + CBAM models. As depicted, the training loss curves show a good fit, and
neither model suffers from overfitting. In each model, the training loss curve decreases
until it reaches a stable state, indicating that no further learning is required. Moreover, the
training loss and validation loss curves converge and stabilize at similar values, proving
consistent performance on the training and validation data [54]. The curves illustrate that
the early stop forces the models to stop training when the validation accuracy stabilizes.
The decision to terminate training after two stagnant epochs balances computational effi-
ciency with the potential benefits of learning rate adjustments. This approach optimizes
efficiency, reduces training time, and minimizes energy consumption.

(a) (b)

Figure 6. The learning curves of the two best models: (a) the training and the validation curves of
the EfficientNetB0 with the CBAM; (b) the training and the validation curves of MobileNetV1 with
the CBAM.

5.4. Significance of the CBAM
During the training phase, the CBAM managed to reduce the training time by accel-

erating the convergence of the models within fewer epochs. The models integrated with
the CBAM had lower training epochs and higher accuracy. The number of training epochs
was reduced from 6 to 4 for the VGG model, from 11 to 9 for the ResNet model, from 8 to
7 for the MobileNetV1 model, and from 9 to 7 for the EfficientNet model. Moreover, to
further emphasize the significance of integrating the CBAM and the ensemble learning,
we compare the classes’ precision, recall, and F1-score obtained in each of our imple-
mented models, and they are illustrated in Figure 7, Figure 8, and Figure 9, respectively.

As shown in Figure 7, MobileNetV1 and EfficientNetB0 models demonstrate excep-
tional performance, achieving above 98% precision for “DDoS” and “DoS” attacks and
perfect precision for “Normal”, “Reconnaissance”, and “Theft” classes. Moreover, inte-
grating the CBAM enhances the precision of all models, with the TL-CBAM-EL model
standing out by recording near-perfect scores across all classes. The high precision indi-
cates that the models are effective at correctly identifying attacks with low FPR.

Figure 6. The learning curves of the two best models: (a) the training and the validation curves of
the EfficientNetB0 with the CBAM; (b) the training and the validation curves of MobileNetV1 with
the CBAM.

5.4. Significance of the CBAM

During the training phase, the CBAM managed to reduce the training time by accel-
erating the convergence of the models within fewer epochs. The models integrated with
the CBAM had lower training epochs and higher accuracy. The number of training epochs
was reduced from 6 to 4 for the VGG model, from 11 to 9 for the ResNet model, from 8
to 7 for the MobileNetV1 model, and from 9 to 7 for the EfficientNet model. Moreover, to
further emphasize the significance of integrating the CBAM and the ensemble learning, we
compare the classes’ precision, recall, and F1-score obtained in each of our implemented
models, and they are illustrated in Figure 7, Figure 8, and Figure 9, respectively.

Big Data Cogn. Comput. 2024, 8, 116 18 of 23
Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 18 of 23

Figure 7. Precision percentage per class for each of the implemented models.

Figure 8 displays the recall percentages per class for our implemented models. All
the models have approximately 100% recall for the “Normal”, “Reconnaissance”, and
“Theft” classes, indicating their strong ability to identify the true positive instances across
these classes. The recall percentages for the “DoS” and “DDoS”, while slightly lower com-
pared to other classes, remain high and are indicative of robust model performance. They
range from 98 to 100%, demonstrating their reliability in detecting these two attacks. This
reduction is attributed to the similar features of “DoS” and “DDoS” attacks, as they fun-
damentally aim to disable the service or the system to its legitimate users. Nevertheless,
the incorporation of the attention mechanism enhances the models’ focus on significant
features, resulting in improved recall rates.

Figure 9 depicts the F1-score per class of our implemented models. The figure
demonstrates that all the models succeed in attaining a high F1 score, indicating a bal-
anced performance in terms of both precision and recall. The findings prove that the mod-
els effectively identify true positives while minimizing false positives and false negatives.
They also prove that the attention mechanism improves the models’ ability to classify
complex patterns in the data, leading to enhanced scores across all classes. Our tested
models exhibited high F1-scores for “Normal”, “Reconnaissance”, and “Theft” classes,
ranging from 99.7% to 100%. The “DoS” and “DDoS” classes have slightly fewer F1 scores,
but they are still high scores in the context of IDSs. This variation in the results indicates
that some classes have distinctive features that are easier to learn and classify, which is
affirmed by the visual representation of the data depicted in Figure 5.

Figure 8. Recall percentage per class for each of the implemented models.

Figure 7. Precision percentage per class for each of the implemented models.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 18 of 23

Figure 7. Precision percentage per class for each of the implemented models.

Figure 8 displays the recall percentages per class for our implemented models. All
the models have approximately 100% recall for the “Normal”, “Reconnaissance”, and
“Theft” classes, indicating their strong ability to identify the true positive instances across
these classes. The recall percentages for the “DoS” and “DDoS”, while slightly lower com-
pared to other classes, remain high and are indicative of robust model performance. They
range from 98 to 100%, demonstrating their reliability in detecting these two attacks. This
reduction is attributed to the similar features of “DoS” and “DDoS” attacks, as they fun-
damentally aim to disable the service or the system to its legitimate users. Nevertheless,
the incorporation of the attention mechanism enhances the models’ focus on significant
features, resulting in improved recall rates.

Figure 9 depicts the F1-score per class of our implemented models. The figure
demonstrates that all the models succeed in attaining a high F1 score, indicating a bal-
anced performance in terms of both precision and recall. The findings prove that the mod-
els effectively identify true positives while minimizing false positives and false negatives.
They also prove that the attention mechanism improves the models’ ability to classify
complex patterns in the data, leading to enhanced scores across all classes. Our tested
models exhibited high F1-scores for “Normal”, “Reconnaissance”, and “Theft” classes,
ranging from 99.7% to 100%. The “DoS” and “DDoS” classes have slightly fewer F1 scores,
but they are still high scores in the context of IDSs. This variation in the results indicates
that some classes have distinctive features that are easier to learn and classify, which is
affirmed by the visual representation of the data depicted in Figure 5.

Figure 8. Recall percentage per class for each of the implemented models. Figure 8. Recall percentage per class for each of the implemented models.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 19 of 23

Figure 9. F1-score percentage per class for each of the implemented models.

5.5. Comparison to Other Models
To assess the efficiency of our final model, we compared it to different models previ-

ously overviewed in Section 2. In our comparison, we consider diverse approaches to en-
sure the novelty and competitiveness of our approach. For a valid comparison, all selected
models use the BoT-IoT dataset. As shown in Figure 10, incorporating the CBAM with the
MobileNetV1 and EfficientNetB0 exhibits superior performance. The TL-CBAM-EL model
surpasses all other models concerning accuracy. This strongly supports the conclusion
that our TL-CBAM-EL model is an effective model for IoT intrusion detection and demon-
strates its capability to accurately identify intrusions with high precision compared to its
predecessors.

Figure 10. Comparison between the accuracies of the proposed TL-CBAM-EL model, the pre-trained
models integrated with the CBAM, and previously presented models [16–18,20,27,29].

5.6. Practical Deployment Considerations
Considering the computational efficiency, accuracy, and resource conservation of-

fered by the two selected base learners, MobileNetV1 + CBAM and EfficientNetB0 +
CBAM, we conclude that they are optimal choices for deployment in IoT networks. Their
lightweight architectures [55], coupled with the frozen layers during transfer learning,
should preserve resource consumption. Our findings support promising robust and effi-
cient intrusion detection capabilities. Nevertheless, to facilitate the practical implementa-
tion of the proposed IDS in IoT networks, various deployment scenarios can be considered

Figure 9. F1-score percentage per class for each of the implemented models.

As shown in Figure 7, MobileNetV1 and EfficientNetB0 models demonstrate excep-
tional performance, achieving above 98% precision for “DDoS” and “DoS” attacks and
perfect precision for “Normal”, “Reconnaissance”, and “Theft” classes. Moreover, integrat-
ing the CBAM enhances the precision of all models, with the TL-CBAM-EL model standing
out by recording near-perfect scores across all classes. The high precision indicates that the
models are effective at correctly identifying attacks with low FPR.

Big Data Cogn. Comput. 2024, 8, 116 19 of 23

Figure 8 displays the recall percentages per class for our implemented models. All the
models have approximately 100% recall for the “Normal”, “Reconnaissance”, and “Theft”
classes, indicating their strong ability to identify the true positive instances across these
classes. The recall percentages for the “DoS” and “DDoS”, while slightly lower compared to
other classes, remain high and are indicative of robust model performance. They range from
98 to 100%, demonstrating their reliability in detecting these two attacks. This reduction is
attributed to the similar features of “DoS” and “DDoS” attacks, as they fundamentally aim
to disable the service or the system to its legitimate users. Nevertheless, the incorporation
of the attention mechanism enhances the models’ focus on significant features, resulting in
improved recall rates.

Figure 9 depicts the F1-score per class of our implemented models. The figure demon-
strates that all the models succeed in attaining a high F1 score, indicating a balanced
performance in terms of both precision and recall. The findings prove that the models
effectively identify true positives while minimizing false positives and false negatives.
They also prove that the attention mechanism improves the models’ ability to classify
complex patterns in the data, leading to enhanced scores across all classes. Our tested
models exhibited high F1-scores for “Normal”, “Reconnaissance”, and “Theft” classes,
ranging from 99.7% to 100%. The “DoS” and “DDoS” classes have slightly fewer F1 scores,
but they are still high scores in the context of IDSs. This variation in the results indicates
that some classes have distinctive features that are easier to learn and classify, which is
affirmed by the visual representation of the data depicted in Figure 5.

5.5. Comparison to Other Models

To assess the efficiency of our final model, we compared it to different models pre-
viously overviewed in Section 2. In our comparison, we consider diverse approaches
to ensure the novelty and competitiveness of our approach. For a valid comparison, all
selected models use the BoT-IoT dataset. As shown in Figure 10, incorporating the CBAM
with the MobileNetV1 and EfficientNetB0 exhibits superior performance. The TL-CBAM-
EL model surpasses all other models concerning accuracy. This strongly supports the
conclusion that our TL-CBAM-EL model is an effective model for IoT intrusion detec-
tion and demonstrates its capability to accurately identify intrusions with high precision
compared to its predecessors.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 19 of 23

Figure 9. F1-score percentage per class for each of the implemented models.

5.5. Comparison to Other Models
To assess the efficiency of our final model, we compared it to different models previ-

ously overviewed in Section 2. In our comparison, we consider diverse approaches to en-
sure the novelty and competitiveness of our approach. For a valid comparison, all selected
models use the BoT-IoT dataset. As shown in Figure 10, incorporating the CBAM with the
MobileNetV1 and EfficientNetB0 exhibits superior performance. The TL-CBAM-EL model
surpasses all other models concerning accuracy. This strongly supports the conclusion
that our TL-CBAM-EL model is an effective model for IoT intrusion detection and demon-
strates its capability to accurately identify intrusions with high precision compared to its
predecessors.

Figure 10. Comparison between the accuracies of the proposed TL-CBAM-EL model, the pre-trained
models integrated with the CBAM, and previously presented models [16–18,20,27,29].

5.6. Practical Deployment Considerations
Considering the computational efficiency, accuracy, and resource conservation of-

fered by the two selected base learners, MobileNetV1 + CBAM and EfficientNetB0 +
CBAM, we conclude that they are optimal choices for deployment in IoT networks. Their
lightweight architectures [55], coupled with the frozen layers during transfer learning,
should preserve resource consumption. Our findings support promising robust and effi-
cient intrusion detection capabilities. Nevertheless, to facilitate the practical implementa-
tion of the proposed IDS in IoT networks, various deployment scenarios can be considered

Figure 10. Comparison between the accuracies of the proposed TL-CBAM-EL model, the pre-trained
models integrated with the CBAM, and previously presented models [16–18,20,27,29].

5.6. Practical Deployment Considerations

Considering the computational efficiency, accuracy, and resource conservation offered
by the two selected base learners, MobileNetV1 + CBAM and EfficientNetB0 + CBAM, we
conclude that they are optimal choices for deployment in IoT networks. Their lightweight

Big Data Cogn. Comput. 2024, 8, 116 20 of 23

architectures [55], coupled with the frozen layers during transfer learning, should preserve
resource consumption. Our findings support promising robust and efficient intrusion de-
tection capabilities. Nevertheless, to facilitate the practical implementation of the proposed
IDS in IoT networks, various deployment scenarios can be considered based on the specific
network requirements and structure. This flexibility ensures that the system can adapt to
different IoT environments, optimizing resource usage and energy efficiency. The following
outlines some potential deployment approaches:

• Hybrid Processing: A hybrid system in IoT takes advantage of different technologies
in the network, such as cloud or fog computing, edge computing, and on-device
computing, to provide a tailored learning-based IDS [56]. It deploys the training
and inference of the model according to the network’s specifications and the diverse
needs of the applications. Hybrid approaches aim to balance the trade-off between
time–response, computational complexity, and energy consumption.

• AI edge computing: Instead of relying on centralized platforms and cloud databases,
giant technology corporations are widely expanding in the development of AI chips
that allow intelligent computing to be performed on edge devices [57]. This approach
reduces latency and network congestion [56]; however, the energy levels at the selected
edge devices should be carefully considered.

• Tiny Machine Learning (TinyML): TinyML is the discipline of implementing ML mod-
els on ultra-low-power microcontrollers or embedded devices [58]. It enables cognitive
processing and decision-making directly on edge devices without the need for cloud or
edge connectivity. This field requires further refinement and investigations to develop
benchmark DL models and datasets that can be deployed in an IDS TinyML system.

• Adaptive security: Given the dynamic nature of mobile IoT environments, security
measures must be continuously adjusted to ensure ongoing protection of data and
devices [59]. Adaptive security represents a promising research avenue for mobile
IoT, as it allows for the implementation of a range of defense mechanisms tailored
to specific contextual environments. This adaptability involves addressing different
types of attacks and vulnerabilities that IoT devices encounter as they move through
various zones and networks.

6. Conclusions

This research proposes a novel approach for intrusion detection systems in IoT net-
works based on transfer learning, ensemble learning, and Convolutional Block Attention
Module. The study evaluates four state-of-the-art pre-trained models, which are VGG16,
ResNet50, MobileNetV1, and EfficientNetB0. Each model is examined with and without the
integrated CBAM, resulting in eight distinct models. Using the 10-Best BoT-IoT dataset, we
preprocessed the data to address the class imbalance and transformed tabular data into RGB
images, enabling spatially coherent feature representation and complex pattern recognition.
Our experimental results prove that our novel approach to integrating a single lightweight
CBAM at the top layer of the models leads to faster convergence, higher accuracy, and
minimized false positive rates. Among the evaluated models, EfficientNetB0 + CBAM and
MobileNetV1 + CBAM exhibited the best performance. By applying ensemble learning
to aggregate the predictions of these two top-performing models, we developed the TL-
CBAM-EL model. The TL-CBAM-EL model achieved an impressive accuracy of 99.93% in
detecting and classifying various intrusion attacks, surpassing the performance of existing
methods in this domain. This result underscores the effectiveness of combining transfer
learning, CBAM, and ensemble learning techniques for enhancing intrusion detection
systems in IoT networks.

For our future work, we aim to conduct a detailed analysis of the model’s complexity,
including training and inference times. This will involve assessing various optimization
strategies to further enhance computational efficiency. This examination was unattainable
due to the instability of the Google Colab resources. Another potential area for future
research involves examining the use of different features and different datasets to en-

Big Data Cogn. Comput. 2024, 8, 116 21 of 23

sure the generalization and robustness of our model. Moreover, we plan to investigate
secure data transformation techniques and incorporate robust security measures to pre-
vent any vulnerabilities or data leaks, ensuring the integrity and confidentiality of the
transformed dataset.

Author Contributions: Conceptualization, M.A. and M.R.; Methodology, S.A.; Software, S.A.; For-
mal analysis, S.A. and I.H.; Investigation, S.A.; Data curation, S.A.; Writing—original draft, S.A.;
Writing—review and editing, I.H. and M.R.; Visualization, S.A.; Supervision, I.H., M.A. and M.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is publicly available by UNSW Canberra
at the Australian Defence Force Academy (ADFA) at the following link: https://research.unsw.edu.
au/projects/bot-iot-dataset (accessed on 19 June 2022).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fortune Business Insights. Internet of Things (IoT) Market. Available online: https://www.fortunebusinessinsights.com/

industry-reports/internet-of-things-iot-market-100307 (accessed on 23 April 2023).
2. Sarker, I.; Khan, A.; Abushark, Y.; Alsolami, F. Internet of Things (IoT) security intelligence: A comprehensive overview, machine

learning solutions and research Directions. Mobile Netw. Appl. 2023, 28, 296–312. [CrossRef]
3. Almuqren, L.; Alqahtani, H.; Aljameel, S.S.; Salama, A.S.; Yaseen, I.; Alneil, A.A. Hybrid metaheuristics with machine learning

based botnet detection in cloud assisted internet of things environment. IEEE Access 2023, 11, 115668–115676. [CrossRef]
4. Mohammadpour, L.; Ling, T.C.; Liew, C.S.; Aryanfar, A. A Survey of CNN-based network intrusion detection. Appl. Sci. 2022,

12, 8162. [CrossRef]
5. Abdelhamid, S.; Aref, M.; Hegazy, I.; Roushdy, M. A survey on learning-based intrusion detection systems for IoT networks. In

Proceedings of the 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt,
5–6 December 2021.

6. Nguyen, C.; Van Huynh, N.; Chu, N.; Saputra, Y.; Hoang, D.; Nguyen, D.; Pham, Q.; Niyato, D.; Dutkiewicz, E.; Hwang, W.
Transfer learning for wireless networks: A comprehensive survey. Proc. IEEE 2022, 110, 1073–1115. [CrossRef]

7. Zhu, Y.; Brettin, T.; Xia, F.; Partin, A.; Shukla, M.; Yoo, H.; Evrard, Y.; Doroshow, J.; Stevens, R. Converting tabular data into
images for deep learning with convolutional neural networks. Sci. Rep. 2021, 11, 11325. [CrossRef]

8. Sharma, A.; Vans, E.; Shigemizu, D.; Boroevich, K.A.; Tsunoda, T. DeepInsight: A methodology to transform a non-image data to
an image for convolution neural network architecture. Sci. Rep. 2019, 9, 11399–11405. [CrossRef]

9. Bazgir, O.; Zhang, R.; Dhruba, S.R.; Rahman, R.; Ghosh, S.; Pal, R. Representation of features as images with neighborhood
dependencies for compatibility with convolutional neural networks. Nat. Commun. 2020, 11, 4391. [CrossRef]

10. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

11. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

12. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

13. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114.

14. Woo, S.; Park, J.; Lee, J.; Kweon, I. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

15. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

16. Alkadi, O.; Moustafa, N.; Turnbull, B.; Choo, K. A deep blockchain framework-enabled collaborative intrusion detection for
protecting IoT and cloud networks. IEEE Internet Things J. 2021, 8, 9463–9472. [CrossRef]

17. Ullah, I.; Mahmoud, Q. Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE
Access 2021, 9, 103906–103926. [CrossRef]

18. Yang, J.; Jiang, X.; Liang, G.; Li, S.; Ma, Z. Malicious Traffic Identification with Self-Supervised Contrastive Learning. Sensors 2023,
23, 7215. [CrossRef] [PubMed]

19. Awajan, A. A Novel deep learning-based intrusion detection system for IoT networks. Computers 2023, 12, 34. [CrossRef]

https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://doi.org/10.1007/s11036-022-01937-3
https://doi.org/10.1109/ACCESS.2023.3322369
https://doi.org/10.3390/app12168162
https://doi.org/10.1109/JPROC.2022.3175942
https://doi.org/10.1038/s41598-021-90923-y
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1038/s41467-020-18197-y
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/JIOT.2020.2996590
https://doi.org/10.1109/ACCESS.2021.3094024
https://doi.org/10.3390/s23167215
https://www.ncbi.nlm.nih.gov/pubmed/37631752
https://doi.org/10.3390/computers12020034

Big Data Cogn. Comput. 2024, 8, 116 22 of 23

20. He, M.; Huang, Y.; Wang, X.; Wei, P.; Wang, X. A lightweight and efficient IoT intrusion detection method based on feature
grouping. IEEE Internet Things J. 2024, 11, 2935–2949. [CrossRef]

21. Bozinovski, S.; Fulgosi, A. The influence of pattern similarity and transfer of learning upon training of a base perceptron B2. Proc.
Symp. Inform. 1976, 3, 121–126.

22. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
23. Vu, L.; Nguyen, Q.; Nguyen, D.; Hoang, D.; Dutkiewicz, E. Deep transfer learning for IoT attack detection. IEEE Access 2020,

8, 107335–107344. [CrossRef]
24. Hussain, F.; Abbas, S.; Husnain, M.; Fayyaz, U.; Shahzad, F.; Shah, G. IoT DoS and DDoS attack detection using ResNet. In

Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020.
25. Fan, Y.; Li, Y.; Zhan, M.; Cui, H.; Zhang, Y. IoTDefender: A federated transfer learning intrusion detection framework for 5G IoT. In

Proceedings of the 2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE), Guangzhou, China,
31 December–1 January 2020.

26. Guan, J.; Cai, J.; Bai, H.; You, I. Deep transfer learning-based network traffic classification for scarce dataset in 5G IoT systems. Int.
J. Mach. Learn. Cybern. 2021, 12, 3351–3365. [CrossRef]

27. Ge, M.; Syed, N.; Fu, X.; Baig, Z.; Robles-Kelly, A. Towards a Deep Learning-Driven Intrusion Detection Approach for Internet of
Things. Comput. Netw. 2021, 186, 107784. [CrossRef]

28. Mienye, I.; Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 2022,
10, 99129–99149. [CrossRef]

29. Thakkar, A.; Lohiya, R. Attack classification of imbalanced intrusion data for iot network using ensemble learning-based deep
neural network. IEEE Internet Things J. 2023, 10, 11888–11895. [CrossRef]

30. Awotunde, J.B.; Folorunso, S.O.; Imoize, A.L.; Odunuga, J.O.; Lee, C.C.; Li, C.T.; Do, D.T. An ensemble tree-based model for
intrusion detection in industrial internet of things networks. Appl. Sci. 2023, 13, 2479. [CrossRef]

31. Alotaibi, Y.; Ilyas, M. Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things’ Devices Security.
Sensors 2023, 23, 5568. [CrossRef] [PubMed]

32. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE
2020, 109, 43–76. [CrossRef]

33. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

34. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-scale machine learning on heterogeneous systems. arXiv 2015, arXiv:1603.04467.

35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

36. Keras Documentation: Keras Applications. 2020. Available online: https://www.keras.io/api/applications (accessed on 16 May 2022).
37. Soydaner, D. Attention mechanism in neural networks: Where it comes and where it goes. Neural Comput. Appl. 2022,

34, 13371–13385. [CrossRef]
38. Wang, A.; Liang, G.; Wang, X.; Song, Y. Application of the YOLOv6 combining CBAM and CIoU in forest fire and smoke detection.

Forests 2023, 14, 2261. [CrossRef]
39. Agac, S.; Durmaz, O. On the use of a convolutional block attention module in deep learning based human activity recognition

with motion sensors. Diagnostics 2023, 13, 1861. [CrossRef]
40. Wang, Y.; Chen, X.; Li, J.; Lu, Z. Convolutional Block Attention Module–Multimodal Feature-Fusion Action Recognition: Enabling

Miner Unsafe Action Recognition. Sensors 2024, 24, 4557. [CrossRef]
41. Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive

Guide for Beginners; Springer: Cham, Switzerland, 2019; pp. 59–64.
42. Van Der Walt, S.; Colbert, S.; Varoquaux, G. The numpy array: A structure for efficient numerical computation. Comput. Sci. Eng.

2011, 13, 22–30. [CrossRef]
43. McKinney, W. Pandas: A foundational python library for data analysis and statistics. In Proceedings of the Python for High

Performance and Scientific Computing, Austin, TX, USA, 14 November 2011; pp. 1–9.
44. Hunter, J. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in python. JMLR 2011, 12, 2825–2830.
46. Talaei Khoei, T.; Kaabouch, N. Machine Learning: Models, Challenges, and Research Directions. Future Internet 2023, 15, 332.

[CrossRef]
47. Sarhan, M.; Layeghy, S.; Moustafa, N.; Gallagher, M.; Portmann, M. Feature extraction for machine learning-based intrusion

detection in iot networks. Digit. Commun. Netw. 2024, 10, 205–216. [CrossRef]
48. Hossain, M.A.; Islam, M.S. A novel hybrid feature selection and ensemble-based machine learning approach for botnet detection.

Sci. Rep. 2023, 13, 21207. [CrossRef] [PubMed]
49. Yang, C.; Guan, W.; Fang, Z. IoT botnet attack detection model based on DBO-CatBoost. Appl. Sci. 2023, 13, 7169. [CrossRef]

https://doi.org/10.1109/JIOT.2023.3294259
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/ACCESS.2020.3000476
https://doi.org/10.1007/s13042-021-01415-4
https://doi.org/10.1016/j.comnet.2020.107784
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/JIOT.2023.3244810
https://doi.org/10.3390/app13042479
https://doi.org/10.3390/s23125568
https://www.ncbi.nlm.nih.gov/pubmed/37420734
https://doi.org/10.1109/JPROC.2020.3004555
https://www.keras.io/api/applications
https://doi.org/10.1007/s00521-022-07366-3
https://doi.org/10.3390/f14112261
https://doi.org/10.3390/diagnostics13111861
https://doi.org/10.3390/s24144557
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3390/fi15100332
https://doi.org/10.1016/j.dcan.2022.08.012
https://doi.org/10.1038/s41598-023-48230-1
https://www.ncbi.nlm.nih.gov/pubmed/38040793
https://doi.org/10.3390/app13127169

Big Data Cogn. Comput. 2024, 8, 116 23 of 23

50. Chawla, N.; Bowyer, K.; Hall, L.; Kegelmeyer, W. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002,
16, 321–357. [CrossRef]

51. Zhao, Y.F.; Xie, J.; Sun, L. On the data quality and imbalance in machine learning-based design and manufacturing—A systematic
review. Engineering, 2024; in press.

52. De Amorim, L.B.; Cavalcanti, G.D.; Cruz, R.M. The choice of scaling technique matters for classification performance. Appl. Soft
Comput. 2023, 133, 109924. [CrossRef]

53. Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ.
Comput. Inf. Sci. 2023, 35, 757–774. [CrossRef]

54. Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 22022. [CrossRef]
55. Zhou, Y.; Chen, S.; Wang, Y.; Huan, W. Review of research on lightweight convolutional neural networks. In Proceedings of the

IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020.
56. Tekin, N.; Acar, A.; Aris, A.; Uluagac, A.S.; Gungor, V.C. Energy consumption of on-device machine learning models for IoT

intrusion detection. Internet Things 2023, 21, 100670. [CrossRef]
57. Liu, D.; Kong, H.; Luo, X.; Liu, W.; Subramaniam, R. Bringing AI to edge: From deep learning’s perspective. Neurocomputing 2022,

485, 297–320. [CrossRef]
58. Kallimani, R.; Pai, K.; Raghuwanshi, P.; Iyer, S.; López, O.L. TinyML: Tools, applications, challenges, and future research directions.

Multimed. Tools Appl. 2024, 83, 29015–29045. [CrossRef]
59. Golpayegani, F.; Chen, N.; Afraz, N.; Gyamfi, E.; Malekjafarian, A.; Schäfer, D.; Krupitzer, C. Adaptation in Edge Computing: A

review on design principles and research challenges. ACM Trans. Auton. Adapt. Syst. 2024; just accepted.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.asoc.2022.109924
https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1016/j.iot.2022.100670
https://doi.org/10.1016/j.neucom.2021.04.141
https://doi.org/10.1007/s11042-023-16740-9

	Introduction
	Background and Related Work
	ML-BASED and DL-BASED IDSs for IoT
	TL-BASED IDS for IoT
	EL-Based IDS for IoT

	Proposed Methodology
	System Architecture
	Deep Transfer Pre-Trained Models
	Convolutional Block Attention Module (CBAM)
	Ensemble Learning

	Experimental Work
	Environmental Setup and Hyperparameters
	Dataset
	Evaluation Metrics

	Results and Discussion
	Fundamental Models’ Parameters
	Classification Results
	Overfitting Inspection
	Significance of the CBAM
	Comparison to Other Models
	Practical Deployment Considerations

	Conclusions
	References

