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Abstract: Text localization and recognition from natural scene images has gained a lot of attention
recently due to its crucial role in various applications, such as autonomous driving and intelligent
navigation. However, two significant gaps exist in this area: (1) prior research has primarily focused
on recognizing English text, whereas Arabic text has been underrepresented, and (2) most prior
research has adopted separate approaches for scene text localization and recognition, as opposed
to one integrated framework. To address these gaps, we propose a novel bilingual end-to-end
approach that localizes and recognizes both Arabic and English text within a single natural scene
image. Specifically, our approach utilizes pre-trained CNN models (ResNet and EfficientNetV2)
with kernel representation for localization text and RNN models (LSTM and BiLSTM) with an
attention mechanism for text recognition. In addition, the AraElectra Arabic language model was
incorporated to enhance Arabic text recognition. Experimental results on the EvArest, ICDAR2017,
and ICDAR2019 datasets demonstrated that our model not only achieves superior performance in
recognizing horizontally oriented text but also in recognizing multi-oriented and curved Arabic and
English text in natural scene images.

Keywords: end-to-end scene text recognition; localization text; Arabic text; bilingual text; ResNet;
EfficientNetV2; LSTM; BiLSTM; natural scene image

1. Introduction

There is a growing interest in image-processing methods such as object detection [1],
scene text localization [2], and scene text recognition (STR) [3] due to the increasing use
of applications that interact with images and their components, such as text, signage,
and other objects. Natural scene images, which are unmodified digital representations of
real-world settings, are commonly used in these applications and often contain textual
information [4]. As a result, the topic of localizing and recognizing text within natural
scene images has gained significant attention in recent years.

In the past, localizing and recognizing text from natural scene images were seen
as separate steps in the process of extracting text from images. This approach involves
first identifying and isolating the textual areas within the input images, and then using a
text recognizer to determine the sequence of the recognized text from the cropped words.
However, this method may have some drawbacks. Firstly, errors can accumulate between
the two tasks, and inaccurate localization results can have a significant impact on text
recognition performance. Additionally, if each task is optimized individually, it may result
in decreased performance in text recognition. Finally, this approach requires a large amount
of memory and has poor inference efficiency [5].

In recent years, there have been significant advancements in deep learning (DL)
techniques that have enabled the development of end-to-end deep neural frameworks for
accurately recognizing text in images of natural scenes. The end-to-end method integrates
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the localization and recognition processes into a unified framework. This approach is
more likely to produce superior results because accurate text localization greatly enhances
text recognition accuracy. Implementing a trainable framework that can simultaneously
localize and recognize text has shown substantial improvements in overall performance,
particularly for text with irregular shapes in uncontrolled environments [6].

Recognizing text in natural scene images is essential for many content-based appli-
cations, such as language translation, security systems for identifying names or company
logos on cards, reading street signs for navigation, understanding signage in driver assis-
tance systems, aiding navigation for individuals with visual impairments, and facilitating
check processing at banks. To achieve these applications, it is necessary to have techniques
that can accurately and consistently localize scene text [7].

Text localization poses significant challenges due to the diverse visual characteristics
of texts and complex backgrounds. Texts differ greatly from conventional objects, often
appearing in multiple styles and varying in size, color, font, language, and orientation.
Additionally, environmental elements such as windows and railings can resemble written
language, and natural features like grass and leaves may occasionally mimic textual pat-
terns. These variations and ambiguities make precise text localization [8] more complicated.

The process of localizing textual information from natural scene images is depicted in
Figure 1. The first stage, called text detection, determines whether there is text within an
image. Then, text localization identifies the exact location of the text. It involves clustering
the identified text into coherent regions while minimizing background interference and
establishing a bounding box around the text [9].
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Recognizing text in natural scene images presents greater challenges because of the
intricate text patterns and complex backgrounds that vary significantly in natural settings.
Additionally, text in natural scenes can have diverse characteristics, including different
fonts, sizes, forms, orientations, and layouts [11]. Recognizing Arabic text, in particular, is
more complex than recognizing English text [12].

Arabic is one of the six most widely spoken languages globally and serves as an
official language in 26 states across the Arab world, particularly in the Middle East [13].
It is spoken by over 447 million native speakers [14], and its various dialects influence its
written form, which progresses from right to left. Arabic characters can take different forms
based on their positions within words: initial, medial, final, and isolated [10].

Alrobah et al. [15] proposed a framework for character recognition consisting of four
main steps, as shown in Figure 2. The preprocessing phase involves applying techniques
such as binarization and noise removal to improve image quality. Segmentation follows,
dividing paragraphs into lines and then further segmenting lines into individual words.
In the feature extraction stage, each word is treated as a separate entity and input into the
machine-learning model after segmentation. Feature extraction is important and complex,
and it has a significant impact on the performance of classifiers [16]. Finally, the extracted
features are inputted into machine-learning classifiers for recognition.
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Previous research on localizing and recognizing Arabic and English text from natural
scene images has identified several limitations:

• Many studies on Arabic text have focused on recognizing handwritten Arabic
text [17–20], with relatively few focused on recognizing Arabic text within natural
scene images.

• To our knowledge, no researchers have developed an end-to-end STR system capable
of integrating the tasks of localizing and recognizing bilingual Arabic and English text
within a unified framework. Most existing methods treat these tasks separately.

• The most advanced studies on localizing Arabic text from natural scene images have
primarily addressed horizontal text, neglecting the challenges posed by multi-oriented
and curved Arabic text.

• To our knowledge, our study is the first to utilize advanced Arabic language mod-
els like AraElectra to enhance the recognition accuracy of Arabic text from natural
scene images.

This study aims to address a research gap by using an end-to-end STR approach to
accurately locate and recognize multi-oriented and curved bilingual Arabic and English
texts from natural scene images. Our model is based on the PAN++ framework [21], which
was developed for localizing and recognizing multi-oriented and curved English text
from natural scene images. In our study, we propose using the pretrained EfficientNetV2
convolutional neural network (CNN) model for feature extraction instead of the ResNet
model. EfficientNetV2 is a recent, smaller, and faster neural network for image recognition.
Additionally, EfficientNetV2 significantly outperforms previous CNN models in extracting
features from images. We compare the performance of these two models in locating
Arabic and English text that is both multi-oriented and curved. Additionally, we suggest
using the bidirectional long short-term memory (BiLSTM) model instead of the LSTM
model in the recognition phase to effectively recognize multi-oriented and curved bilingual
Arabic and English text from natural scene images. The BiLSTM model aims to capture
additional contextual information by processing the text in forward and backward networks.
The BiLSTM model enables us to handle long-term dependencies more effectively and
enhances the overall accuracy of recognizing text. We conduct a comparative analysis of
the LSTM and BiLSTM models. A key novelty of our research is the integration of the
Arabic language model, AraElectra, in the recognition phase to improve the accuracy of
Arabic text recognition. Here is a summary of the contributions of our work:

• To the best of our knowledge, this is the first study to utilize end-to-end STR for
localizing and recognizing Arabic text only, as well as bilingual Arabic and English
text from natural scene images.

• To the best of our knowledge, this is the first study to propose an EvArest dataset that
contains multi-oriented and curved text for localizing and recognizing Arabic, as well
as bilingual Arabic and English text from natural scene images.

• We employed a pretrained CNN model, EfficientNetV2, to extract features from
bilingual Arabic and English texts in the images.

• We utilized BiLSTM with an attention mechanism to recognize bilingual Arabic and
English text from natural scene images.

• We integrated the Arabic language model named AraElectra with our end-to-end STR
model to enhance the recognition of Arabic text from natural scene images.



Big Data Cogn. Comput. 2024, 8, 117 4 of 40

The remainder of the paper is organized as follows: Section 2 provides background on
localizing and recognizing text in natural scene images. Section 3 discusses related work in
localizing and recognizing Arabic and English text from natural scene images. Section 4
details our study’s methodology. Section 5 explains the experiments conducted. Section 6
presents the experimental results, followed by a general discussion in Section 7. Finally,
Section 8 concludes the paper and outlines future research directions.

2. Background

In this section, we present background information on STR, focusing on approaches
for localizing and recognizing text in natural scene images. Furthermore, we explore
the unique characteristics of Arabic text and conduct a comprehensive review of existing
datasets available for Arabic text in natural-scene images.

2.1. Arabic Language Characteristics

The Arabic language is spoken by a significant number of people worldwide and is
an official language in 25 nations [10]. Arabic script differs from other languages, such as
English and French, in several ways: it is written from right to left, and Arabic characters
consist of 28 letters, which do not have uppercase and lowercase variations like English [15].
Furthermore, each Arabic character can take on four different forms depending on its
position within a word: isolated, initial, medial, or final. Table 1 illustrates the various
shapes of Arabic characters.

Table 1. Examples of the names and shapes of Arabic characters.

Name Isolated Initial Middle End

Baa H. �K. �J. � I. �

Taa �
H �

�
K �

�
J�

�
I�

Thaa �
H �

�
K �

�
J�

�
I�

The dot, known as “Noqtah,” plays a vital role in maintaining the consistency and
structure of Arabic characters. Arabic letters may contain one, two, or three dots, positioned
above, in the center, or below the characters. Table 2 provides details about the attributes of
Arabic characters. In addition to dots, Arabic text includes the “Hamzah” character (e.g.,
“Z”), which is essential in distinguishing between different characters and can appear in
various positions: above, in the center, or below. Depending on its context, the Hamzah
character may be considered an integral part of the character or a distinct component when
appearing separately [22].

Table 2. Characteristics of Arabic characters.

Dot (Noqtah) Name of Characters Shape of Characters

One dot Baa, Gem, Khaa, Zal, Zai, Dad, Zaa,
Gin, Faa, and Noon H. , h. , p, 	

X, 	P, 	
�, 	

 ,
	
¨,

	
¬, 	

à

Two dots Taa, Qaf, and Yaa �
H, �

�, ø



Three dots Thaa and Shin �
H, �

�

Above characters Khaa, Zal, Zai, Dad, Zaa, Gin, Faa,
Qaf, and Noon p, 	

X, 	P, 	
�, 	

 ,
	
¨,

	
¬, ��, 	

à

Below characters Baa and Yaa H. ,ø



Center of characters Ge h.
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2.2. Scene Text Recognition (STR)

STR is often considered a specialized form of OCR that focuses specifically on recog-
nizing text within natural scenes. STR presents significant challenges due to factors such as
complex backgrounds, various font styles, and less-than-ideal imaging conditions [23]. The
primary objective of STR is to automatically localize and recognize textual content within
scene images. In recent years, multiple methodologies have been developed to address
this objective, typically categorized into three main phases according to Chen et al. [23]
and Khan et al. [6]: text localization, text recognition, and end-to-end systems. Figure 3
provides an overview of the STR system. In the following sections, we will delve into a
detailed examination of each of these stages.
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2.2.1. Text Localization

The objective of text localization is to pinpoint the precise area within an input image,
typically marked by a bounding box, where text is present. These bounding boxes can take
various shapes, such as quadrilaterals, oriented rectangles, or regular rectangles. According
to [24], different sets of parameters define these shapes: for rectangles, they are (x, y, w, and
h); for oriented rectangles, (x, y, w, and h); and for quadrilaterals, (x1, y1, x2, y2, x3, y3,
x4, and y4). Khan et al. [6] categorize text localization techniques into three main types:
connected component (CC), sliding window-based, and DL-based methods.

Connected Component-Based Methods

In CC-based methods, the goal is to identify and unify small elements into coherent
entities. These approaches typically involve segmentation techniques such as stable inten-
sity regions and color clustering. Subsequently, filtering out non-textual elements using
low-level features like stroke width, edge gradients, and texture helps in isolating text
within an image. These methods are known for their low computational requirements and
efficiency. However, they face challenges in handling rotation, scale variations, complex
backgrounds, and other intricate scenarios. Representative CC-based techniques include
maximally stable extremal regions (MSERs) [25] and stroke width transform (SWT) [26].

Sliding Window-Based Methods

Sliding window-based methods involve generating multiple potential text regions by
systematically moving a window of varying sizes and aspect ratios across an image. These
candidate text regions are then grouped using a classifier that relies on manually crafted
features. Subsequently, these grouped regions are combined to form complete words or
lines of text. For instance, Pan et al. [27] introduced a system that localizes text in natural
images by employing a sliding-window approach at different scales within a pyramid
image structure. They use a conditional random field to distinguish non-textual areas and
a minimum spanning tree to segment text into words or lines.

Previous localization techniques, like those using low-level handcrafted features and
extensive preprocessing and post-processing steps, tend to be slow and computationally
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intensive. These methods are sensitive to challenges commonly found in natural scene
images, such as background noise, varying lighting conditions, text orientation, and clutter.
Due to these limitations, traditional approaches such as CC and sliding window methods
are insufficient for achieving both speed and accuracy in text localization tasks, prompting
the adoption of DL approaches [6].

Deep Learning-Based Methods

DL methods achieve accurate text localization by autonomously extracting high-
level features from input images. CNNs are widely used for this purpose because they
excel at capturing complex features such as geometric patterns and lighting conditions,
regardless of variations in these factors. CNNs efficiently extract a multitude of features
from images, reducing processing time and computational complexity. DL-based text
localization methods can be classified into three main categories: regression-based methods,
segmentation-based methods, and hybrid methods.

Regression-Based Methods: Regression-based methods for text localization encom-
pass both proposal-based and segment/link-based approaches tailored for natural scene
images. In proposal-based methods, a process akin to sliding windows is employed to
generate multiscale bounding boxes of varying aspect ratios across potential text regions.
Each bounding box is then evaluated to determine the most accurate localization of the
text, whether it is horizontal or quadrilateral. This technique proves highly effective for
identifying horizontal and multi-oriented text but can struggle with accurately localizing
curved text. Prominent examples of proposal-based methods include Faster R-CNN [28],
EAST [29], SSD [30], and TextBoxes++ [31].

Conversely, segment/link-based methods segment text into numerous regions and
subsequently use a linking process to connect these regions into a cohesive text localization
result. This method, as implemented in connectionist text proposal networks (CTPN) [32],
offers greater flexibility compared to proposal-based methods and achieves exceptional
accuracy in text localization tasks.

Segmentation-Based Methods: Segmentation-based methods in text localization aim
to accommodate a wide range of text sizes by leveraging segmentation algorithms to
distinguish text from non-text areas based on pixel-level identification. After segmentation,
semantic information and post-processing steps are crucial to accurately delineate text
regions. However, the effectiveness of these methods can be influenced by factors such as
complex backgrounds, diverse languages, and varying lengths of text lines. Segmentation-
based methods typically fall into two categories: semantic segmentation and instance-
aware segmentation. Semantic segmentation involves labeling pixels according to semantic
information to identify text within an image. The fully convolutional network (FCN) is
commonly used for this purpose in text localization tasks [6]. On the other hand, instance-
aware segmentation addresses challenges such as overlapping texts by recognizing multiple
instances of the same class as distinct objects.

Hybrid Methods: Hybrid methods combine regression-based and segmentation-based
techniques to localize text using both bounding box and segmentation approaches. This
approach is known for its high accuracy and effectiveness in overcoming various chal-
lenges associated with text localization in natural scene images. In recent years, several
systems, including LOMO [33], have adopted this hybrid approach to achieve precise text
localization results.

2.2.2. Text Recognition

Text recognition involves converting image regions that contain text into machine-
readable strings. Unlike general image classification tasks, which have fixed outputs,
text recognition deals with variable-length sequences of characters or words. Often, text
localization is performed before text recognition as an initial step. Traditional text recogni-
tion methods rely on handcrafted features such as CCs, SWT, and histograms of oriented
gradient descriptors. However, these methods are often inefficient and slow due to their
dependence on low-level features. The adoption of DL approaches is crucial for developing
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efficient and highly accurate text recognition systems. DL methods significantly improve
both the speed and accuracy of text recognition tasks. Text recognition in natural scene
images can be classified into segmentation-based and free-segmentation methods, which
will be further explained in subsequent sections [23].

Segmentation-Based Methods

Methods based on segmentation involve breaking down characters into their con-
stituent parts and applying a classification algorithm to identify each segment. Segmentation-
based approaches typically consist of three main steps: image preprocessing, character
segmentation, and character recognition. Accurately locating text in an image is crucial
for these methods. However, segmentation-based methods have significant drawbacks.
First, accurately pinpointing individual characters is widely recognized as one of the most
challenging tasks in this field. The quality of character detection and segmentation often
limits overall recognition performance. Second, segmentation-based approaches are unable
to capture contextual information beyond individual characters. This limitation can result
in suboptimal word-level results, especially during complex training scenarios.

Free-Segmentation Methods

Free-segmentation techniques aim to recognize entire text passages without segment-
ing individual characters. This is achieved through an encoder–decoder framework. The
process of free-segmentation methods typically involves four stages: image preprocessing,
feature representation, sequence modeling, and prediction.

1. Image Preprocessing Stage: The image preprocessing stage aims to enhance image
quality and mitigate issues caused by poor image conditions. It plays a critical role in
text recognition by improving feature representation. Various image preprocessing
techniques such as background removal, text image super-resolution, and rectification
are employed. These methods effectively address challenges associated with low
image quality, thereby significantly enhancing text recognition accuracy.

2. Feature Representation Stage: Feature representation is crucial for converting raw
text-instance images into a form that emphasizes essential characteristics for character
recognition while minimizing the influence of irrelevant factors such as font style,
color, size, and background. CNNs are widely adopted in this stage due to their
efficiency and effectiveness in extracting image features.

3. Sequence Modeling Stage: The sequence modeling stage establishes connections
between image features and predictions, enabling the extraction of contextual in-
formation from sequences of characters. This approach is valuable for predicting
characters in sequence, demonstrating improved reliability and efficiency compared to
independent character analysis. BiLSTM networks are commonly utilized in sequence
modeling for their capability to capture long-range dependencies accurately [34].

4. Prediction Stage: In the prediction stage, the objective is to determine the correct
string sequence based on features extracted from the input text-instance image. Two
main techniques employed for this purpose are Connectionist Temporal Classification
(CTC) [35] and attention mechanisms [36]. These techniques facilitate accurate and
effective decoding of the sequence from the extracted features.

2.2.3. End-to-End System

The objective of end-to-end STR is to convert all text regions within an image into
sequences of strings. This process involves several stages, including text localization,
recognition, and post-processing, as shown in Figure 4. Traditionally, text localization
and recognition were treated as separate tasks that were combined to extract text from
images. However, several factors have driven the development of end-to-end STR systems,
which integrate text localization and recognition into a unified framework. One motivation
is the potential for error accumulation in cascaded systems, where inaccuracies in one
stage can propagate and lead to significant overall prediction errors. End-to-end solutions
address this by mitigating error growth during training. Additionally, these systems
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facilitate the exchange of information between localization and recognition stages, generally
improving the accuracy of text extraction. Moreover, end-to-end frameworks offer greater
adaptability and ease of maintenance across different domains compared to traditional
cascaded pipelines. Finally, they often achieve comparable efficiency with faster inference
times and reduced storage requirements [6].
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2.3. Datasets of Arabic Scene Text

In this section, we perform a thorough analysis of existing datasets that concentrate on
Arabic scene text. Table 3 presents a comparative assessment of these datasets, highlighting
factors such as the year of publication, the types of tasks they support for localization
and recognition, the orientation of text within images, the number of included images,
and their accessibility. These datasets encompass a diverse range of images, including
shopping boards, product names, advertisements, and highway signs captured under
challenging conditions. These conditions encompass low resolution, inadequate lighting,
noise, misaligned text, and variations in colors and sizes. The following section provides a
concise overview of each dataset.

Table 3. Summary of Arabic scene text datasets.

Dataset Year Task Type Text Orientation No. of
Images Availability

ARASTEC [37] 2015 Localization and
recognition Horizontal 260 Private

ARSTI [38] 2017 Recognition Horizontal 374 Public

ICDAR2017 [39] 2017 Localization and
recognition

Horizontal,
multi-oriented,

and curve
18,000 Public

EASTR-42K [40] 2019 Localization and
recognition Horizontal 2469 Private

ICDAR2019 [41] 2019 Localization and
recognition

Horizontal,
multi-oriented,

and curve
20,000 Public

ASAYAR [42] 2020 Localization Horizontal 1375 Public
Real-Time Arabic

Scene Text
Detection [43]

2021 Localization Horizontal and curve 575 Private

ATTICA [44] 2021 Localization and
recognition Horizontal 1180 Private

EvArEST [10] 2021 Localization and
recognition

Horizontal,
multi-oriented,

and curve
510 Public

TSVD [45] 2021 Localization Horizontal 7000 Private

2.3.1. ARASTC [37]

This dataset includes Arabic characters extracted from scene images such as signs,
hoardings, and advertisements. It consists of 100 classes categorizing 28 Arabic characters
in different positions within words (initial, medial, final, and isolated).
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2.3.2. ARASTI [38]

This dataset features textual content extracted from images depicting Arabic scenes.
It includes segmented words and characters from natural settings, comprising 2093 seg-
mented Arabic characters and 1280 segmented Arabic sentences extracted from 374 scene
images. The characters are primarily from signs, billboards, and advertisements, manually
segmented.

2.3.3. ICDAR2017 [39]

This dataset contains natural-scene images with embedded text from nine languages,
including Arabic. It encompasses 18,000 images, with each language represented by
2000 images.

2.3.4. EASTR-42K [40]

This dataset comprises bilingual (English and Arabic) scene text images, highlighting
diverse word combinations in Arabic. It includes precise text in both languages in an
unrestricted environment, totaling 2107 lines of Arabic text, 983 lines of English text, and
784 lines of multi-lingual text.

2.3.5. ICDAR2019 [41]

This dataset is designed for multi-lingual scene text localization and recognition
systems. It contains 20,000 images, each featuring text in at least one of Arabic, Bangla,
Chinese, Devanagari, English, French, German, Italian, Japanese, or Korean.

2.3.6. ASAYAR [42]

This dataset focuses on Arabic text localization on highways and comprises three
components: Arabic–English scene text localization, traffic sign detection, and directional
symbol detection. It includes 1763 annotated photographs from Moroccan highways, cate-
gorized into 16 distinct object groups, with nearly 20,000 bounding boxes and annotations
at both word and line levels.

2.3.7. Real-Time Arabic Scene Text Detection [43]

This dataset focuses on Arabic scene text localization. It includes 575 photos manually
annotated with 762 instances of text and 1120 words. Challenges within the dataset
include approximately 20% of photos featuring curved text, 10% with blurred images, and
variations in typefaces.

2.3.8. ATTICA [44]

ATTICA is a multitask dataset specifically designed for Arabic traffic signs and panels.
It covers two distinct Arabic regions: North Africa (Algeria, Egypt, Morocco, Tunisia) and
the Gulf region (Bahrain, Kuwait, Qatar, Saudi Arabia, United Arab Emirates). The dataset
comprises two primary sub-datasets: ATTICA_Sign, consisting of 1215 annotated images
of traffic signs and panels, and ATTICA_Text, featuring 1180 annotated text objects at both
line and word levels.

2.3.9. EvArEST [10]

The EvArEST dataset includes Arabic and English text captured in diverse indoor
and outdoor settings throughout Egypt. Images were taken using cell phone cameras with
varying resolutions. The dataset contains 510 annotated images at the word level.

2.3.10. Tunisia Street View Dataset [45]

The Tunisia Street View Dataset (TSVD) consists of 7000 images from various Tunisian
cities sourced from Google Street View, featuring Arabic text. The dataset underwent
annotation using an active learning method, with only approximately 20% of training
samples labeled and utilized.
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The information in Table 3 emphasizes the urgent requirement for additional publicly
accessible datasets to facilitate the localization and recognition of Arabic texts. Out of the
reviewed datasets, only five are publicly accessible, with three [10,39,41] featuring text in dif-
ferent formats like horizontal, multi-oriented, and curved. The ARASTI dataset [38] specifi-
cally concentrates on Arabic characters for specific recognition tasks, whereas the ASAYAR
dataset [42] offers publicly available Arabic texts primarily in horizontal orientation.

Our research focuses on accurately recognizing and localizing multi-oriented and
curved bilingual Arabic and English texts within natural scene images. To achieve this,
we utilized publicly available Arabic and bilingual datasets, specifically ICDAR2017, IC-
DAR2019, and EvArEST, which provide the necessary types of Arabic and bilingual text.

3. Related Works

Text recognition from natural scene images has recently gained significant attention
due to its potential to enhance various applications in daily life. Text localization, which
involves identifying text regions, feature extraction, and recognition, plays a crucial role
in the effectiveness of text recognition systems. While end-to-end systems have shown
promising results in recognizing Latin text from natural scene images, surpassing traditional
approaches that handle each text reading process separately, the study of Arabic and
bilingual Arabic–English text in this domain remains relatively underexplored. This gap
necessitates further research to develop effective strategies for localizing and recognizing
Arabic and bilingual text. Our study focuses on prominent academic journals such as IEEE,
Web of Science, SpringerLink, and Science Direct. We use specific keywords such as ‘Arabic
scene text detection’, ‘English scene text detection’, ‘Arabic scene text recognition’, ‘English
scene text recognition’, and ‘end-to-end scene text recognition’ to review the latest research
on localizing and recognizing Arabic and English text in natural scene images.

3.1. Text Localization from Natural Scene Images

The first step in standard end-to-end text recognition pipelines is scene text localization.
The localization of text from natural scene images presents several challenges, especially
when dealing with different text orientations. Currently, text localization increasingly
relies on DL techniques, which have become the predominant approach. Text found in
natural scenes can generally be classified into three types: horizontal text, multi-oriented
text, and curved text. Localizing multi-oriented and curved text is more complex than
localizing horizontal text. In this section, we specifically explore the techniques employed
for localizing Arabic and English text within natural-scene images.

3.1.1. Arabic Scene Text Localization

Gaddour et al. [46] introduced a method to extract Arabic text connections and localize
text based on distinct characteristics of the Arabic script and color uniformity. Their
approach utilizes threshold values for connection extraction and incorporates ligature
and baseline filters to identify and localize text. The ligature filter identifies horizontal
connections between characters through analysis of vertical projection profile histograms,
while the baseline filter detects the highest intensity value.

Akallouch et al. [42] introduced the ASAYAR dataset, focusing on Moroccan high-
way traffic panels. It encompasses three primary categories: localization of Arabic–Latin
scene text, detection of traffic signs, and identification of directional symbols. This study
utilized DL techniques to precisely determine the positions of Arabic text, traffic signs,
and directional symbols. TextBoxes++ [31], CTPN [32], and EAST [29] approaches were
applied to the ASAYAR_TXT dataset. Experimental results demonstrated that EAST and
CTPN achieved superior performance compared to TextBoxes++ in accurately localizing
Arabic texts.

Moumen et al. [43] presented a real-time Arabic text localization method using a
fully convolutional neural network (FCN). Their approach adopts a two-step framework
based on the VGG-16 architecture. In the initial phase, they employed a scale-based
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region network (SPRN) to classify regions as either text or non-text. Subsequently, a text
detector was utilized to accurately identify text within the predefined scale range, thereby
delineating the text regions effectively.

Boujemaa et al. [44] introduced the ATTICA dataset, which includes images of traffic
signs and panels from Arabic-speaking countries. The dataset is divided into two sub-
datasets: ATTICA-Sign, focusing on traffic signs and boards, and ATTICA-Text. This study
utilized DL techniques, specifically EAST and CTPN, to accurately locate Arabic text on
traffic panels. Experimental results indicated that the EAST model outperformed the CTPN
model in localizing Arabic text.

Boukthir et al. [45] created the TSVD, comprising 7000 images captured from various
cities in Tunisia using the Google Street View platform. This study aimed to implement
a deep active learning algorithm based on methodologies from Chowdhury et al. [47]
and Yang et al. [48]. Their approach integrates CNNs with an active learning strategy to
effectively identify Arabic text within natural-scene images. The research focusing on the
localization of Arabic text in natural scene images is summarized in Table 4. However,
several weaknesses exist in the current methods used for localizing Arabic text from natural
scene images.

Table 4. Studies of Arabic text localization in natural scene images.

Ref. Approach Scale Year Backbone Dataset
No. of
Images Type of Text

Evaluation

Precision
(%)

Recall
(%)

F-Score
(%) FPS

[46] NA NA 2016 NA Private
dataset 50 Horizontal text 78.0 89.0 83.1

NA
[42]

CTPN

1920 × 1080 2020 VGG ASAYAR 1375 Horizontal text

88.0 95.0 86.0

EAST 93.0 74.0 82.0

TextBoxes++ 66.0 52.0 58.0

[43] NA

NA

2021 VGG Private
dataset 575 Multi-oriented

dataset 65.1 71.4 68.0 24.3

[44]
CTPN

2021 VGG ATIICA 1180 Horizontal text
67.0 85.0 74.9

NA

EAST 71.0 89.0 78.9

[45]

Deep
active

learning
640 × 640

2022 VGG

TSVD 700 Horizontal text 82.77

NA NA

ICDAR2017 250 Multi-oriented and
curved

73.26

ICDAR2019 250 74.09

Deep
learning 640 × 640

TSVD 7000 Horizontal text 89.86

ICDAR2017 1000 Multi-oriented and
curved

81.55

ICDAR2019 1000 81.56

1. The majority of techniques for handling Arabic datasets, such as ASAYAR and AT-
TICA, primarily focus on horizontal Arabic text.

2. Two studies were conducted by Moumen et al. [43] and Boukthir et al. [45], utilizing
Arabic datasets containing text with curved formatting and various orientations.
However, these methods struggle to accurately locate curved texts.

3. The aforementioned approaches exclusively target Arabic text and do not address
bilingual text combining Arabic and English. While the ASAYAR dataset used in [42]
accurately locates bilingual text, it is restricted to horizontal text.

4. All of the above techniques employ the same pretrained CNN model, specifically
VGG-16, for feature extraction from images.

3.1.2. English Scene Text Localization

Taino et al. [32] and Lia et al. [49] successfully utilized object detection frameworks to
accurately locate horizontal text in natural scene images, showing excellent performance.
Taino et al. [32] introduced the CTPN, which accurately detects the position of text lines
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within sequences of precise text proposals using convolutional feature maps. The CTPN
model includes a vertical anchor mechanism that simultaneously predicts the location
and text/non-text status. Lia et al. [49] introduced TextBoxes, a text detector based on an
FCN. This method is known for its speed and accuracy, as it generates word-bounding
box coordinates across multiple network layers by predicting text presence and offset
coordinates relative to default boxes.

Subsequently, their research focused on the challenges of localizing multi-oriented
English text in natural scene images and proposed various strategies to overcome these
difficulties. Zhou et al. [29] developed EAST, a scene text detector known for its efficiency
and accuracy. This detector uses a single FCN to directly predict multi-oriented text
lines. The EAST approach simplifies the process by eliminating intermediate steps such
as candidate aggregation and word division. Liao et al. [31] introduced TextBoxes++,
an enhanced version of the TextBoxes model discussed in [49]. TextBoxes++ improves
the localization of multi-oriented text in natural scene images by optimizing the network
structure and training procedure. Shi et al. [50] introduced the seglink method to localize
oriented text in natural scene images. This method operates in two stages: segmentation,
where rectangular boxes are placed over specific word or text line areas, and linking, which
connects adjacent segments.

Currently, researchers are intensifying efforts to address the challenge of localizing
curved English text in natural scene images by proposing various models to tackle this
complex problem. Wang et al. [51] introduced the progressive scale expansion network,
which begins by identifying the smallest-scale text kernel within each text instance. It
then gradually expands this kernel using breadth-first-search to obtain a fully completed
text instance. Wang et al. [2] introduced the pixel aggregation network (PAN), which is
an efficient and accurate text detector that has low computation costs and a learnable
post-processing method. The PAN model consists of a segmentation head with the feature
pyramid enhancement module (FPEM) and the Feature Fusion Model (FFM), which are
used to extract features at different depths. Pixel aggregation (PA) is a trainable post-
processing technique that is used to consolidate text pixels based on a predicted similarity
vector. Zhang et al. [33] introduced the LOMO system, which uses segmentation techniques
and an object identification framework to precisely locate curved text. LOMO consists
of three modules: the direct regressor generates text proposals in quadrangle shapes; the
iterative refinement module gradually improves these proposals to determine the complete
text extent; and the shape expression module enhances accuracy by taking into account
geometric text characteristics such as region, center, and border offset. Beak et al. [52]
introduced character region awareness for text detection (CRAFT), a method designed to
automatically identify and locate each character region. Using CNNs, CRAFT generates
region scores and affinity scores. The region score pinpoints the exact position of each
character, while the affinity score categorizes characters into separate entities by connecting
them. Dai et al. [53] introduced progressive contour regression (PCR) for precise detection
of curved text. PCR first suggests horizontal text by estimating center points and sizes,
then aligns the overall shape of horizontal suggestions with the corner points of oriented
text suggestions. Finally, PCR transforms the shape of directed text suggestions into curved
text contours. Ye et al. [54] presented the dynamic point text detection transformer network
(DPText-DETR). Unlike traditional bounding boxes, DPText-DETR utilizes explicit point
query modeling, which directly employs point coordinates for positional queries. The
model introduces the enhanced factorized self-attention module to accurately represent
circular points based on polygonal points.

These methods were developed to address the varied challenges in localizing English
text from natural scene images, such as horizontal, multi-oriented, and curved text. How-
ever, localizing Arabic text and bilingual Arabic–English text presents additional challenges
that require further research and development in this field.
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3.2. Text Recognition from Natural Scene Images

The process of end-to-end text recognition typically involves a second step known as
STR. This section provides an overview of the techniques used to recognize Arabic text and
English text in natural scene images.

3.2.1. Arabic Scene Text Recognition

Tounsi et al. [37] proposed an approach for character recognition from natural images
using a heap of features, which utilizes spatial pyramid matching (SPM) to handle varia-
tions in text. Initially, local features are extracted using SIFT and represented via sparse
coding. SPM divides the image into sub-regions and computes histograms describing
local features for each region. These histograms are aggregated to represent the features
of the entire image. SVMs are employed for individual character classification and recog-
nition. The approach was evaluated on the Arabic scene text character dataset, which
includes 260 manually segmented images of characters categorized into 100 classes of
28 Arabic characters in various positions. The experiments involved three different sample
configurations: (1) training and testing with five samples per class (5-Arabic characters),
(2) training with 15 samples per class and testing with five samples per class (15-Arabic
characters), and (3) training and testing with 15 samples per class (15-Glyphs), similar to the
15-Arabic character setup. The results indicate nearly equivalent accuracy in recognizing
both characters and glyphs, with slight variation.

Ahmed et al. [55] presented a method for recognizing Arabic characters that have been
manually segmented from images. The proposed model preprocesses the images by resizing
them to a standard size and converting them to grayscale. Arabic characters have variations
depending on their position within a word (beginning, middle, end, isolated), and the
model aims to accommodate these variations by considering five different orientations
at various angles for each segmented character. The approach uses a ConvNet to extract
features of the characters, followed by classification using fully connected layers. The
experiments were conducted on Arabic images obtained from the English–Arabic Scene
Text (EAST) dataset, which consists of 250 images containing a total of 2700 segmented
characters across 27 classes. The findings indicate improved accuracy and high performance
of ConvNets when trained on a large and diverse dataset.

Jain et al. [56] demonstrated the recognition of Arabic text in natural images at the
word level using a hybrid neural network called CNN–RNN. In this approach, CNN is
used to extract feature vectors from the input images’ feature maps. These feature vectors
are then processed by a bidirectional LSTM network in the second neural network. The
bidirectional LSTM predicts the features extracted by CNN, and the final layer of the
approach is the transcription layer. This layer utilizes the CTC technique to convert the
BLSTM’s predictions into sequences of characters. The method was applied to a dataset
consisting of 2000 words of Arabic script collected from various locations on Google Images.
The performance of the CNN-RNN approach was evaluated using two metrics: character
recognition rate (CRR) and word recognition rate (WRR). Leveraging the RNN’s ability to
capture contextual dependencies, the approach achieved high recognition performance.

Alsaeedi et al. [57] introduced a method for recognizing Arabic texts in natural images
using a combination of two neural networks. This approach incorporates a novel segmen-
tation technique that applies a normalization filter to the image and detects characters
through vertical and horizontal scanning. CNN is used to extract features and classify
the characters. In addition, a transparent neural network (TNN) is employed to validate
character recognition against a dictionary, specifically for identifying place names. The
effectiveness of the method was evaluated using three different character fonts: Calibri,
Aldhabi, and Al-Andalus.

Due to the lack of a dedicated Arabic dataset, Ahmed et al. [40] developed the English–
Arabic Scene Text Recognition 42k (EASTR-42K) dataset for Arabic scene images. Their
approach involves recognizing Arabic words from these images using MSTR and SFIT
for feature extraction, followed by recognition using different input images (binary image
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and mask image). In the recognition phase, Multidimensional Long Short-Term Memory
(MDLSTM) serves as the learning classifier, with CTC used to predict and recognize words.
The experimental study utilized 1500 scene text images segmented into words, evaluating
the technique’s performance using precision, recall, and F-measure metrics.

Ahmed et al. [58] proposed a method for extracting hybrid features from Arabic
text. Their technique starts by detecting the extremal regions of text in an image using
MSER, applied to both binary and mask images. They then identify invariant features
that are common to both images using SIFT. In the recognition phase, MDLSTM is used to
learn from the sequence of features extracted in the previous phase. The experiment was
conducted on the Arabic Scene Text Recognition (ASTR) dataset, which consists of 13,593
words segmented from images.

Hassan et al. [10] introduced the EvArEsT dataset, which includes Arabic and English
text. They evaluated nine different approaches for recognizing Arabic text by applying
methods originally designed for Latin text to Arabic within the EvArEsT dataset. These
methods include convolutional recurrent neural network (CRNN), recurrent attention
encoder (RARE), R2AM, STARNET, gated recurrent convolutional network (GRCNN),
Rosetta, WWSTR, multi-object rectified attention network (MORAN), and SCAN. Among
these, WWSTR demonstrated the highest accuracy in recognizing Arabic text. Table 5
provides a comprehensive summary of studies focused on recognizing Arabic characters
in natural scene images. It categorizes the methods used into four stages of text recogni-
tion: preprocessing, feature extraction, sequence modeling, and prediction. These studies
highlight various gaps and challenges in current Arabic text recognition methods.

Table 5. Studies of Arabic text recognition in natural scene images.

Ref. Approach Year Preprocessing Feature
Extraction

Sequence
Modeling Prediction Dataset Evaluation

[37] NA 2015 NA SIFT NA SVM ARASTEC/
260 images

(5-Arabic character) = 48.1
(15-Arabic character) = 57.5

(15-Glyphs) = 60.4

[55] NA 2017 Grayscale image/
fixed size ConvNet NA ConvNet EAST/250 images Error rate = 0.15

[56] CNN-RNN 2017 Scaled to fixed high
resolution VGG BiLSTM CTC Image from

Google/2000 words CRR = 75.05 LRR = 39.43

[57] NA 2018
Binarization image

and grayscale
image

CNN NA

CNN for
predict

characters and
TNN for

predict word

Isolated charac-
ter/300 images and

signboard
image/100 images

Recognition rate: Calibri = 100%
Al-Andalus = 87%

Aldhabi = 97%

[40] NA 2019 Binary image and
mask image

MSER and
SIFT MDLSTM CTC EASTR-

42,000/1500 images

Recall = 89.5%
Precision = 94.1%
F-score = 97.52%

[58] NA 2020 Binary image and
mask image

MSER and
SIFT MDLSTM CTC (ASTR)/13,593 words Accuracy = 94%

[10]

CRNN

2021

NA VGG BiLSTM CTC

EvArEsT/5337 words

Accuracy = 86.5%

RARE Rectification VGG BiLSTM
Attention-

based
decoder

Accuracy = 89.8%

R2AM NA RCNN NA Soft-attention
mechanism Accuracy = 84%

STARNET Rectification ResNet BiLSTM CTC Accuracy = 89.6%

GRCNN NA RCNN BiLSTM CTC Accuracy = 87.4%

Rosetta NA ResNet NA CTC Accuracy = 85.4%

WWSTR Rectification ResNet BiLSTM
Attention-

based
decoder

Accuracy = 91.2%

Moran Rectification VGG BiLSTM
Attention-

based
decoder

Accuracy = 89.4%

SCAN Segmentation VGG BiLSTM Self-attention
mechanism Accuracy = 88.4%
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1. Currently, there is no research on an end-to-end system for recognizing scene text
that can localize and recognize bilingual Arabic and English text. Most studies treat
localization and recognition as separate processes.

2. Although current studies are successful in recognizing Arabic text in horizontal forms,
there are still difficulties in recognizing multi-oriented and curved Arabic text.

3. A study [10] attempted to address the recognition of Arabic and English text from
natural scene images but did not employ an end-to-end approach.

4. Researchers have not yet investigated the use of the LSTM model with an attention
mechanism specifically for Arabic text recognition.

Due to the inherent difficulties in localizing and recognizing Arabic text within natural
scene images, there exists a substantial need for further research into developing compre-
hensive end-to-end STR systems. These systems should be equipped to effectively identify
and localize Arabic text, especially in scenarios involving multi-oriented and curved text,
and extend to the recognition of bilingual text.

3.2.2. English Scene Text Recognition

Three main categories broadly define the field of English STR: character-based text
recognition, CTC-based text recognition, and attention-based text recognition. Character-
based text recognition involves the initial recognition of individual characters, followed by
their assembly into words. For instance, Bissacco et al. [59] introduced PhotoOCR, a device
that utilizes a deep neural network specifically designed for individual character recognition.

The text recognition approach that utilizes CTC typically involves stacking RNNs on
top of CNNs to effectively capture long-term sequence information. The model is trained
using the CTC loss function. Liu et al. [60] introduced the spatial attention residue network,
which incorporates a residual network with a spatial attention mechanism. This model con-
sists of three main components: a spatial transformer, a residual feature extractor, and CTC.
The spatial transformer uses spatial attention to transform loosely bound and distorted
text regions into tightly bound and rectified ones. The residual feature extractor utilizes
residual convolutional blocks and integrates LSTM for feature extraction. Shi et al. [61]
introduced the CRNN model, which combines deep convolutional neural networks with
RNNs. CRNN employs convolutional layers for feature extraction and recurrent layers for
making predictions from each frame. Finally, the transcription layer converts the per-frame
predictions from the recurrent layer into a sequence of labels. Wang et al. [62] introduced
the GRCNN for text recognition. This method follows a three-step approach: GRCNN
performs feature extraction, LSTM handles sequence modeling, and CTC facilitates text
prediction through transcription. Borisyuk et al. [63] proposed Rosetta, a scalable OCR
system consisting of two stages: text detection and text recognition. Text detection utilizes
the Faster-RCNN model to accurately locate text regions, while a fully convolutional model
predicts character sequences using CTC.

In attention-based text recognition, Shi et al. [64] introduced RARE for recognizing
irregular text. The RARE model incorporates a spatial transformer network (STN) using
thin-plate spline to rectify and enhance text readability within images. The recognition
system employs an attention-based framework with an encoder–decoder architecture. Lee
et al. [65] developed the recursive recurrent neural network with attention model (R2AM).
R2AM uses a recursive CNN for efficient and accurate image feature extraction. It employs a
soft-attention mechanism to effectively utilize image features in a coordinated manner. Luo
et al. [3] introduced the MORAN, which consists of two main components: a multi-object
rectification network and attention-based sequence recognition (ASRN). The multi-object
rectification network corrects irregular text images, facilitating ASRN. ASRN includes a
CNN-LSTM architecture followed by an attention decoder for text recognition. The model
is trained using weak supervision to learn image part offsets. Zhan et al. [66] presented
ESIR, a STR system aimed at reducing perspective distortion and text line curvature to
enhance recognition performance. ESIR includes iterative rectification and recognition
networks. Iterative rectification adjusts input images using transformation parameters,
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while the recognition network employs a sequence-to-sequence model with an attention
mechanism. The SCAN model proposed by Hassan et al. [67] aims to accurately detect and
classify characters, followed by word generation using a sequential approach. This system
consists of two main modules: one for character prediction based on semantic segmentation
using the high-resolution network (HRNet), and another for word generation employing
an encoder–decoder network. The decoder utilizes LSTM to produce final results, while
the encoder employs a series of convolutional layers. Cheng et al. [68] introduced the
length-insensitive scene text recognizer (LISTER), designed to accurately identify text in
natural scene images of varying lengths. To achieve specific character attention maps,
LISTER employs a neighbor decoder. The Feature Enhancement Module is incorporated to
capture long-range dependencies with minimal computational cost.

Recent advancements have addressed various challenges in the recognition of English
text from natural scene images. Some methods incorporate rectification techniques to
precisely adjust text orientation, thereby enhancing their ability to handle multi-oriented
and curved English text. These advancements not only improve model performance but
also optimize computational efficiency. In contrast, recognizing Arabic text poses more
complex challenges compared to English due to the unique characteristics of Arabic charac-
ters. Moreover, recognizing bilingual Arabic and English text requires further research to
address the distinct challenges of processing two languages within a single model. In our
study, we employed an end-to-end STR approach to tackle these issues. Our method utilizes
two RNN models and an attention mechanism without relying on rectification methods.

3.3. End-to-End Scene Text Recognition

The end-to-end STR system operates as a unified network capable of both localizing
and recognizing text in a single pass, eliminating the need for intermediate processes such
as image cropping, word segmentation, or character recognition [11]. Recent advancements
in this system have primarily focused on localizing and recognizing multi-oriented and
curved English text within natural scene images. However, there has been comparatively
less emphasis on addressing Arabic text and bilingual text within the same context. In
this section, we present the latest advancements in end-to-end STR approaches specifically
tailored for localizing and recognizing multi-oriented and curved Latin script in natural
scene images.

Liu et al. [69] introduced ABCNetv2, an end-to-end system designed to localize and
recognize multi-oriented and curved scene text using parametrized Bezier curves. In the
localization phase, the system employs a novel text detector called Bezier Curve, which
offers lower computational intensity compared to traditional rectangular bounding box
methods. For recognition, ABCNetv2 utilizes BezierAlign, a feature alignment method
that connects the localization and recognition outcomes. Zhang et al. [70] proposed TESTR,
another end-to-end method for text localization and recognition that eliminates the need for
region of interest (RoI) or post-processing. TESTR operates in two stages: first, a multiscale
deformable attention mechanism generates multiscale feature maps. Then, dual decoders
are employed—one for text localization and another for recognition. SwinTextSpotter,
developed by Huang et al. [5], uses the Swin transformer method for both text localization
and recognition in an end-to-end system. Wang et al. [21] introduced PAN++, an end-to-
end STR system that employs pixel-based representation and PA techniques. Kittenplon
et al. [71] presented TextTranSpotter (TTS), a novel framework for end-to-end STR. TTS
integrates a transformer-based architecture with encoder–decoder structures and task-
specific heads for localization, recognition, and segmentation. Huang et al. [72] proposed
ESTextSpotter, a state-of-the-art approach for end-to-end STR. ESTextSpotter leverages
explicit synergy between text localization and recognition processes. UNITS, developed by
Kil et al. [73], is a new model designed for end-to-end STR, treating it as a task of generating
a sequence. This model supports various localization formats—points, bounding boxes,
quadrilaterals, and polygons—by integrating them into a unified interface. Ye et al. [74]
introduced DeepSolo, a groundbreaking method inspired by DETR. DeepSolo combines
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text localization and recognition into a single process using a single decoder. It uses an
explicit point representation for text lines, employing ordered points on Bezier center curves.
This approach improves detection and recognition by modeling queries with attributes
such as position, offset, and category. Das et al. [75] introduced the Swin-TESTR model
for addressing end-to-end STR. This model is specifically designed to handle regular text,
multi-oriented text, and curved text. Swin-TESTR utilizes a transformer-based architecture
with a Swin Transformer backbone. This design enables the extraction of multi-scale
features from input images, thereby improving its capability to capture intricate text details
across different domains and orientations.

In our research, our goal is to create a stronger end-to-end system for localizing and
recognizing text in scenes. This system should be able to locate and identify Arabic only,
bilingual Arabic, and English text in natural scene images. Our approach is influenced
by PAN++ [21], an advanced system for recognizing scene text that is well-known for
its ability to localize and recognize English text that is oriented in multiple directions or
curved. PAN++ is a recent model for localizing and recognizing multi-oriented and curved
text from natural scene images that achieved superior results in accuracy and obtained the
fastest inference speed compared with other state-of-the-art. PAN++ incorporates a fast
and accurate object detector called kernel representation that can localize text by using a
single fully convolutional network, which is very useful in real-time applications.

4. Proposed Methodology

Recognizing bilingual Arabic and English text from natural scene images in an end-
to-end STR system involves two main phases: scene text localization and STR. Figure 5
illustrates the architectural representation of our end-to-end system, which is inspired by
the PAN++ model [21]. In our approach, we selected the EfficientNetV2 model for feature
extraction and compared its performance with the ResNet model. During the recognition
phase, we utilized the BiLSTM model to handle the recognition of bilingual Arabic and En-
glish text, assessing its performance against the LSTM model. Furthermore, we integrated
the AraElectra Arabic language model as a post-processing step to enhance the accuracy of
recognizing Arabic text from natural scene images. For scene text localization, our system
utilizes the kernel representation of PAN++ to precisely locate text regions within an image.
Initially, we extract features from the image using a pretrained CNN model and employ
methods like the feature pyramid network. The backbone network is enhanced with the
Feature Pyramid Enhancement Module (FPEM), which integrates multiple feature pyramid
modules to deepen the network and improve feature expression. The PAN++ stage then
uses CNN models in the detection head to predict the text region, text kernel, and instance
vector, aggregating these predictions with Pixel Aggregation (PA) to accurately localize the
final text regions. In the recognition phase, a masked RoI extracts feature patches from the
detected text lines. The recognition head includes two layers of the LSTM model followed
by a multi-head attention mechanism, ensuring accurate recognition of the text content.
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4.1. Localization Phase

The following subsections explain each step of the localization phase.

4.1.1. Backbone Stage

In our research, we used a pretrained CNN model as the fundamental framework
for extracting features. More specifically, we examined two different types of framework
models for extracting features from bilingual Arabic and English text: ResNet [76] and
EfficientNetV2 [77]. Although PAN++ typically uses ResNet as its default framework,
our study aimed to investigate the performance of EfficientNetV2, another pretrained
CNN model. Our objective was to train and assess the effectiveness of EfficientNetV2 in
accurately identifying bilingual Arabic and English text within natural scene images.

ResNet

He et al. [76] introduced ResNet, a DL model designed to address the issue of ‘vanish-
ing gradient’ through residual learning. Residual learning involves shortcut connections
that bypass one or more layers and perform identity mappings. These shortcuts add the out-
put of skipped layers directly to the subsequent layers’ outputs. Importantly, this approach
avoids the introduction of extra parameters or increased computational complexity. ResNet
is structured as a residual network using convolutional layers, typically with 3 × 3 filters.
It was trained on the ImageNet dataset, which comprises 1.28 million images categorized
into 1000 classes. A separate validation set of 50,000 images was used during the training
process. ResNet was developed with depths ranging from 18 to 152 layers, demonstrating
its scalability and efficacy in various DL tasks.

EfficientNetV2

Several techniques are commonly used in DL to improve the performance of neural
networks. These methods often involve increasing the depth of the network, expanding
input image sizes, or widening the network. However, improvements in accuracy are
primarily limited by the increase in network depth alone, as it can lead to issues such as
gradient explosion or vanishing gradients. Furthermore, deeper networks require more
storage capacity. Expanding the dimensions of the model allows for greater complexity
and specificity. However, as the model complexity increases, achieving deeper insights
becomes more challenging. Alternatively, increasing the resolution of the input images
enables the model to capture more intricate features. Nevertheless, this augmentation also
increases the computational demands and slows down the training speed. EfficientNet [78]
effectively balances these trade-offs to achieve optimal performance.

EfficientNet is a CNN model that uses neural architecture search to develop a base-
line network, which is then scaled up to create a series of models. This family includes
EfficientNet-B0 through EfficientNet-B7, each scaled using specific parameters. The main
building block used is the mobile inverted bottleneck MBConv [79,80], which incorpo-
rates squeeze-and-excitation optimization [81]. Tan et al. [77] introduced EfficientNetV2
to improve training speed compared to EfficientNetV1. During the development of Effi-
cientNetV1, researchers identified challenges that could slow down training and reduce
model efficiency. Training with large images can result in increased memory usage and
slower training times. EfficientNetV1’s architecture incorporates MBConv, which utilizes
depth-wise convolution [82] (as shown in Figure 6 and inspired by [77]). Depthwise convo-
lutions are CNN layers with fewer parameters and floating-point operations than standard
convolutions, although they may not fully take advantage of modern accelerators, poten-
tially slowing down training in early layers. EfficientNetV1 employs a straightforward
compound scaling approach to uniformly increase all network stages. For example, when
the depth coefficient is 2, each stage within the network doubles in the number of layers.



Big Data Cogn. Comput. 2024, 8, 117 19 of 40

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 19 of 41 
 

He et al. [76] introduced ResNet, a DL model designed to address the issue of ‘van-
ishing gradient’ through residual learning. Residual learning involves shortcut connec-
tions that bypass one or more layers and perform identity mappings. These shortcuts add 
the output of skipped layers directly to the subsequent layers’ outputs. Importantly, this 
approach avoids the introduction of extra parameters or increased computational com-
plexity. ResNet is structured as a residual network using convolutional layers, typically 
with 3 × 3 filters. It was trained on the ImageNet dataset, which comprises 1.28 million 
images categorized into 1000 classes. A separate validation set of 50,000 images was used 
during the training process. ResNet was developed with depths ranging from 18 to 152 
layers, demonstrating its scalability and efficacy in various DL tasks. 
EfficientNetV2 

Several techniques are commonly used in DL to improve the performance of neural 
networks. These methods often involve increasing the depth of the network, expanding 
input image sizes, or widening the network. However, improvements in accuracy are pri-
marily limited by the increase in network depth alone, as it can lead to issues such as 
gradient explosion or vanishing gradients. Furthermore, deeper networks require more 
storage capacity. Expanding the dimensions of the model allows for greater complexity 
and specificity. However, as the model complexity increases, achieving deeper insights 
becomes more challenging. Alternatively, increasing the resolution of the input images 
enables the model to capture more intricate features. Nevertheless, this augmentation also 
increases the computational demands and slows down the training speed. EfficientNet 
[78] effectively balances these trade-offs to achieve optimal performance. 

EfficientNet is a CNN model that uses neural architecture search to develop a base-
line network, which is then scaled up to create a series of models. This family includes 
EfficientNet-B0 through EfficientNet-B7, each scaled using specific parameters. The main 
building block used is the mobile inverted bottleneck MBConv [79,80], which incorporates 
squeeze-and-excitation optimization [81]. Tan et al. [77] introduced EfficientNetV2 to im-
prove training speed compared to EfficientNetV1. During the development of Efficient-
NetV1, researchers identified challenges that could slow down training and reduce model 
efficiency. Training with large images can result in increased memory usage and slower 
training times. EfficientNetV1’s architecture incorporates MBConv, which utilizes depth-
wise convolution [82] (as shown in Figure 6 and inspired by [77]). Depthwise convolutions 
are CNN layers with fewer parameters and floating-point operations than standard con-
volutions, although they may not fully take advantage of modern accelerators, potentially 
slowing down training in early layers. EfficientNetV1 employs a straightforward com-
pound scaling approach to uniformly increase all network stages. For example, when the 
depth coefficient is 2, each stage within the network doubles in the number of layers. 

EfficientNetV2 improves the training speed of EfficientNetV1 by substituting 
MBConv in the initial layer with Fused-MBConv [83], as shown in Figure 7 and inspired 
by [77]. Fused-MBConv is designed to optimize the utilization of mobile or server accel-
erators. It replaces the depth-wise conv3 × 3 and expansion conv1 × 1 in MBConv with a 
single regular conv3 × 3 convolution. The architectures of EfficientNetV2-S models inte-
grate two types of CNNs: MBConv and Fused-MBConv. These networks differ in the 
number of layers and kernel sizes, providing options like 3 × 3 and 5 × 5 kernel sizes, as 
well as expansion ratios of 1, 4, and 6. 

 
Figure 6. Structure of MBConv. “+” means element-wise addition. “Conv” and “SE” represent
regular convolution and Squeeze and Excitation optimization, respectively.

EfficientNetV2 improves the training speed of EfficientNetV1 by substituting MBConv
in the initial layer with Fused-MBConv [83], as shown in Figure 7 and inspired by [77].
Fused-MBConv is designed to optimize the utilization of mobile or server accelerators.
It replaces the depth-wise conv3 × 3 and expansion conv1 × 1 in MBConv with a single
regular conv3 × 3 convolution. The architectures of EfficientNetV2-S models integrate
two types of CNNs: MBConv and Fused-MBConv. These networks differ in the number
of layers and kernel sizes, providing options like 3 × 3 and 5 × 5 kernel sizes, as well as
expansion ratios of 1, 4, and 6.
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4.1.2. Feature Pyramid Enhancement Module (FPEM) Stage

During this phase, the backbone network generates four feature maps from the conv2,
conv3, conv4, and conv5 stages, corresponding to image resolutions of 1/4, 1/8, 1/16,
and 1/32. We then applied 1 × 1 convolutions to reduce the channel dimensions of
each feature map to 128, creating a compact feature pyramid. The FPEM, structured in a
U-shape, enhances features during both upscaling and downscaling phases. Upscaling
improves input features using four distinct stride sizes: notably 32, 16, 8, and 4 pixels.
These enhanced features from upscaling serve as input for the subsequent downscaling
phase. Here, features are further refined with strides matching those from the upscaling
phase, starting at 4 and concluding at 32 pixels. The final feature map size obtained from
the FPEM stage is H/4 × W/4 × 512.

4.1.3. Detection Head

The FPEM provides the detection head with a feature map of dimensions H/4 × W/4
× 512. A 3 × 3 regular convolution [84] initiates the feature map in the first convolutional
layer, accompanied by batch normalization and ReLU activation functions. Figure 8,
inspired by [21], illustrates the structure of the detection head. The initial convolution
operation reduces the channel dimension to 128 in the feature map. This processed feature
map then undergoes a second convolutional step with a 1 × 1 kernel size to generate
the final output. The detection head identifies three distinct categories: text regions, text
kernels, and instance vectors. The text region precisely outlines the spatial boundary of
entire text lines. The text kernel distinguishes neighboring instances by identifying the
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center of each text line, independent of its shape. Combining the text region and kernel
allows for the reconstruction of complete text line structures using instance vectors.
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4.1.4. Pixel Aggregation

PA improves the output of the instance vector by using a clustering method. PA
collects text pixels using a suitable text kernel and treats separate text lines as different
clusters. The focal points of these text kernels represent each cluster, while the pixels within
text areas contribute to creating the cluster center for the text. The goal of this process is to
precisely locate bilingual Arabic and English text by efficiently gathering pixels around the
identified cluster centers.

4.2. Recognition Phase

The following subsections explain each step of the recognition phase.

4.2.1. Masked Region of Interest (RoI)

The masked RoI is a tool designed to extract feature patches of a specified size from
text lines that may have varying shapes. This process involves four sequential steps. First,
it determines the smallest bounding rectangle that encompasses the target text line in an
upright position. Second, it extracts the feature patch from within this upright bounding
rectangle. Third, a binary mask is applied to the feature patch to filter out noise features.
This mask assigns a weight of 0 to areas outside the target text line. Finally, the feature patch
is resized to a consistent, predetermined size. The masked RoI offers two main advantages.
First, by using a binary mask specific to the target text line, it effectively removes noise
characteristics that could originate from the background or other text lines. This ensures
precise feature extraction even from text lines with diverse shapes. Second, the technique
eliminates the need for spatial rectification processes such as the STN.

4.2.2. Recognition Head

The recognition head is structured as a sequence-to-sequence model with a decoder
architecture that includes an attention mechanism, skipping the encoder step. This model
is divided into two main stages: the starter and the decoder. A detailed explanation of
these components is provided in the following section.

Stater Stage

The initial phase of the recognition head focuses on finding the starting point of
the string (start of sequence, or SOS) within a text line that may not start in the leftmost
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position. This component consists of a linear transformation, an embedding layer ε1, and a
multi-head attention layer A1. More specifically, the embedding layer ε1 converts the SOS
symbol (represented as a one-hot vector) into a 128-dimensional vector.

Decoder Stage

The decoder stage of the PAN++ model aims to utilize contextual information gathered
from visual features obtained in the starter stage to predict the words presented in the
text. In this stage, the PAN++ model incorporates two LSTM layers and one multi-head
attention layer. Specifically, BiLSTM models with multi-head attention are used to facilitate
the recognition of bilingual Arabic and English text.

• Long Short-Term Memory: LSTM is a widely recognized technique that effectively
addresses challenges related to vanishing and exploding gradients [85]. Unlike tra-
ditional ‘sigmoid’ or ‘tanh’ activation functions, LSTM introduces memory cells
equipped with gates to manage the flow of information in and out of the cells. These
gates regulate how information is input to hidden neurons and preserve features
from earlier time steps [86]. An LSTM cell consists of input, forget, and output
gates, alongside a cell activation component. These elements receive activation sig-
nals from various sources and control cell activation using designated multipliers.
LSTM gates prevent other network components from modifying memory cell contents
across successive time steps. Compared to RNNs, LSTMs excel in retaining signals
and transmitting error information over longer periods, making them highly effec-
tive in processing data with intricate dependencies across various sequence learning
tasks [87].

• Bidirectional Long Short-Term Memory: BiLSTM, an extension of the bidirectional re-
current neural network (BiRNN) introduced in 1997 to enhance traditional RNNs [88],
combines both forward and backward LSTM networks. During training, the forward
LSTM network processes the input sequence in chronological order, while the back-
ward LSTM network processes it in reverse. Both networks capture the context of
the input sequence and extract crucial features [89]. The outputs of both the forward
and backward LSTM networks are then combined to generate the final output of
the BiLSTM network. By processing input data in both directions, BiLSTM captures
additional contextual information compared to unidirectional LSTM models, enabling
it to handle long-term dependencies more effectively and improve overall model
accuracy [90].

AraELECTRA: Efficiently learning an encoder that classifies token replacement (ELEC-
TRA) introduces a sophisticated approach to self-supervised language representation
learning [91]. This method involves training two neural networks: a generator (G) and
a discriminator (D). Each network includes a bidirectional encoder, such as Small BERT.
The generator performs masked language modeling by randomly masking out tokens in
input sequences and training to predict the original tokens at those positions. Meanwhile,
the discriminator is trained to distinguish between the original tokens and the replaced
tokens generated by the generator, a technique known as replaced token detection. For-
mally, both G and D encode an input sentence x into a sequence of contextualized vector
representations h(x) = h1, h2, . . ., hn, given a sequence of tokens x = x1, x2, . . ., xn. The
generator calculates the probability of having a token xt at a specific position t when the
corresponding xt is masked as [MASK]. This is achieved using a softmax layer:

pG(xt|x) = exp e(xt)ThG(x)t/∑exp ex′ ThG(x)t (1)

where e represents token embeddings.
The discriminator predicts whether the token xt is ‘real’ for a given position t, meaning

that it originates from the data rather than the generator distribution, using a sigmoid
output layer:

D(x, t) = sigmoid wThD(x)t (2)
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While ELECTRA’s pretraining approach shares similarities with generative adversarial
networks (GANs) [92], there are distinct differences. For instance, ELECTRA improves
performance on downstream tasks by transforming tokens from ‘fake’ to ‘real’ status after
generating the correct token. Moreover, ELECTRA focuses on predicting with maximum
probability, whereas GANs aim to deceive the discriminator.

The AraELECTRA model [93] is designed for learning Arabic language representation,
based on the ELECTRA architecture, with the aim of improving the understanding of
Arabic text. It consists of a bidirectional transformer encoder with 136 million parameters,
12 encoder layers, 12 attention heads, a hidden size of 768, and supports a maximum
input sequence length of 512 tokens. For pretraining, AraELECTRA used a dataset simi-
lar to ARABERT V0.2 [94], which includes approximately 8.8 billion words from various
Arabic corpora, mainly composed of news articles. When evaluated in tasks such as senti-
ment analysis, Arabic question answering, and named-entity recognition, AraELECTRA
showed better performance compared to other models trained on the same dataset but
with larger model sizes. In our study, we incorporated the AraELECTRA model into the
post-processing phase of the recognition pipeline to identify Arabic text from natural-scene
images. The phases of Arabic text recognition that include the AraELECTRA model are
illustrated in Figure 9.
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Figure 9. The utilization of the AraELECTRA model in the recognition phase, image from IC-
DAR2017 [39]. The green box refers to the result of the localization phase. Text in blue illustrates the
result of the recognition phase.

5. Experiments

We carried out two comprehensive experiments to evaluate the model’s ability to
handle bilingual Arabic and English texts: (1) bilingual text localization, and (2) end-to-end
bilingual Arabic and English STR. This section presents detailed information about the dataset
used, the evaluation metrics employed, and the specifics of training and implementation.

5.1. Datasets

The following subsections explain Arabic scene text datasets, English scene text
datasets, and datasets statistics.

5.1.1. Arabic Scene Text Datasets

We evaluated the model’s performance in localization and end-to-end STR using the
ICDAR2017, ICDAR2019, and EvArEST datasets. Our research focused on identifying and
recognizing bilingual Arabic–English texts in natural scene images. To accomplish this,
we utilized images from the multi-lingual ICDAR2017 [39] and ICDAR2019 [41] datasets,
which are currently the only publicly available datasets containing Arabic and bilingual
Arabic–English text in natural scene images suitable for localization and recognition tasks.
These datasets encompass a range of challenges commonly found in natural scene images,
including complex backgrounds, varying resolutions, diverse text orientations, and multi-
ple Arabic and English fonts. This diversity was crucial in achieving the objectives of our
study. Importantly, our study represents the first known use of the EvArEST dataset for
both localization and end-to-end tasks.

However, both ICDAR datasets lacked accurate ground-truth data necessary to ef-
fectively evaluate the performance of the model. In [41], it was suggested to use online
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evaluation tools, but these tools typically evaluate all languages within the dataset rather
than specific ones. Therefore, we chose to select approximately 30% of the bilingual Arabic
and English testing images from ICDAR2017 and ICDAR2019 and used the online anno-
tation tool Label Studio at https://labelstud.io/ (accessed on 11 April 2024) to create our
own ground-truth data. Each word in the annotated images was outlined with a four-point
polygon instead of a rectangle to accurately represent irregular text shapes. The polygon
vertices were defined starting from the top-left corner of the word and proceeded clockwise.
The annotation format for the images followed a structure similar to that used in the ICDAR
datasets [95,96]. For each image, a corresponding text file contained three components: the
four-point polygon outlining the word, the language of the word, and the text itself, as
shown in Figure 10. Table 6 provides statistical information about the bilingual Arabic and
English datasets and English datasets.
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Table 6. Datasets’ statistics.

Dataset Language Training Set Testing Set Total Annotation

ICDAR2017 Bilingual text 800 200 1000 Word-level
ICDAR2019 Bilingual text 1000 200 1200 Word-level

EvArEST Bilingual text 377 133 510 Word-level
ICDAR2015 English text 1000 500 1500 Word-level
COCO-Text English text 43,686 20,000 63,686 Word-level
Total-Text English text 1255 300 1555 Word-level

5.1.2. English Scene Text Datasets

Our training process involved using a combination of publicly available benchmark
English datasets along with previous Arabic text datasets to train our model for recognizing
bilingual Arabic and English text. Specifically, we selected the most widely used English
dataset containing natural scene images with varying levels of complexity. The English
datasets used for training are as follows:

• ICDAR 2015 [96]: This dataset was collected over several months in Singapore and
contains 1670 images with 17,548 annotated regions. It is one of the most compre-
hensive publicly available datasets with complete ground truth for Latin-scripted
text. Out of these images, 1500 are publicly accessible, divided into a training set of
1000 images and a test set of 500 images.

• COCO-Text [97]: The Microsoft COCO dataset serves as the largest benchmark for
text localization and recognition. It includes 173,589 text instances from 63,686 images,
encompassing handwritten and printed text in both clear and blurry conditions, as
well as English and non-English texts. The dataset is composed of 43,686 training
images and 20,000 testing images.

https://labelstud.io/
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• Total-Text [98]: The Total-Text dataset is designed for the localization and recognition
of Latin text in various forms, including curved, multi-oriented, and horizontal text
lines. It consists of 1255 training images and 300 testing images, annotated with
polygons at the word level, primarily obtained from street billboards.

5.2. Evaluation Metrics

The performance evaluation of localizing bilingual Arabic–English texts in natural
scene images was assessed using three metrics: precision, recall, and F-score. Additionally,
end-to-end STR was evaluated based on accuracy. The evaluation protocol follows that of
ICDAR2015 [96], utilizing the intersection over union (IoU) metric. This protocol aligns
with the evaluation framework used in object detection tasks such as PASCAL VOC [99].
IoU is computed by measuring the overlap between predicted and ground-truth bounding
boxes, as represented in Equation (3). A prediction is classified as True Positive (TP) if its
IoU exceeds 0.5; otherwise, it is considered a False Positive (FP). A False Negative (FN)
occurs when the model fails to predict any output for a specific region of an image.

IoU =
area(P ∩ G)

area(P ∪ G)
(3)

The evaluation metrics were calculated as follows:

• Accuracy: This metric calculates the ratio of correctly predicted texts (True Positives,
TP, and True Negatives, TN) to the total number of predicted texts, including both
correct and incorrect predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision: Precision measures the proportion of correctly predicted bounding boxes
(TP) relative to the total number of predicted bounding boxes (both TP and False
Positives, FP).

Precision =
TP

TP + FP
(5)

• Recall: Recall quantifies the ratio of correctly predicted bounding boxes (TP) to the
total number of expected results based on the ground truth of a dataset.

Recall =
TP

TP + FN
(6)

• F-score: The F-score represents the harmonic mean of precision and recall, providing a
balanced measure of a model’s performance.

F − score = 2 × Precision × Recall
Precision + Recall

(7)

5.3. Training Details

To evaluate how well the model can locate and recognize bilingual Arabic–English
text in natural scene images, we conducted a series of experiments that focused on multi-
oriented and curved bilingual text. For the localization phase, we used ResNet and Effi-
cientNetV2 models as the network backbones, following a training setup similar to the
one described in [21]. For the ResNet model, we used the “poly” learning rate technique
with an initial learning rate of 1 × 10−3. On the other hand, the EfficientNetV2 model
employed a step-decay learning rate strategy, starting with a learning rate of 2 × 10−3

and reducing it by a discount factor of 0.5 every five epochs. Our experiments involved
testing various input image sizes (736 and 896) and two kernel sizes (0.5 and 0.7) to im-
prove performance. We kept these configurations consistent throughout the entire STR
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process. During the recognition phase, we utilized BiLSTM with 256 layers and LSTM
with 128 hidden layers. Furthermore, we incorporated the AraELECTRA base version
as a post-processing step, making use of pretrained generator and discriminator models.
Specifically, we evaluated the model using an input image size of 896 and a kernel size of
0.7 to enhance its performance.

In conclusion, all models were optimized using the ADAM optimizer [100] with a
batch size of 16 distributed across four GPUs. During the localization phase training, we
employed two main approaches: (1) training models from scratch individually for each
dataset, and (2) using joint training strategies. Under the first approach, we conducted
14,137 iterations for the EvArEST dataset, 30,000 iterations for the ICDAR2017 dataset, and
37,500 iterations for the ICDAR2019 dataset. For the joint training strategy, all datasets were
trained together for 40,818 iterations, followed by individual testing of each dataset. In
the context of end-to-end STR, we exclusively used a joint training strategy. This involved
training all Arabic and English datasets collectively for 90,221 iterations, with subsequent
testing performed only on the Arabic dataset. Detailed settings for each model during the
training phase can be found in Table 7.

Table 7. Training parameters.

Stage Model Batch Size Epochs Learning Rate Training Strategy Image Size

Text
Localization

ResNet 16
600 1 × 10−3 Training from scratch

736/896
300 1 × 10−3 Joint training

EfficientNetV2 16
600 2 × 10−3 Training from scratch

300 2 × 10−3 Joint training

End-to-end
ResNet 16 30 1 × 10−3

Joint training 896
EfficientNetV2 16 30 2 × 10−3

5.4. Implementation Details

The experiments were conducted using the PyTorch library on a system equipped
with a Xeon E5-2686 v4 CPU, four Tesla V100 GPUs, and 24 GB of RAM.

6. Results

The objective of this research was to develop a comprehensive system for localizing
and recognizing bilingual Arabic and English texts in natural-scene images through a series
of experiments. We evaluated the system using three widely used datasets: ICDAR2017,
ICDAR2019, and EvArEST. Our focus was on images containing bilingual text (Arabic and
English) from ICDAR 2017 and ICDAR 2019. To annotate our test set, we utilized online
annotation tools to annotate 30% of the bilingual Arabic and English images. Our research
was divided into two main phases: the localization-only phase and the end-to-end STR
phase. In the localization-only phase, our goal was to accurately detect and localize multi-
oriented and curved bilingual texts within natural-scene images. This phase leveraged
the capabilities of two pretrained CNN models. As depicted in Figure 11, these models
demonstrated their ability to handle complex scenes, such as those with multi-oriented
and curved text. The end-to-end system aimed to localize and recognize bilingual Arabic
and English texts within a unified framework, utilizing two RNN models. As shown in
Figure 12, this system effectively localized and recognized Arabic and bilingual text across
varying complexities.
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6.1. Scene Text Localization Results

We conducted an initial experiment to evaluate the effectiveness of the ResNet model
in localizing bilingual Arabic and English texts within natural-scene images. Specifically, we
implemented both the ResNet-18 and ResNet-50 architectures. The experimental findings,
which are detailed in Table 8, include metrics such as precision, recall, F-score, and frame
rate. These metrics collectively measure the model’s inference speed and performance.
The ResNet-18 model, trained from scratch, achieved the highest F-score of 90.6% on the
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EvArEST dataset, operating at a frame rate of 28.3 FPS. It delivered particularly strong
results on the ICDAR2017 and ICDAR2019 datasets. On the other hand, the ResNet-50
model, which utilized a joint training strategy, achieved its highest F-score of 91.2% on the
ICDAR2017 dataset, with a frame rate of 20.7 FPS. For the ICDAR2019 dataset, it achieved
an F-score of 89.2% at the same frame rate.

Table 8. Results of the localization phase exploiting the ResNet model. The highest F-Score our model
achieved is highlighted in bold.

Model Training
Strategy Scale

ICDAR2017 ICDAR2019 EvArEST

Precision
(%)

Recall
(%)

F-Score
(%) FPS Precision

(%)
Recall

(%)
F-Score

(%) FPS Precision
(%)

Recall
(%)

F-Score
(%) FPS

ResNet-
18

Training
from

scratch

736 82.3 71.6 76.5 28.4 84.6 75.2 79.6 29.3 90.3 89.5 89.9 30.0

896 84.4 75.7 79.8 27.0 85.4 76.1 80.4 27.4 91.4 89.8 90.6 28.3

Joint
training

736 86.7 81.6 84.0 34.7 89.6 82.9 86.1 31.9 88.2 90.7 89.4 32.4

896 89.6 83.4 86.3 27.6 90.3 84.6 87.3 19.5 86.9 91.8 89.3 26.9

ResNet-
50

Training
from

scratch

736 85.2 76.1 80.3 22.9 85.3 76.6 80.7 21.4 89.9 89.5 89.7 28.9

896 86.5 77.2 81.5 22.9 86.1 78.9 82.3 20.3 90.5 89.9 90.2 16.2

Joint
training

736 90.8 82.3 86.3 26.2 91.1 85.2 88.0 25.9 86.1 90.7 88.4 26.0

896 91.2 84.6 87.7 20.9 91.8 86.4 89.0 20.7 86.2 91.1 89.6 20.6

The second experiment aimed to evaluate the performance of the EfficientNetV2 model
in localizing bilingual Arabic–English texts within natural scene images. We examined
three variants: EfficientNetV2-S, EfficientNetV2-M, and EfficientNetV2-L. Results from
training these models under various configurations are summarized in Table 9. Our
findings highlight that employing a joint training strategy consistently yielded the best
results across all model sizes. Specifically, the EfficientNetV2-S model, when trained
from scratch, demonstrated superior performance and faster inference across multiple
datasets. For instance, on the ICDAR2017 dataset, it achieved an F-score of 75.2% with
a frame rate of 32.3 FPS. On the ICDAR2019 dataset, it achieved an F-score of 77.0% at
28.0 FPS, and on the EvArEST dataset, it reached an F-score of 86.5% with a frame rate
of 30.1 FPS. Similarly, the joint training approach significantly improved the performance
of the EfficientNetV2-L model, achieving the highest F-scores of 78.7% and 82.0% on
the ICDAR2017 and ICDAR2019 datasets, respectively, at frame rates of 16.2 FPS and
15.2 FPS. For the EvArEST dataset, an F-score of 87.3% was obtained with a frame rate of
16.5 FPS. These results indicate that both the joint training strategy with EfficientNetV2-L
and training from scratch with EfficientNetV2-S were effective across different model sizes,
demonstrating robust performance in localizing bilingual texts in natural scene images.

Table 9. Results of the localization phase exploiting the EfficientNetV2 model. The highest F-Score
our model achieved is highlighted in bold.

Model Training
Strategy Scale

ICDAR2017 ICDAR2019 EvArEST

Precision
(%)

Recall
(%)

F-Score
(%) FPS Precision

(%)
Recall

(%)
F-Score

(%) FPS Precision
(%)

Recall
(%)

F-Score
(%) FPS

EfficientNetV2-
S

Training
from

scratch

736 82.3 66.4 73.4 41.8 83.3 69.6 75.8 36.1 90.4 82.4 86.4 38.2

896 80.4 70.8 75.2 32.3 84.6 70.8 77.0 28.0 90.0 83.3 86.5 32.1

Joint
training

736 82.5 70.9 76.2 35.2 80.4 74.8 77.4 34.8 88.6 85.5 87.0 34.0

896 81.3 74.6 77.8 29.2 82.9 76.4 79.5 25.4 89.0 85.2 87.1 28.0

EfficientNetV2-
M

Training
from

scratch

736 79.9 64.2 71.1 32.6 80.2 66.8 72.8 30.5 86.5 82.7 84.5 34.6

896 78.4 67.6 72.6 26.9 81.5 68.6 74.4 27.9 87.2 83.2 85.1 26.6

Joint
training

736 81.0 70.6 75.4 30.9 80.1 73.8 76.8 30.7 86.9 85.9 86.4 31.8

896 80.5 75.5 77.9 25.6 82.3 75.9 78.9 24.9 88.1 86.1 87.1 27.2

EfficientNetV2-
L

Training
from

scratch

736 81.9 65.9 73.0 23.6 80.6 71.1 75.5 22.7 88.2 83.4 84.7 23.3

896 80.3 68.9 74.1 17.4 81.6 72.5 76.7 20.9 88.9 85.1 86.2 18.1

Joint
training

736 82.2 70.1 75.6 25.3 83.7 76.7 80.0 16.4 87.1 85.4 86.3 26.3

896 81.3 76.3 78.7 16.2 85.6 78.8 82.0 15.2 86.9 87.8 87.3 16.5
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6.2. End-to-End Scene Text Recognition Results

We conducted experiments to evaluate the effectiveness of an end-to-end STR system
in recognizing bilingual Arabic–English texts in natural scene images. The first experiment
aimed to assess the performance of the LSTM model when combined with various CNNs
for feature extraction. We utilized LSTM with 128 hidden layers alongside several CNN
models, including ResNet-18, ResNet-50, and EfficientNetV2 variants (S, M, and L). The
results, summarized in Table 10, include metrics, which are F-score, FPS, recall, precision,
and accuracy. Combining ResNet-50 with LSTM and EfficientNetV2-L with LSTM in the
recognition head resulted in the highest accuracy and F-score. For the ResNet-50 model,
the ICDAR 2017 dataset achieved an accuracy of 77.1% and an F-score of 73.2% at 24.9 FPS.
The ICDAR 2019 dataset yielded an accuracy of 76.3% and an F-score of 72.6% at 24.3 FPS.
On the EvArEST dataset, we attained an F-score of 79.3% and an accuracy of 85.7% at
25.0 FPS. Using the EfficientNetV2-L model, the ICDAR 2017 dataset demonstrated an
accuracy of 56.2% and an F-score of 59.3% at 17.3 FPS. For the ICDAR 2019 dataset, we
obtained an accuracy of 53.9% and an F-score of 57.7% at 17.5 FPS. On the EvArEST dataset,
we achieved an accuracy of 71.9% and an F-score of 69.6% at 18.6 FPS.

Table 10. The results of an end-to-end STR system with the LSTM model. The highest results our
model achieved are highlighted in bold.

Model Training
Strategy

ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS Accuracy

(%)
Precision

(%)
Recall

(%)
F-Score

(%) FPS Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS

ResNet-18

Joint
train-
ing

77.0 97.9 58.3 73.1 28.4 76.1 97.8 57.5 72.4 28.3 85.5 98.0 66.0 79.2 29.5

ResNet-50 77.1 98.1 58.3 73.2 24.9 76.3 98.5 57.5 72.6 24.8 85.7 97.7 66.7 79.3 25.0

EfficientNetV2-
S 53.9 97.1 40.9 57.5 33.7 53.1 97.3 40.3 57.0 33.5 69.8 97.6 52.4 68.2 34.2

EfficientNetV2-
M 52.2 97.3 39.7 56.4 26.5 51.4 97.2 39.0 55.6 26.9 68.9 97.7 51.7 67.6 28.1

EfficientNetV2-
L 56.2 98.2 42.4 59.3 17.3 53.9 97.7 40.9 57.7 17.5 71.9 98.0 54.0 69.6 18.6

The second experiment aimed to demonstrate the capability of the BiLSTM model with
two CNN models for recognizing bilingual Arabic–English texts in natural scene images.
The results, shown in Table 11, include metrics, which are accuracy, precision, recall, F-
score, and FPS. Comparisons between Tables 10 and 11 indicate that BiLSTM improves
bilingual text recognition compared to LSTM. Using the ResNet-50 and EfficientNetV2-L
backbones, BiLSTM achieved the highest accuracy and F-score. For the ResNet-50 model,
we achieved 78.6% accuracy and a 74.1% F-score at 23.5 FPS on the ICDAR 2017 dataset. For
the ICDAR 2019 dataset, we achieved 77.6% accuracy and a 73.1% F-score at 23.5 FPS. On
the EvArEST dataset, we attained 87.1% accuracy and an 80.5% F-score at 24.6 FPS. Using
the EfficientNetV2-L model, we obtained 57.2% accuracy and a 59.8% F-score at 15.1 FPS
on the ICDAR 2017 dataset. For the ICDAR 2019 dataset, we reached 56.3% accuracy and
a 59.2% F-score at 16.2 FPS. On the EvArEST dataset, we achieved 72.8% accuracy and a
70.2% F-score at 17.3 FPS.

Table 11. The results of the end-to-end STR system with the BiLSTM model. The highest F-Score our
model achieved is highlighted in bold.

Model Training
Strategy

ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS Accuracy

(%)
Precision

(%)
Recall

(%)
F-Score

(%) FPS Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS

ResNet-18

Joint
train-
ing

78.1 97.7 59.2 73.7 25.9 74.2 97.7 55.9 71.1 26.8 86.9 97.8 68.0 80.2 28.3

ResNet-50 78.6 97.8 59.7 74.1 21.3 77.6 98.9 58.0 73.1 23.5 87.1 97.9 68.3 80.5 24.6

EfficientNetV2-
S 56.8 97.6 42.9 59.6 29.7 55.0 98.1 41.6 58.4 30.9 72.3 98.5 54.4 70.1 32.4

EfficientNetV2-
M 54.9 97.4 40.9 57.6 24.4 53.0 97.6 40.2 56.9 25.5 70.4 98.1 53.5 69.2 27.7

EfficientNetV2-
L 57.2 97.4 43.1 59.8 15.1 56.3 97.5 42.5 59.2 16.2 72.8 97.9 54.7 70.2 17.3
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In the third experiment, our goal was to assess the efficacy of the AraElectra Arabic
language model as a post-processing technique for recognizing Arabic text in natural scene
images. The results of the utilized AraElectra Arabic language model with ResNet50 and
EfficientNetV2-L in LSTM and BiLSTM, shown in Tables 12 and 13, include metrics such as
accuracy, precision, recall, F-score, and FPS. Our results revealed that the AraElectra model,
when used as a post-processing stage, produced comparable outcomes to those achieved
with the LSTM or BiLSTM models. Nevertheless, we did not observe any improvement in
performance when employing the AraElectra model as a post-processing technique.

Table 12. The results of the end-to-end STR system with utilized AraElectra with LSTM model.

Model
ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS Accuracy

(%)
Precision

(%)
Recall

(%)
F-Score

(%) FPS Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS

ResNet-50 77.0 97.9 58.1 72.9 18.6 75.8 98.1 57.0 72.1 19.2 85.2 97.3 66.7 79.1 21.0

EfficientNetV2-
L 56.0 97.5 42.1 58.8 15.6 53.5 97.3 40.4 57.0 15.9 71.3 97.8 54.1 69.6 19.2

Table 13. The results of the end-to-end STR system with utilized AraElectra with BiLSTM model.

Model
ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS Accuracy

(%)
Precision

(%)
Recall

(%)
F-Score

(%) FPS Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%) FPS

ResNet-50 78.3 97.2 59.2 73.5 19.2 77.2 98.4 58.0 72.9 20.5 87.0 97.3 68.0 80.0 21.1

EfficientNetV2-
L 57.0 97.1 43.1 59.7 14.2 56.2 97.5 42.0 58.7 15.1 72.4 97.3 54.5 69.8 17.2

7. Discussion

The following subsections discuss the results of our model in text localization and
end-to-end STR.

7.1. Bilingual Scene Text Localization

In the first experiment, the ResNet architecture was used for localization. The results,
presented in Table 8, consistently show significant outcomes across all datasets, regardless of
ResNet depths, training strategies, and configurations. It is worth noting that the EvArEST
dataset, despite having a limited number of training samples, achieved the highest F-
score when trained from scratch with ResNet-18. The ResNet-18 architecture performed
exceptionally well on smaller datasets and exhibited fast inference speed, as evidenced by
its frame rate across all datasets, thanks to its lightweight design. The ResNet-50 model,
when trained with improved methods that incorporated the ICDAR2017 and ICDAR2019
datasets and employed two distinct training strategies, achieved the highest F-score.

In the second experiment, EfficientNetV2 was used to localize multi-oriented and
curved bilingual Arabic–English texts, as shown in Table 9. EfficientNetV2 demonstrated
significant performance in accurately localizing texts across all datasets. Training from
scratch resulted in the EfficientNetV2-S model achieving the highest F-score. Additionally,
the EfficientNetV2-L model achieved the highest F-score when the joint training technique
was used. However, we observed that the EfficientNetV2-M and EfficientNetV2-L models
performed worse than EfficientNetV2-S when trained from scratch. This variation could
be attributed to the limited size of the training dataset and the complexity of the deeper
architectures, which may have led to overfitting.

The EfficientNetV2 model is available in different versions. In terms of parameter
count in our implementation, EfficientNetV2-S has approximately 12 million parame-
ters, whereas the original model described by Tan et al. [77] has 25 million parameters.
EfficientNetV2-M has around 20 million parameters, compared to the original model’s
55 million parameters, nearly double. This reduction in parameter count makes our Ef-
ficientNetV2 model faster than the original model. Table 14 illustrates the difference in
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parameter count between the ResNet and EfficientNetV2 models. The difference is sig-
nificant, with EfficientNetV2-S having fewer parameters than ResNet-18. As shown in
Figure 13, ResNet-18 achieves a higher F-score by 4.1 percentage points (90.6% vs. 86.5%)
while the EfficientNetV2-S maintaining faster inference speed. Furthermore, as illustrated
in Figure 14, EfficientNetV2-M exceeds ResNet-50 in inference speed by 6.6 points (27.2 vs.
20.6 FPS) while maintaining a similar F-score.

Table 14. The different CNN models and their number of parameters.

Backbone Number of Parameters

ResNet-18 12,246,022

ResNet-50 24,899,782

EfficientNetV2-S 12,106,462

EfficientNetV2-M 20,803,678

EfficientNetV2-L 176,052,766
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In contrast, the EfficientNetV2-L model with 176 million parameters achieved the
highest performance but had a slower inference speed. This indicates that a large number
of parameters can impact system speed. Our comprehensive experiments with ResNet
and EfficientNetV2 models led us to the conclusion that increasing the image size to
896 improved performances in all tests.

In conclusion, the ResNet models exhibited superior performance in localizing multi-
oriented and curved bilingual Arabic–English texts. In contrast, the EfficientNetV2 models
achieved comparable results but with a faster inference speed, measured in FPS. Efficient-
NetV2 is a pretrained CNN model designed to improve neural network performance by
optimizing three important factors: depth, width, and image resolution. However, to
achieve optimal performance with these improvements, acquiring additional training data
is necessary.

7.2. End-to-End Scene Text Recognition for Bilingual Text

The first and second experiments in the end-to-end STR study were designed to evalu-
ate the effectiveness of two types of RNN models, i.e., LSTM and BiLSTM, in recognizing
bilingual Arabic–English texts from natural-scene images. The effectiveness of the LSTM
model is demonstrated by the results in Table 10, which show high accuracy and F-scores,
especially when combined with the ResNet-50 and EfficientNetV2-L models in the recog-
nition head. The performance of the BiLSTM model, as shown in Table 11, significantly
surpassed that of the LSTM model. This improvement is attributed to the BiLSTM’s ability
to process contextual information in both forward and backward directions, providing a
more comprehensive understanding of the text sequence compared to the LSTM model,
which operates exclusively in the forward direction.

Effective results were achieved by incorporating the BiLSTM model with ResNet-50
and EfficientNetV2-L as the backbone. The F-score on the ICDAR2017 dataset increased by
0.9 points with the use of BiLSTM, going from 73.1% to 74.1%. Additionally, the F-score
on the ICDAR2019 dataset increased by 0.5 points, from 72.6% to 73.1%. In the EvArEST
dataset, there was a significant improvement in the F-score, with a rise of 1.2 points (from
79.3% to 80.5%). Furthermore, when using EfficientNetV2-L as the backbone, the BiLSTM
model boosted the F-score on the ICDAR2017 dataset by 0.5 points (from 59.3% to 59.8%),
and on the ICDAR2019 dataset, it saw an increase of 1.5 points (from 57.7% to 59.2%). The
F-score in the EvArEST dataset also improved by 0.6 points (from 69.6% to 70.2%).

In our third experiment, we introduced the AraElectra Arabic language model as a
post-processing step following the recognition head to enhance Arabic text recognition.
However, integrating the AraElectra model did not significantly impact or improve the
results of the end-to-end system. When compared with the LSTM and BiLSTM models,
which yielded similar outcomes as shown in Tables 12 and 13, the lack of significant
improvement with the AraElectra model can be attributed to the characteristics of the
natural-scene image datasets. These datasets typically contain a limited number of words
per image, which may not be ideal for language models like AraElectra. Table 15 details
the percentage of short sentences (1–5 words) and medium sentences (5–10 words) in the
training and testing phases of each dataset, further illustrating the challenges faced by
language models in processing short text sequences within natural-scene images.

Table 15. The percentage of short sentences (1–5 words) and medium sentences (5–10 words) in
each dataset.

Dataset Total Number
of Image

Training Testing

Number of
Image

Short Sentence
(%)

Medium
Sentence

(%)
Number of

Image
Short Sentence

(%)
Medium
Sentence

(%)

EvArEST 510 377 87 12 133 91 8

ICDAR2017 1000 800 98 1 200 97 2

ICDAR2019 1200 1000 99 1 200 100 0
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In conclusion, the EvArEST dataset consistently outperformed the ICDAR2017 and
ICDAR2019 datasets in all experiments. The ICDAR datasets are known for their complexity,
which includes images with small text sizes, complex backgrounds, varying fonts, and
low resolution.

7.3. Effect of Text Direction

To enhance the recognition of bilingual text, we reversed the ground truth for Arabic
words, allowing them to be predicted in a unified direction: from left to right. The results
of the bilingual text recognition model using ResNet-50 and EfficientNetV2-L are pre-
sented in Tables 16 and 17, employing this unified text direction approach. ResNet-50 and
EfficientNetV2-L were chosen for their ability to achieve superior results in our end-to-end
STR experiments. The performance of the model in recognizing bilingual text in different
word directions (left to right and right to left), denoted as (A), and in unifying the word
direction to left-to-right, denoted as (B), is illustrated in Figures 15 and 16. We observed
that unifying the direction of word prediction improved the performance of all datasets by
approximately 1 to 2 percentage points, resulting in optimal results.

Table 16. The results of the end-to-end scene text recognition system using ResNet-50 and
EfficientNetV2-L with the LSTM model in a unified text direction.

Model
ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

ResNet-50 +
LSTM 78.3 98.5 59.9 74.4 77.5 97.6 59.5 73.9 88.1 97.6 69.4 81.1

EfficientNetV2-
L + LSTM 57.9 98.6 44.6 61.4 55.6 98.8 42.3 59.2 73.1 98.9 56.2 71.5

Table 17. The results of the end-to-end scene text recognition system using ResNet-50 and Efficient-
NetV2 with the BiLSTM model in a unified text direction.

Model
ICDAR2017 ICDAR2019 EvArEST

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

ResNet-50 +
BiLSTM 80.3 98.5 61.4 75.8 79.2 98.3 60.1 74.5 88.9 98.9 70.3 82.1

EfficientNetV2-
L + BiLSTM 59.3 98.6 45.2 61.9 58.6 97.3 44.6 61.1 75.7 98.5 57.9 72.9
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Figure 15. The LSTM model’s F-Score outcomes for word direction prediction in (A) various directions
and (B) unified direction.
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7.4. Error Analysis

The proposed method demonstrates superior performance in localizing and recog-
nizing Arabic and bilingual texts within natural scene images, especially in handling
multi-oriented and curved bilingual texts. However, the algorithm’s accuracy may decrease
when attempting to localize vertical Arabic text. In such cases, the proposed technique only
partially localizes the text, as illustrated in Figure 17, resulting in less precise predictions.
Additionally, the Alruqea font poses challenges in accurately recognizing Arabic charac-
ters, as shown in Figure 18. These difficulties primarily stem from the limited number of
training samples available. We anticipate that increasing the quantity of training samples
will address these issues.
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7.5. Comparative Analysis

Our study involved numerous experiments to compare various models for the local-
ization and recognition of multi-oriented and curved bilingual Arabic and English text
from images of natural scenes. During the localization phase, we conducted a compar-
ison between two pre-trained CNN models, ResNet and EfficientNetV2, with various
configurations. The goal was to assess each model’s performance in localizing multi-
oriented and curved bilingual text from natural scene images. The findings presented in
Tables 8 and 9 demonstrate that the ResNet model outperforms the EfficientNetV2 model
in terms of achieving the highest results. However, the EfficientNetV2 model exhibits faster
inference speed.

Table 18 shows a comparison between our results and those of the state-of-the-art
method. The comparison has demonstrated the effectiveness and robustness of our sug-
gested approach for accurately localizing multi-oriented and curved bilingual text. Boukthir
et al. [45] developed a system that used deep learning and active methods to accurately lo-
calize Arabic text in natural scene images. The system achieved this by utilizing the ICDAR
2017 and ICDAR 2019 datasets. Our system successfully trained on all the training images
from ICDAR 2017 and ICDAR 2019. In contrast, the deep active technique was trained
using 20% of the data. Our suggested model demonstrated a significant outperformance
in ResNet50, EfficientNetV2-S, and EfficientNetV2-L compared to both deep learning and
deep active techniques.

Table 18. Comparison of the proposed models with state-of-the-art methods in precision terms. The
highest results our model achieved are highlighted in bold.

Model ICDAR 2017
(%)

ICDAR 2019
(%)

Deep active learning [45] 73.26 74.09
Deep learning [45] 81.55 81.56

Our ResNet50 (Training from scratch) 86.5 86.1
Our ResNet50 (Joint training) 91.2 91.8

Our EfficientNetV2-S (Training from scratch) 82.3 84.6
Our EfficientNetV2-L (Joint training) 82.2 85.6
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During the recognition phase, we conducted a comparison between two RNN models,
LSTM and BiLSTM, to determine their effectiveness in recognizing bilingual text from
natural scene images. According to the data from Tables 10 and 11, the BiLSTM model
achieved superior performance in bilingual text recognition compared to the LSTM model.
Our study is the first to use an end-to-end STR system for localizing and recognizing
bilingual Arabic and English text that is multi-oriented and curved in natural scene images.
Hassan et al. [10] proposed the EvArEsT dataset that contains images for localization,
end-to-end STR, and cropped images for recognizing text as a separated framework. In our
study, we used the EvArEsT dataset in localization and end-to-end STR. When comparing
our results with other state-of-the-art methods for recognizing Arabic text from natural
scene images in reference [10], we noticed that the proposed model achieved excellent
outcomes. The proposed model is capable of recognizing text from whole natural scene
images by first going through a localization phase and then a recognition phase. On the
other hand, alternative approaches to recognizing Arabic text involve using cropped images
that contain only individual words. This method provides high accuracy in recognition.
In contrast, an end-to-end STR depends on an accurate localization step for effectiveness.
Finally, the proposed approach successfully obtained superior results and achieved faster
inference speeds when localizing and recognizing multi-oriented and curved bilingual text
from natural scene images.

8. Conclusions

This research addressed two significant challenges in computer vision: localizing
and recognizing text in natural-scene images. Our study aimed to expand the research
scope by focusing on the localization and recognition of bilingual Arabic–English texts,
specifically tackling the identification of multi-oriented and curved bilingual texts. We
implemented an end-to-end STR system and evaluated it through two stages: localizing
bilingual Arabic–English texts and implementing the complete STR system. To conduct our
investigation, we utilized three publicly available datasets: ICDAR2017, ICDAR2019, and
EvArEST, which contain Arabic and bilingual Arabic–English texts. Due to the diversity
of languages in the test sets for the ICDAR datasets and the absence of ground truth for
each image, we curated images that exclusively featured bilingual Arabic and English texts.
These images were annotated using online tools.

In our study, we used ResNet and EfficientNetV2 CNN models as the backbone, along
with a FPEM for reliable feature extraction. We employed a kernel representation approach
to locate the center and surrounding pixels of the text, which were then combined using
the PA module. Our experiments demonstrated the model’s effectiveness in accurately
localizing bilingual Arabic–English texts, including texts in various orientations such as
multi-oriented and curved texts. While both ResNet and EfficientNetV2 models performed
well, ResNet consistently achieved higher accuracy in different configurations compared to
EfficientNetV2, which had faster inference speeds.

In the end-to-end system, we compared the performance of LSTM and BiLSTM models
for recognizing bilingual Arabic–English texts. The BiLSTM model proved superior in rec-
ognizing bilingual texts regardless of word directions and when unifying word directions.
However, incorporating the AraElectra Arabic language model as a post-processing step
did not result in significant improvements in the recognition of Arabic text within natural
scene images. To the best of our knowledge, this study represents the first implementation
of an end-to-end STR system that is specifically designed to localize and recognize bilingual
Arabic–English texts in natural scene images.

For future research directions, we recommend the development of a more robust sys-
tem by integrating various CNN and RNN models. Additionally, creating a comprehensive
Arabic scene text dataset with a large training sample that includes diverse scene text
complexities—such as complex backgrounds, low resolution, varied text orientations, and
challenging Arabic fonts—would be beneficial for further advancing the field.
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