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Abstract: The rapid development of generative technologies has made the production of forged
products easier, and AI-generated forged images are increasingly difficult to accurately detect, posing
serious privacy risks and cognitive obstacles to individuals and society. Therefore, constructing
an effective method that can accurately detect and locate forged regions has become an important
task. This paper proposes a hierarchical and progressive forged image detection and localization
method called HPUNet. This method assigns more reasonable hierarchical multi-level labels to the
dataset as supervisory information at different levels, following cognitive laws. Secondly, multiple
types of features are extracted from AI-generated images for detection and localization, and the
detection and localization results are combined to enhance the task-relevant features. Subsequently,
HPUNet expands the obtained image features into four different resolutions and performs detection
and localization at different levels in a coarse-to-fine cognitive order. To address the limited feature
field of view caused by inconsistent forgery sizes, we employ three sets of densely cross-connected
hierarchical networks for sufficient interaction between feature images at different resolutions. Finally,
a UNet network with a soft-threshold-constrained feature enhancement module is used to achieve
detection and localization at different scales, and the reliance on a progressive mechanism establishes
relationships between different branches. We use ACC and F1 as evaluation metrics, and extensive
experiments on our method and the baseline methods demonstrate the effectiveness of our approach.

Keywords: computer vision; fake images; detection and localization; hierarchical network; UNet

1. Introduction

Is seeing really believing? The answer is no. With the rapid advancements in AI-
generated content (AIGC) technology within the realm of image processing, individuals
can now produce highly realistic images using generative models. However, a generated
model is akin to a double-edged sword. While it offers numerous conveniences in areas
such as image editing [1], image repair [2], and image fusion [3], when AI-tampered
images are used with malicious intent, people are unable to discern their authenticity
through visual inspection alone. Furthermore, the traditional detection models struggle
to accurately assess their authenticity attributes, let alone pinpoint the manipulated areas.
As illustrated in Figure 1a, the traditional detectors frequently misclassify real and forged
images, leading humans to face unprecedented security risks in the domains of information
and cognitive security.

The most prevalent image generation methods can be categorized into three main
types: Variational Auto-Encoder (VAE) [4], Generative Adversarial Networks (GANs) [5],
and Diffusion Models (DMs) [6]. These generative models fundamentally learn the distri-
bution of images from extensive training datasets to produce similar images. Initially, the
generative models, such as DDPM [7] and GDDIM [8], focused on generating complete
images by learning the distribution of the images, where all the pixels were considered
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to be synthetic. However, with advancements in the generative models, the recent meth-
ods have evolved to facilitate partial image editing, known as “inpainting.” Examples
include Inpaint Anything [3] and HD-painter [2]. As depicted in Figure 1b, tampered
images now contain both real and synthetic pixels, with the attacker’s primary focus being
on the manipulated region. Contrary to the complex and intricate requirements of the
traditional manual image tampering methods, the generative-model-based partial editing
methods offer significant advantages by simplifying the tampering process based on the
input instructions. This approach is gradually becoming the mainstream method for image
tampering, posing greater challenges for the identification of synthetic images.

Figure 1. Description of forged image detection. (a) Classified t-SNE images of the dataset in the
ResNet50 network. (b) Examples of AI tampering with images. (c) Schematic diagram of image
multi-level label division.

Indeed, the detection and localization of forged images have always constituted a
pivotal research area within the domain of artificial intelligence security. When an image is
found to be forged, individuals not only aspire to identify its forgery but also aim to further
refine the process by pinpointing the specific forged region within the image. This enables
the comprehension of the attacker’s intentions, ultimately facilitating the mitigation of the
adverse effects stemming from such forged information.

Previous studies [9–13] have indeed attained notable accomplishments in the domain
of forged image detection and localization. However, a majority of these methodologies
primarily concentrate on the traditional artificial tampering techniques, such as replication
and splicing, or are restricted to categorizing image authenticity. Consequently, their
efficacy in detecting and locating the latest AI-generated forged images is significantly
diminished. Hence, apart from the legal constraints imposed on the generation models, it
becomes imperative to enhance the detection and localization capabilities of forged images
at the technical level.
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This paper addresses the challenges posed by AI-generated forged images. We propose
a progressive layered network, based on UNet, for the refined detection and localization of
forged images. Initially, to facilitate progressive detection and localization, we re-classified
the forged images from our previously established AI-generated forged image dataset and
assigned more reasonable multi-level labels. The specific hierarchical classification and
multi-level labels are depicted in Figure 1c. Specifically, from the first to the fourth layer, we
gradually subdivide the image attributes, transitioning from the coarse-grained category of
authenticity to fine-grained forgery methods. For instance, the forgery image in Figure 1b
is assigned a multi-level label of ’Forgery -> partial tampering -> DM -> INDM’.

Furthermore, it has been observed in [11,14,15] that images generated by different
forgery methods exhibit distinct frequency domain deviations, which can serve as forgery
fingerprints for detection tasks. At the same time, we have also noticed that the generation
process of fake images is closely related to noise. Moreover, the quality of the generated
models varies, often leading to color fluctuations in the forgery regions. Therefore, we
draw inspiration from the previous methods [10,12,16] to jointly utilize multi-type image
features from both the spatial and frequency domains. In our method, the spatial domain
features specifically include RGB features that capture abnormal fluctuations in the color
space and noise features that mine the noise level of the image. The frequency domain
features are captured using multiple Laplacian operators to capture the image frequency
fluctuations. In addition, to learn richer feature representations, we use a dual-branch
attention fusion module to fuse the spatial features. In the dual-branch attention fusion
module, we introduce external attention [17] to handle the positional relationships of the
spatial features. At the same time, we utilize detection and localization results as thresholds
to filter those channel features that are strongly related to the detection performance. We
apply these channel thresholds to the spatial features to enhance those features that are
strongly related to the task and suppress those features that are weakly related to the task.

Subsequently, due to variations in the size of the tampering region within the generated
model, utilizing a fixed-resolution feature map poses the challenge of restricting the feature
field of view for forged regions of different scales. Therefore, to mitigate the adverse
effects of the scale variations in the forged region on detection and localization, we employ
three sets of densely interconnected hierarchical networks. These networks facilitate
comprehensive information exchange between the features of varying resolutions through
multiple upsampling and downsampling operations, enabling the preservation of both the
local and global features and addressing the issue of a limited feature field of view.

Finally, we adopt a hierarchical and progressive approach for detection and localiza-
tion. To establish dependencies between feature maps of different resolutions, we integrate
a multi-scale feature interaction module into the UNet [18] network structure. Using the
decoder, we fuse low-resolution feature maps with high-resolution feature maps from
bottom to top. Additionally, we leverage the detection and localization results from the low-
resolution feature maps as priors to guide the detection and localization process at higher
resolutions. The experimental results demonstrate the effectiveness of this approach as the
coarse detection and localization outcomes from the low-resolution feature maps prove ben-
eficial when used as priors for guiding the detection and localization at higher resolutions.
In the skip connections of our UNet structure, we introduce a convolutional block attention
module with soft-threshold constraints (t-CBAM) to capture rich contextual dependencies.
The threshold selection is achieved by multiplying the channel and spatial average pool-
ing with the channel attention weights and spatial attention weights, respectively. With
our proposed model, we have achieved significant improvements in the detection and
localization accuracy of AI-tampered images, surpassing the baseline methods.

The contributions of this article are the following:

1. This article combines external attention and channel attention as a dual-branch at-
tention feature enhancement module, using the feedback results of the detection
and localization as dynamic thresholds to enhance the strongly related features and
suppress the weakly related features.
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2. This article proposes a combination of a hierarchical network and UNet network struc-
ture with soft-threshold attention, and it establishes hierarchical dependency relations.

3. This article proposes a hierarchical and progressive forged image detection method
called HPUNet, which successfully achieves the accurate detection and localization
of AI-generated forged images and further improves the accuracy of detection and
localization compared to the baseline methods.

This work extends from our previous research [19] in several key aspects. Firstly,
instead of merely discussing whether an image is generated from text, we have assigned
more reasonable multi-level labels to our AI-generated forged image dataset. This approach
ensures that the hierarchical detection results are more aligned with human cognitive
laws. Secondly, we have introduced an external attention mechanism to optimize the
spatial attention process of the features. Additionally, we utilize detection results as
dynamic thresholds to constrain the dual-branch feature fusion within the context feature
enhancement module. This enhancement strategy aims to amplify the task-relevant features
while suppressing the weakly relevant ones. Thirdly, we have incorporated the UNet
network structure, leveraging the decoder to establish connections between feature maps
of different resolutions. Furthermore, we have introduced a soft-threshold dual-attention
mechanism in the skip connections to retain the main semantic features and eliminate
irrelevant ones.

2. Related Works
2.1. Image Forgery Generation

Generative models and detection models can be viewed as a paired sword and shield.
The traditional methods for creating forged images often involve manual tampering tech-
niques, such as copying, splicing, and moving, which demand intricate operations and
consume significant effort. In contrast, the latest generative methods utilize image genera-
tive models to produce forged images. These models are based on the principle of learning
the distribution of a large number of real images and subsequently generating similar ones.
Currently, the mainstream image generative models are primarily based on VAEs, GANs,
and DMs, with DMs being the most widely used. Apart from the classification based on the
fundamental models, different generative methods can also be categorized into two types
according to the generation approach. One type generates a complete image in a whole-
image generation manner, such as CycleGAN [20], DDPM [7], StyleGAN [21], GLIDE [22],
Stable Diffusion [23], etc. The images generated by these methods can be considered as
having all fake pixels. The other type partially edits real images by locally tampering
with certain parts, for instance, DragGAN [24], HD-painter [2], Paint-by-example [25],
StyleCLIP [26], Imagic [1], etc. The fake images produced by the generative models are
more realistic and have more concealed forgery boundaries than the traditional manually
tampered images. Users can complete image tampering with simple instructions, making
it difficult for detection models to accurately discern, and thus such images are harder for
models to successfully detect and locate.

2.2. Image Forgery Detection

The objective of fake image detection is to accurately distinguish between fake and real
images. This type of detection is regarded as binary classification of images, and several
effective detection methods have been proposed in the early research works. Li et al. [27]
propose a framework that enhances the performance of forgery localization by integrating
tampering possibility maps. This framework selects and improves detectors based on
statistical features and copy-move forgery detectors, adjusting their results to generate
tampering possibility maps. Both Arshed et al. [28] and Ojha et al. [29] utilize ViT as
a powerful feature extractor to capture the global features of images for detecting fake
images. AISMSNet [30] introduces a fake image detection method based on Siamese
networks, which learns the unique features of specific image regions and detects tampering
attributes through feature comparison. Wan et al. [31] incorporate a two-branch data
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augmentation and attention mechanism into the task of fake image detection. Guo et al. [15]
propose the use of a hierarchical mechanism to achieve the layer-by-layer detection of fake
images. To address the generalization issue of detectors towards unknown forgery methods,
Epstein et al. [32] adopt an online learning approach. They train N models based on the
historical release dates of known forgery methods and test them on the next (N + k) model.

Apart from the efforts regarding detection frameworks, many researchers adopt
methods that jointly utilize multiple image features for fake image detection and achieve
promising results. Verdoliva [33] investigates data-driven forensic methods to detect deep-
fake images. Xi et al. [13] and Huang et al. [12] both combine the noise features and
RGB features of images to design a dual-stream detection network for image detection.
Niloy et al. [16] utilize images processed with the SRM filter and combine them with RGB
features as the network input. Guo et al. [15] extract the frequency features and color
features of images as input signals for their hierarchical detection network in their research.
Some researchers have also introduced image descriptions for fake detection. For instance,
Sha [14] and Wu [34] et al. leverage the correlation between text prompts and images for
fake detection. Additionally, there are researchers exploring new representations of artifacts.
For example, Wang et al. [35] determine that generated images exhibit smaller reconstruc-
tion errors than real images when reprocessed by the generative model. Zhong et al. [36]
discover that AI-generated images leave varying degrees of artifacts in texture-rich and
texture-poor regions. Guillaro et al. [10] divide images into blocks and use a denoising
network to find that fake images produce more severe noise deviations. However, most of
the aforementioned works only consider fake detection at the image level, neglecting the
localization of specific forgery regions.

2.3. Image Forgery Localization

The generation methods of fake images are diverse, and, in practical applications,
it is necessary to not only identify that an image is fake but also to further locate the
forgery regions. Some researchers have conducted corresponding research work in fake
image localization and achieved progress. Cozzolino et al. [9] and Guillaro et al. [10]
both use a noise-sensitive fingerprint to learn the relevant noise deviations caused by
external camera processing to achieve pixel-level localization. Wu et al. [37] employ a
self-supervised learning approach to learn the features from 385 types of manipulations
and treat the manipulation localization problem as a local outlier detection problem, using
Z-score features to capture the local outliers. Dong et al. [38] utilize semantic-irrelevant
image noise distribution features and boundary features to achieve the accurate localization
of manipulation regions. Liu et al. [39] and Guo et al. [15] both use hierarchical networks
to detect the fake attributes of images and employ self-attention mechanisms to locate the
forgery regions. Zhang et al. [40] analyze both the original image and the noise image to
locate the forgery regions in the image. Zhou et al. [41] propose a class activation map
for manipulation edges and use this map in a weakly supervised framework to locate the
manipulation regions in manipulated images. Liu et al. [42] leverage noise features to fully
expose subtle changes in images caused by manipulation operations. Although the above
methods have achieved good results in the task of fake image localization, there is still
room for improvement regarding localization accuracy.

3. Methods

Our goal is to extract artifacts hidden in forged images and leverage a hierarchical
and progressive network to enhance the model’s ability to detect and locate forged images.
In this section, we will introduce HPUNet, as shown in Figure 2, which consists of three
modules: the contextual feature enhancement module (Section 3.1), the multi-scale feature
interaction module (Section 3.2), and the progressive detection and localization module
(Section 3.3). In Section 3.4, the loss function used in the experiments will be introduced.
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Figure 2. General structure of the HPUNet network. It combines multiple types of image features
for detection and localization, and the dual-branch attention mechanism amplifies strongly relevant
features while suppressing weakly relevant features. Combined with UNet to construct a hierar-
chical network, it achieves accurate detection and localization of forged images in a coarse-to-fine
cognitive order.

3.1. Context Feature Enhancement Module

We leverage the spatial domain features and frequency domain features of images
jointly for the detection and localization of forged images. Specifically, in the spatial domain,
we capture abnormal color fluctuations and noise characteristics in the forged areas by
extracting the RGB and noise features of images, and employ a dual-branch attention fusion
module to integrate these features. In the frequency domain, we use multiple Laplacian
operators to capture different responses of images in the frequency domain. Finally, the
image features in the spatial and frequency domains are processed jointly in a cascaded
manner as the overall feature input.

During the aforementioned process, we noticed that different channels of the feature
map possess varying degrees of expressive power, and suppressing weakly task-related
features under resource constraints is a crucial task. Therefore, we utilize a dual-branch
attention fusion module to fuse and enhance the RGB and noise features in the spatial
domain, as shown in Figure 3. In this module, we introduce an external attention [17]
mechanism to capture the contextual positional relationships contained in the image fea-
tures. At the same time, we directly use the input features as key and query to obtain the
similarity between each feature channel through multiplication, and derive the feature
channel weights after excluding self-similarity. To enhance task-related features and sup-
press weakly task-related ones, we utilize the detection and localization results as dynamic
thresholds to filter the relationships captured between feature channels in channel attention
according to Equation (1). The new channel weights are then applied to the rich contextual
positional features output by the external attention. This mechanism helps the model to
focus more on task-related features while suppressing weakly related ones.

Cw =


Cw + Cw ∗ α if Cw > threshold
Cw − Cw ∗ β if Cw < 1 − threshold
Cw else

(1)
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where Cw represents the channel weight, threshold represents the threshold value, and the
threshold is obtained through the feedback of detection and positioning results. α and β
are hyperparameters that control the variation in the channel weight. Through this weight
transformation, the model focuses more attention on the strongly task-related features.

Figure 3. Two-branch attention fusion module.

3.2. Multi-Scale Feature Interaction Module

Due to the varying sizes of the tampered regions in images caused by the generative
model, and the potential information loss when using a feature map of a fixed resolution, we
aim to overcome the limited visibility of features across different forgery scales. Therefore,
we leverage a hierarchical network composed of three sets of densely cross-connected
interaction modules to fully interact with feature maps of different resolutions, capturing
richer local and global features. The structure of this module is illustrated in the middle
part of Figure 2. For any feature map of a specific resolution, we fuse all feature maps of
different resolutions with the current resolution’s feature map through sampling techniques,
and this serves as the output of the current branch.

First, we extract features from the given input image through a context feature en-
hancement module. Then, we set up four branches to obtain feature maps of four different
resolutions, denoted as θb, where b belongs to (1...4). Each branch can extract feature maps
of a specific resolution, and full connectivity is established between different branches to
enable sufficient feature interaction. The output of each scale branch is obtained by fusing
the outputs from all branches through upsampling or downsampling. Specifically, taking
the output process of branch θ2 as an example, as shown in Figure 4, we downsample the
feature map from branch θ1 by a factor of 2, upsample the feature map from branch θ3 by a
factor of 2, and upsample the feature map from branch θ4 by a factor of 4. The sampled
outputs from these three branches are then fused with the feature map of θ2 itself to obtain
the output feature map of θ2.

3.3. Progressive Detection and Localization Module

Inspired by previous works [15,39], we employ a hierarchical network to achieve
coarse-to-fine forgery detection and localization tasks. Specifically, we first obtain four
feature maps of different resolutions from the aforementioned process and fully interact be-
tween these feature maps of varying resolutions. Then, starting from the lowest-resolution
feature map in a bottom-up manner, we perform class prediction and region prediction
in a detection module and a localization module for each hierarchical level. It is worth
mentioning that, considering the possible information loss in lower-resolution features
that may hinder precise classification, we adopt a multi-level label structure, as shown in
Figure 1c, for predictions at different levels. Finally, we utilize a decoder to concatenate
low-resolution and high-resolution feature maps and constrain the detection and localiza-
tion results of the previous layer with the current layer’s detections and localizations as
prior knowledge until the final predicted labels and prediction masks are obtained. During
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the progressive detection process, we express the output of the detection head for branch
θb and the predicted probability as Db(X) and p(yb|X), and we can calculate

p(yb|X) = so f tmax(Db(X)⊙ (1 + p(yb−1|X))) (2)

Concurrently, we express the output mask and predicted probability map of the
localization head for branch θb as maskb(X) and p(maskb|X), and we can compute

p(maskb|X) = Lb(maskb−1(X)⊙ Fb) (3)

where Lb represents the localization head of branch θb, and Fb represents the feature input
for branch θb. By relating the output of branch θb−1 to branch θb according to the above
two equations, we establish a progressive detection and localization path.

Figure 4. Diagram of feature fusion for branch θ2.

In addition, to preserve the semantic features of the main subject and eliminate
irrelevant features, while considering computational resources and better adaptability, we
propose a soft-threshold dual-attention module within the skip connection structure of
HPUNet to process the features, as shown in Figure 5. To ensure flexibility between each
branch, the threshold selection remains relatively independent between different branches.
First, we calculate the absolute value of the intermediate feature map. Then, we multiply
the channel feature’s average pooling and the spatial feature’s average calculation along
the channel dimension by the channel attention weight coefficient and the spatial attention
weight coefficient, respectively, to obtain the target thresholds. Finally, the feature map
is filtered using these two thresholds. The mathematical description of this process is
as follows:

Ffused = (Finput ⊗ (Ca ⊗ Cb))⊗ (Pa ⊗ Pb) (4)

where Ca represents the feature description after average pooling of the channel features, Pa
represents the feature description of spatial features averaged across channels, and Cb andPb
represent the weight coefficients for the channel features and spatial features, respectively.
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Figure 5. Soft-threshold dual-attention module.

3.4. Loss Function

In the use of loss functions in this paper, three main factors are considered. Firstly, for
the task of fake image detection, we perform the detection of the forgery attributes of the
image at each level; therefore, we express the optimization goal of each branch as

Lb
det(X) = − 1

N ∑ yi · log(p(yb|X)) (5)

where N represents the number of samples, yi represents the true class label, and p(yb|X)
represents the predicted probability of the class on branch b.
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Secondly, for the task of fake image localization, we also perform localization of the
forged regions at each level. Therefore, we use the binary cross-entropy loss function to
represent the optimization goal of each branch as

Lb
loc(X) = − 1

HbWb

Hb

∑
i=1

Wb

∑
j=1

(yb
i,j · log(pb

i,j(X))) (6)

where Hb and Wb represent the length and width of the image on branch θb, yb
i,j represents

the true label of the mask position (i, j) on branch θb, and pb
i,j(X) represents the predicted

probability for position (i, j) of the input image on branch θb. To accommodate the hier-
archical network structure of HPUNet, classification loss and localization loss are both
calculated for branches at different resolutions.

In addition, considering that segmentation tasks often tend to misjudge false pixels
and true pixels at boundary positions, we also introduce an edge loss Ledge at the highest
resolution layer to constrain the segmentation. The edge loss Ledge is expressed as

Ledge = mean(Sx(M)− Sx(m)) + mean(Sy(M)− Sy(m)) (7)

Here, Sx and Sy represent the Sobel convolution kernels in the x and y directions,
respectively. (M) stands for the ground truth mask image, while (m) represents the predicted
mask image.

In summary, combining Equations (5)–(7), we use a combination of these three losses
as the total loss:

Ltotal =
4

∑
b=1

Lb
det(X) +

4

∑
b=1

Lb
loc(X) + Ledge (8)

4. Experiments
4.1. Dataset and Experimental Settings

Dataset. To verify the advanced performance of our method, we expand the AI-
generated fake image dataset, DA-HFNet dataset, created in our previous work. We
incorporate a method of manually edited images. This portion of the fake image dataset
consists of the MICC-F2000 dataset, the CoMoFod dataset, and approximately 2500 hand-
manipulated images produced by us, totaling about 3400 fake images. For ease of dis-
tinction, we name this dataset the AITfake dataset in this paper. Its relevant composition
structure is shown in Table 1, encompassing a total of 8 types of fake images, with each cat-
egory containing 3K images. For real images, they are randomly selected from COCO2017
and ImageNet. We validated our method on four datasets: the CoCoGLIDE dataset, the
HIFI-IFDL dataset, the GenImage dataset, and the Casia dataset. Specifically, CoCoGLIDE
is a small image editing dataset created using the GLIDE model, which contains a total of
512 manipulated images. The HIFI-IFDL dataset is a comprehensive dataset that includes
multiple image manipulation methods, and we selected only 500 images for each method.
We randomly selected 2000 images from the GenImage dataset. The Casia dataset contains
900 manually tampered manipulated images.

Evaluation Metrics. Drawing on the experiment of previous work, we select accuracy
score (ACC) and F1 score (F1) as the evaluation metrics for the experiments.

Experimental Basic Setup. HPUNet is implemented on PyTorch and trained on four
NVIDIA 3090 GPUs. The input image size is set to 256 × 256. The initial learning rate
is set to 0.0002 and decays periodically to 1 × 10−8. The batch size is set to 16, and the
number of training epochs is set to 50. The initial threshold value in the DAM module was
set to 0.5 and is updated iteratively as the training progresses. We apply common data
augmentation methods to the training process, including rotation and flipping. The split
ratio between the training set and the test set is 9:1.
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Table 1. Composition of the AITfake dataset. ✓and × represent whether the item is involved.
Copy-Move is a manual forgery method.

Method
Model Forgery Region

Guidance Num
GAN Diffusion Full Partial

BigGAN [43] ✓ × ✓ × image 3k
DDPM [7] × ✓ ✓ × image 3k

FuseDream [44] ✓ × ✓ × text 3k
GLIDE [22] × ✓ ✓ × text 3k

Inpaint Anything [45] × ✓ × ✓ text 3k
Paint by Example [25] × ✓ × ✓ image 3k

StyleCLIP [26] ✓ × × ✓ text 3k
Copy-Move - - - - - 3k

4.2. Fake Image Detection

Firstly, HPUNet is subjected to comparative experiments with the baseline methods
on the task of fake image detection, and the results of the different methods on fake image
detection are reported in Table 2. Specifically, from the first to the third row in Table 2,
it can be observed that the detection results using pre-trained detectors on the AITfake
dataset are generally poor, which is directly related to the feature expression ability learned
by the detectors from the traditional fake images. Among them, Trufor is an excellent
fake image detector, while PSCC-Net and HIFI-IFDL are representative methods based on
hierarchical networks. After unifying the training datasets, from the fourth row to the last
row, it can be observed that, compared with the baseline methods, HPUNet exhibits the
best ACC and F1 scores on both GAN-based and DM-based fake images. On the manually
manipulated images, the ACC score is 0.87% higher than the second-best, and the F1 score is
also highly competitive. Overall, our method outperforms the second-best in both the ACC
and F1 scores, with average improvements of 1.4% and 0.43%, respectively. We believe this
is because HPUNet is able to learn image features with stronger representation capabilities.
We present a comparison diagram in Figure 6, which shows the dimensionality reduction
regarding the validation set data using the t-SNE approach for different methods. It can
be observed that HPUNet is better able to distinguish different categories of fake images
compared to the other methods. Meanwhile, in Figure 7, we compare HPUNet with our
previous work, DA-HFNet, and it can be seen that HPUNet has improved in both ACC
and F1 metrics, demonstrating that our improvement measures are effective in enhancing
the detection performance of the model.

Table 2. Experimental results of fake image detection. “*” indicates that we applied the pre-trained
model released by the authors. Models without “*” were trained on the same training set. [Bold: best
result; underline: second-best result].

Method
GANs DMs Artificial AVG

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

Trufor * [10] 65.42 62.47 62.15 61.27 59.75 52.84 62.44 58.86
PSCC-Net * [39] 47.24 51.36 46.31 53.28 47.61 52.16 47.05 52.27
HIFI-IFDL * [15] 65.37 60.19 62.31 56.18 70.24 64.29 65.97 60.22
CNN-det. [46] 81.29 77.42 79.38 65.77 82.56 71.48 81.08 71.56
ResNet50 [47] 84.50 70.19 77.69 65.82 78.49 70.93 80.23 68.98

Mantra-Net [37] 82.95 77.27 84.52 78.94 81.39 77.38 82.95 77.86
DIRE [35] 71.25 60.08 90.59 89.64 62.18 58.39 74.67 69.37

PSCC-Net [39] 94.16 97.26 92.38 97.41 92.67 96.42 93.07 97.03
HIFI-IFDL [15] 95.67 97.13 95.19 96.28 96.37 97.19 95.74 96.87
DA-HFNet [19] 98.14 97.09 97.92 97.61 98.42 98.10 98.16 97.60
HPUNet (ours) 99.69 98.54 99.70 98.13 99.29 97.43 99.56 98.03
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Figure 6. t-SNE visual comparison.

Figure 7. Comparison picture of HPUNet and DA-HFNet.

4.3. Fake Image Localization

Subsequently, we conducted comparative experiments with the baseline methods on
the task of fake image localization and report the performance of the different methods
on fake image localization in Table 3. Our baseline model follows the methods used in
fake image detection. As can be observed from the first to the third row in Table 3, the
pre-trained methods do not work well on our dataset. This is because the segmentation
objects executed by the pre-trained PSCC-Net and HIFI-IFDL mainly come from manually
edited fake images, which exhibit significant artifact differences from AI-edited fake images.
Then, we used our AITfake dataset to train the PSCC and HIFI-IFDL detectors. As can be
observed from the sixth and seventh rows, they both showed significant improvements
in their ACC and F1 scores. From the fourth row to the last row, it can be observed that,
under unified training data conditions, HPUNet achieved the best performance in both
the ACC and F1 scores. The average ACC score is 1.36% higher than the second-best, and
the average F1 score is 2.03% higher. We present some localization results on large-scale
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fake images in Figure 8 and on small-scale fake images in Figure 9. It can be observed that
HPUNet exhibits excellent localization capabilities in fake images of different scales.

Table 3. Fake image localization experimental results. “*” indicates that we applied the pre-trained
model released by the authors. Models without “*” were trained on the same training set. [Bold: best
result; underline: second-best result].

Method
GANs DMs Artificial AVG

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

Trufor * [10] 77.18 78.49 74.27 76.34 68.23 61.71 73.23 72.18
PSCC-Net * [39] 55.39 51.67 58.24 54.89 57.42 61.58 57.02 56.05
HIFI-IFDL * [15] 65.27 42.88 54.36 51.94 57.81 49.82 59.15 48.21

Unet [18] 65.49 59.91 68.35 58.32 59.48 50.16 64.44 56.13
Mantra-Net [37] 84.34 79.61 81.92 74.38 86.94 80.11 84.40 78.03
PSCC-Net [39] 86.15 62.37 87.04 59.67 88.45 67.89 87.21 63.31
HIFI-IFDL [15] 89.94 88.26 87.22 86.39 90.18 91.06 88.57 88.57
DA-HFNet [19] 92.01 90.28 90.92 91.49 92.79 90.36 91.91 90.71
HPUNet (ours) 93.81 91.62 92.90 92.34 93.11 92.65 93.27 92.20

Figure 8. Comparison of large-scale fake image localization results.

4.4. Cross-Dataset Validation

To validate the effectiveness of HPUNet, we conducted cross-dataset validation exper-
iments. The training dataset was composed of the AITfake dataset, while the validation
datasets were derived from four public datasets: CoCoGLIDE [10], HIFI-IFDL [15], GenIm-
age, and Casia. We report the experimental results of the cross-dataset validation in Table 4.
As can be seen from Table 4, in the cross-dataset validation tasks, HPUNet performed at
the first or second level on all the datasets, still demonstrating a clear advantage over the
baseline methods.
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Table 4. Cross-dataset validation results. [Bold: best result; underline: second-best result].

Method

CoCoGLIDE HIFI-IFDL Dataset GenImage Casia

Detection Localization Detection Localization Detection Detection

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

PSCC-Net 44.26 39.57 58.76 43.59 74.21 68.55 68.19 71.26 62.84 57.23 75.34 70.29
HIFI-IFDL 48.75 40.33 66.89 50.17 83.84 79.91 73.59 79.48 72.58 69.81 74.38 79.54
DA-HFNet 52.18 52.36 72.15 55.47 81.67 82.36 71.10 77.68 73.05 69.54 72.82 69.93

HPUNet (ours) 54.19 48.97 78.57 61.09 82.97 81.85 74.99 81.53 80.28 74.62 77.16 75.80

Figure 9. Comparison of small-scale fake image localization results.

4.5. Ablation Experiment

To validate the effectiveness of the context feature enhancement module, we conducted
an ablation study. First, we performed an ablation on the extracted image forgery features
and report the experimental results in Table 5. We individually ablated the features used
in the method, and, as observed in rows 1–3 of Table 5, eliminating the image features
from any one branch results in varying degrees of performance degradation. Therefore, we
believe that the features from each branch contribute positively to the overall performance
of the method. In addition, we conducted experiments using the ResNet model directly as
our feature extraction network. As can be observed from the fourth and fifth rows, using a
deep network directly for feature extraction results in a significant decrease in the model’s
detection and localization performance. Therefore, we believe that using a deep network
directly for feature extraction is not beneficial for detection and localization tasks.

In the subsequent experiments, we investigated the impact of the edge loss on the
experimental results and reported the corresponding findings in Table 6. As shown in
Table 6, when the edge loss is removed, the model’s ACC and F1 scores in the forgery
category detection task drop by 4.98% and 4.31%, respectively, while the ACC and F1 scores
in the forgery region localization task decrease by 2.99% and 2.71%, respectively. This
demonstrates the positive influence of the edge loss we implemented in the experiments.
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Table 5. Ablation experiment results on image feature extraction. [Bold: best result; ✓and × represent
whether to use the item]

Image Features Detection Localization

RGB Noise Frequency ACC (%) F1 (%) ACC (%) F1 (%)

✓ ✓ 93.51 92.18 87.64 85.27
✓ ✓ 92.67 91.28 83.95 80.39

✓ ✓ 95.81 93.47 89.16 82.83
× × × 94.59 93.18 82.91 81.49
✓ ✓ ✓ 99.56 98.03 93.27 92.20

Table 6. Ablation experiment results on the impact of edge loss on the model’s detection performance.
[Bold: best result].

Method
Detection Localization

ACC (%) F1 (%) ACC (%) F1 (%)

No edgeloss 94.58 93.72 90.28 89.49
HPUNet 99.56 98.03 93.27 92.20

We also conducted another set of ablation experiments. We investigated the impact of
the proposed dual-branch feature fusion module and soft-threshold attention module on
the model’s performance and report the experimental results in Table 7. As observed in
Table 7, the experiments without the dual-branch feature fusion module and soft-threshold
attention module exhibited varying degrees of performance degradation in both the forgery
image detection and forgery image localization tasks. This validates that the attention
modules we proposed are beneficial for the experimental tasks.

Table 7. Ablation experiment results on the impact of attention mechanisms on the model’s detection
performance. [Bold: best result].

Attention Modules Detection Localization

DAM t-CBAM ACC (%) F1 (%) ACC (%) F1 (%)

✓ 84.76 82.19 88.63 82.41
✓ 92.94 89.96 90.47 87.52

✓ ✓ 99.56 98.03 93.27 92.20

Finally, we conducted experiments to verify the interrelationship between multi-level
detection and localization. The relevant experimental results are reported in Table 8. From
the first and second rows, it can be observed that, when we only use detection or localiza-
tion as the training objective, there is a significant decrease in the performance for that task.
Among them, the model performance decreases the most when only localization is used as
the training objective. Subsequently, we treated both tasks as training objectives and con-
ducted ablation experiments on the hierarchical structure. We recorded the corresponding
results for the detection task. From the third row to the last row, it can be noted that, as we
reduce the number of branches in the model, the model performance continues to decline.
This result confirms that our hierarchical detection and localization indeed improve the
model’s detection results at each level.
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Table 8. Interaction between multi-level detection and localization. When the “training task” is
detection, the testing task is localization. When the “training task” is localization, the testing task is
detection. When the “training task” is all tasks, the testing task is detection.

Training
Task Branches

GANs DMs Artificial

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

Detection 4 branches 94.51 93.47 95.39 94.67 96.28 94.19

Localization 4 branches 91.83 90.27 89.67 90.15 92.18 91.12

All tasks

1 branch 95.74 95.13 94.55 94.31 94.28 93.94
2 branches 97.92 96.75 96.86 96.48 97.12 95.24
3 branches 98.59 97.46 97.21 96.84 98.25 96.18
4 branches 99.69 98.54 99.70 98.13 99.29 97.43

5. Conclusions

In this paper, we propose a progressive UNet-based network for the detection and
localization of AI-generated forged images, achieving further improvements compared
to the baseline methods. This approach utilizes spatial domain image noise features
and RGB features, combined with frequency domain features, to capture richer forgery
traces. Firstly, the image features are extracted through a context feature enhancement
module and fused in a dual-branch attention fusion module, incorporating multiple types
of image features. Then, the detection results are used as dynamic thresholds to enhance
the task-relevant features and suppress the task-irrelevant features. Subsequently, a multi-
branch feature interaction network is employed to enable information exchange between
features of different resolutions, addressing the limited field of view of the feature maps
caused by inconsistent forgery image sizes. Finally, in a hierarchical network structure, the
decoder correlates feature maps of different resolutions, and a soft-threshold dual-attention
feature enhancement mechanism is introduced in the skip connections to preserve the main
features. The model progressively improves the higher-level results under the guidance of
the lower-level results in a hierarchical manner.

We have conducted extensive experiments to demonstrate the effectiveness of our
method for detecting and locating AI-generated fake images. We uniformly evaluated
HPUNet and the baseline model on the AITfake dataset, and our method achieved the
best scores for both the fake image detection and localization tasks. Subsequently, we
conducted cross-dataset validation experiments on four open datasets: CoCoGLIDE, HIFI-
IFDL, GenImage, and Casia. The experimental results show that HPUNet has better stability
than the baseline model. We also conducted sufficient ablation experiments to verify the
effectiveness of HPUNet from multiple perspectives.
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