
Citation: Yeh, W.-C.;

Forghani-elahabad, M. An Efficient

Algorithm for Sorting and Duplicate

Elimination by Using Logarithmic

Prime Numbers. Big Data Cogn.

Comput. 2024, 8, 96. https://

doi.org/10.3390/bdcc8090096

Academic Editors: Giuseppe Maria

Luigi Sarnè and Danilo Ardagna

Received: 12 July 2024

Revised: 2 August 2024

Accepted: 20 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

An Efficient Algorithm for Sorting and Duplicate Elimination by
Using Logarithmic Prime Numbers
Wei-Chang Yeh 1,* and Majid Forghani-elahabad 2

1 Department of Industrial Engineering and Engineering Management, National Tsing Hua University,
Hsinchu 300044, Taiwan

2 Center of Mathematics, Computing, and Cognition, Federal University of ABC, Santo André 09280-560,
São Paulo, Brazil; m.forghani@ufabc.edu.br

* Correspondence: yeh@ieee.org; Tel.: +886-3-574-2443

Abstract: Data structures such as sets, lists, and arrays are fundamental in mathematics and computer
science, playing a crucial role in numerous real-life applications. These structures represent a variety
of entities, including solutions, conditions, and objectives. In scenarios involving large datasets,
eliminating duplicate elements is essential to reduce complexity and enhance performance. This
paper introduces a novel algorithm that uses logarithmic prime numbers to efficiently sort data
structures and remove duplicates. The algorithm is mathematically rigorous, ensuring correctness
and providing a thorough analysis of its time complexity. To demonstrate its practicality and
effectiveness, we compare our method with existing algorithms, highlighting its superior speed and
accuracy. An extensive experimental analysis across one thousand random test problems shows that
our approach significantly outperforms two alternative techniques from the literature. By discussing
the potential applications of the proposed algorithm in various domains, including computer science,
engineering, and data management, we illustrate its adaptability through two practical examples in
which our algorithm solves the problem more than 3 × 104 and 7 × 104 times faster than the existing
algorithms in the literature. The results of these examples demonstrate that the superiority of our
algorithm becomes increasingly pronounced with larger problem sizes.

Keywords: efficient data sorting; duplicate elimination; logarithmic prime numbers; algorithm
design; time complexity

1. Introduction

Data structures such as sets, lists, arrays, and graphs are foundational to mathematics
and computer science and pivotal in representing and organizing diverse entities, in-
cluding solutions, conditions, objectives, and other data-centric elements [1–3]. Efficient
manipulation of these structures is vital for the seamless operation and effectiveness of
computational systems, with applications spanning algorithm optimization to complex
database management [4,5]. Yet, the presence of duplicate elements within extensive
datasets presents significant challenges, resulting in heightened computational complexity,
diminished performance, excessive memory consumption, and potential inaccuracies in
data analysis [6–10]. For instance, eliminating duplicate solutions in the reliability evalua-
tion of multistate flow networks remains a notable challenge in the literature [8,11–15]. To
remove duplicate solutions, a tree structure was used in [2] to compare vector components.
Discussing the impact of the processor count on the sorting performance, the author in [4]
explains how parallelization techniques can enhance the efficiency of sorting algorithms
for large datasets. The authors in [7] developed efficient algorithms for optimally sorting
permutations using specific types of transposition trees, namely single brooms, double
brooms, and millipede trees, and introduced a new class of millipede trees, while compar-
ing their sorting bounds with existing algorithms. The authors in [8] employed a pairwise

Big Data Cogn. Comput. 2024, 8, 96. https://doi.org/10.3390/bdcc8090096 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8090096
https://doi.org/10.3390/bdcc8090096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0001-7393-0768
https://orcid.org/0000-0003-1691-7633
https://doi.org/10.3390/bdcc8090096
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8090096?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 96 2 of 15

comparison test to eliminate duplicates. The authors in [11] developed an improved signal-
sorting algorithm based on congruence transform that effectively sorts both staggered and
periodic PRI signals, addressing the issue of pseudo-peaks and enhancing sorting accuracy,
though with a computational complexity that may require optimization for large-scale data
processing. In [15], the authors used a data structure to convert each vector into a unique
number and then compared these numbers instead of the vectors to remove duplicates.
Although comparing numbers is significantly more efficient than comparing vectors, the
data structure proposed in [15] is impractical for larger vector sizes. Thus, eliminating
duplicates becomes imperative to streamline operations, enhance efficiency, and uphold
data-processing integrity [16–19]. The authors [19] developed a simulation-based approach
for generating synthetic training data to improve the detection of structural defects in
parts using acoustic resonance testing (ART), demonstrating enhanced sorting accuracy by
integrating eigenfrequency measurements and specific geometric data.

Existing methods to tackle this issue, such as pairwise comparison tests (PCTs) and
sequential sort methods (SSMs), encounter notable limitations regarding computational
complexity and memory overhead, particularly when handling vast datasets [5,6]. This
research gap underscores the necessity for novel algorithms capable of efficiently managing
large-scale datasets with intricate structures, while providing scalable solutions for sorting
and duplicate removal [4,7,11,20–22].

To bridge this gap, we introduce a pioneering algorithm that exploits the mathe-
matical concept of logarithmic prime numbers (LPNs) to efficiently sort data structures
and eliminate duplicates with remarkable efficacy. The algorithm’s design, grounded in
mathematical rigor, ensures correctness and includes a comprehensive analysis of its time
complexity. Leveraging the unique properties of LPNs, this innovative approach offers a
fresh perspective on data structure management, distinguishing it from conventional meth-
ods. Moreover, the proposed algorithm eliminates the need for pairwise comparisons and
set-to-vector conversions, resulting in reduced memory overhead and enhanced simplicity
in implementation.

The main contributions of this work are (1) proposing a mathematically rigorous
algorithm for sorting data structures and removing duplicates, (2) providing a thorough
analysis of the algorithm’s time complexity, and (3) showcasing the algorithm’s practical
applicability across various domains. This potential is illustrated through practical exam-
ples of duplicate removal in malware analysis and gene sequence analysis. Additionally,
we demonstrate the superiority of our proposed algorithm compared to two other methods
from the literature using one thousand random test problems and two practical examples.
The insights gained have the potential to influence future developments in data-processing
algorithms, offering a valuable tool for researchers and practitioners in managing and
analyzing large datasets effectively [23–27]. The proposed algorithm marks a significant ad-
vancement in the quest for efficient and scalable methods for handling large-scale datasets
in an increasingly data-driven world.

The remainder of this paper is structured as follows: Section 2 reviews two well-
known algorithms for sorting and duplicate elimination. Section 3 introduces the proposed
algorithm, detailing its design and analyzing its time complexity. Section 4 presents
extensive experimental results, comparing the performance of the algorithms using one
thousand randomly generated test problems and two practical examples of relatively large
size. Finally, Section 5 concludes the study with remarks on the findings and suggestions
for future research directions.

2. Current Related Methods

Two primary methods are currently employed for sorting and removing duplicates:
the pairwise comparison test (PCT) and the sequential sort method (SSM).

Big Data Cogn. Comput. 2024, 8, 96 3 of 15

2.1. Pairwise Comparison Test

The PCT is an intuitive and straightforward approach that has been used widely in
the literature [5,23,25–27]. It involves comparing each pair of sets and removing one of
the two if they are identical. This process is repeated until all pairs of sets have been
compared. Many researchers have used this technique to remove duplicate solutions in
different areas [18,22,26].

To illustrate, consider seven sets: s1 = {e1, e5}, s2 = {e1, e4, e6}, s3 = {e2, e3, e5}, s4 = {e1,
e4, e6}, s5 = {e1, e6}, s6 = {e2, e6}, and s7 = {e1, e4, e6}. Table 1 demonstrates the procedure
for using the PCT to detect and remove duplicates by comparing si with sj for i < j with
i = 1, 2, . . ., 6 and j = i + 1, i + 2, . . ., 7, provided that sj has not been removed. In Table 1,
the notation “ ̸=” denotes the related pair is not equal (e.g., s1 ̸= s2), while the notation “=”
indicates that the related pair is identical (e.g., s2 = s4 in the cell at the intersection of the
third row and fifth column). When a pair of sets is found to be identical, the set with the
larger label is discarded (e.g., s4).

Table 1. The procedure of the PCT to the example.

s1 s2 s3 s4 s5 s6 s7

s1 ̸= ̸= ̸= ̸= ̸= ̸=
s2 ̸= = ̸= ̸= =
s3 ̸= ̸=
s5 ̸=

The PCT offers a simple and effective means of identifying and eliminating duplicate
sets. However, its computational complexity grows quadratically with the number of sets,
as each pair must be compared individually. This can lead to inefficiencies when dealing
with large datasets. Consequently, researchers have explored alternative methods, such as
the sequential sort method (SSM), which aims to reduce the computational burden while
maintaining the accuracy of duplicate removal [28–30].

The pairwise comparison approach, while effective in eliminating duplicates, falls
short when it comes to sorting sets. Its application becomes particularly cumbersome and
less efficient compared to the SSM, especially when dealing with numerous sets. The time
complexity of the PCT is detailed below.

Lemma 1. The time complexity of the pairwise comparison test is O(n·m2) for removing all
duplicates, where m represents the number of sets, and n denotes the maximum number of elements
in each set.

Proof. Assuming that all the sets are given as binary vectors, the time complexity of the
pairwise comparison of two sets, each with a maximum of n elements, is O(n). Since there
are m sets and each set needs to be compared with every other not-processed set, the total
number of comparisons required is given by the sum (m − 1) + (m − 2) + . . . + 1 = m(m −
1)/2. Each of these comparisons is of the order O(n). Therefore, the total time complexity of
this approach is as follows:

m(m − 1)
2

O(n) = O
(

n·m(m − 1)
2

)
= O(n·m2).

Thus, the overall time complexity of PCT for removing duplicates from m sets is
O(n·m2). □

2.2. Sequential Sort Method

Compared to PCT, the SSM provides a more streamlined solution for both sorting and
duplicate elimination. This method involves transforming all sets into vectors, assigning

Big Data Cogn. Comput. 2024, 8, 96 4 of 15

a value of one to the coordinate if the corresponding element is present in the set and
zero otherwise. The sorting process then commences by ordering the values of the first
coordinate, followed by the second, and so forth, until all coordinates are sorted.

The efficiency of the SSM is attributed to its ability to concurrently sort and identify
duplicates. By arranging the vectors based on their coordinate values, identical sets
naturally group together, facilitating the detection and removal of duplicates. This method
eliminates the need for explicit pairwise comparisons, enhancing computational efficiency.

To illustrate this method, consider the previous example with seven sets: s1 = {e1, e5},
s2 = {e1, e4, e6}, s3 = {e2, e3, e5}, s4 = {e1, e4, e6}, s5 = {e1, e6}, s6 = {e2, e6}, and s7 = {e1, e4, e6}.
After converting these sets into vectors and applying the SSM, the sorted vectors reveal
the duplicate sets, such as s2, s4, and s7, which can then be effortlessly removed. Table 2
showcases the outcomes after sequentially sorting all elements.

Table 2. The results before and after employing the SSM on the example.

i e1 e2 e3 e4 e5 e6

Before employing the SSM 1 1 0 0 0 1 0
2 1 0 0 1 0 1
3 0 1 1 0 1 0
4 1 0 0 1 0 1
5 1 0 0 0 0 1
6 0 1 0 0 0 1
7 1 0 0 1 0 1

After employing the SSM 6 0 1 0 0 0 1
3 0 1 1 0 1 0
5 1 0 0 0 0 1
1 1 0 0 0 1 0
2 1 0 0 1 0 1
4 1 0 0 1 0 1
7 1 0 0 1 0 1

The SSM indeed provides a more efficient approach to identifying and removing
duplicate sets compared to the PCT. The method’s ability to sort sets while facilitating
duplicate removal is a significant advantage, especially when dealing with large datasets.
The time complexity of the SSM is discussed below.

Lemma 2. The time complexity of the sequential sort method is O(n·m·log(m)) for sorting all sets
and removing all duplicate sets, where m represents the number of sets, and n denotes the maximum
number of elements in each set.

Proof. The time complexity to represent the m sets as binary vectors, where each set has a
maximum of n elements, is O(mn). Following this, the method performs sorting operations
on each coordinate of these vectors. Efficient sorting algorithms such as quicksort or merge
sort, which have an average time complexity of O(m·log(m)) for sorting m elements, are
typically used [7,11]. Since the SSM sorts the vectors based on their coordinate values and
there are, at most, n coordinates in each vector, the overall time complexity for sorting all
coordinates becomes O(n·m·log(m)).

Therefore, the total time complexity of this approach, which includes representing the
sets as binary vectors and sorting them, is as follows:

O(mn) + O(n·m·log(m)) = O(n·m·log(m)).

Thus, the SSM has a time complexity of O(n·m· log(m)). □

Compared to the PCT, which has a time complexity of O(n·m2), the SSM offers a
significant improvement in efficiency, particularly when the number of sets (m) is large. The

Big Data Cogn. Comput. 2024, 8, 96 5 of 15

logarithmic factor introduced by the sorting algorithm helps to reduce the computational
burden, making the SSM more scalable and suitable for handling extensive datasets.

It is worth noting that the SSM’s efficiency can be further enhanced by employing
optimized sorting algorithms or parallel processing techniques [4,7,22,28]. These opti-
mizations can help to reduce the constant factors associated with the time complexity and
improve the method’s performance in practice. Moreover, the SSM’s ability to sort sets
provides an additional benefit beyond duplicate removal. Sorted sets can be useful in
various applications, such as set intersection, union, and comparison operations, which can
be performed more efficiently on sorted sets.

3. The Proposed Method

In this section, we introduce a novel method for sorting sets and removing duplicates
based on the concept of logarithmic prime numbers (LPNs). The proposed method aims to
address the limitations of existing approaches, such as the PCT and the SSM, by providing
an efficient, simple, and scalable solution.

3.1. Logarithmic Prime Number and Algorithm Description

A logarithmic prime number (LPN) is defined as the logarithm of a prime number, such
as log(2) and log(7). The use of LPNs in this context is motivated by their unique properties,
which enable the transformation of sets into distinct numbers. Assume that sets s1, s2,
. . ., and sm are given and U =

⋃m
i=1 si is the union of all the sets. Let r be the number of

elements in U and let P = { p1, p2, . . ., pr} be the set of the first r prime numbers. We define
the LPN associated with each element, ei ∈ U as l(ei) = log(pi), where pi ∈ P, for i = 1, 2,
. . ., r. For example, l(e1) = log(2), l(e2) = log(3), l(e3) = log(5), etc. Hence, the LPNs associated
with each element are clearly unique. Then, we define the LPN associated with each set as
the sum of the LPNs of its elements. Hence, assuming s as a set of elements, we have

L(s) = ∑ei∈s l(ei) = ∑ei∈s log(pi), (1)

where ei is the ith element in U, and l(ei) is its LPN. To illustrate, Table 3 shows the procedure
of calculating the LPN, L(si) for each set si, where i = 1, 2, . . ., 7, in the example discussed in
Section 2.

Table 3. The procedure of calculating the LPN for each set in the example.

i e1 e2 e3 e4 e5 e6 L(si)

1 1 0 0 0 1 0 log(2) + log(11) = 1.342423
2 1 0 0 1 0 1 log(2) + log(7) + log(13) = 2.260071
3 0 1 1 0 1 0 log(3) + log(5) + log(11) = 2.217484
4 1 0 0 1 0 1 log(2) + log(7) + log(13) = 2.260071
5 1 0 0 0 0 1 log(2) + log(13) = 1.414973
6 0 1 0 0 0 1 log(3) + log(13) = 1.591065
7 1 0 0 1 0 1 log(2) + log(7) + log(13) = 2.260071

The fundamental theorem of arithmetic states that every positive integer greater than
1 can be uniquely represented as a product of prime numbers, up to the order of the
factors [1]. Accordingly, the following result shows the uniqueness of the corresponding
LPNs to each set.

Theorem 1. Let x1, x2, . . ., xp and y1, y2, . . ., yq be two sequences of the prime numbers. We

have ∑
p
i=1 log(x i) = ∑

q
j=1 log(y j

)
if and only if p = q and xi = yi, for i = 1, 2, . . . , p.

Proof. If p = q and xi = yi, for i = 1, 2, . . . , p, then it is trivial that ∑
p
i=1 log(x i) =

∑
q
j=1 log(y j

)
. Now, assume that ∑

p
i=1 log(x i) = ∑

q
j=1 log(y j

)
. Hence, exp

(
∑

p
i=1 log(x i)

)
=

Big Data Cogn. Comput. 2024, 8, 96 6 of 15

exp
(

∑
q
j=1 log(y j

))
, and so ∏

p
i=1 xi = ∏

q
j=1 yj. As x1, x2, . . ., xp and y1, y2, . . ., yq are prime

numbers, and prime factorizations are unique, we conclude that p = q and xi = yi, for
i = 1, 2, . . . , p. Hence, the proof is complete. □

According to the definition of LPNs, the theorem above demonstrates the uniqueness
of the associated LPNs to each set, and therefore the following result is at hand.

Corollary 1. The sets si and sj are identical if and only if L(si) = L(sj).

Main properties: The LPN, L(s), has several key properties that make it effective for
sorting sets and eliminating duplicates.

1. It assigns a unique LPN to each distinct set, ensuring no two different sets share
the same number. This is essential for accurately distinguishing between sets and
identifying duplicates.

2. The LPN, L(s), increases consistently as elements are added to the set s. This property
helps maintain the relative order of sets when they are sorted by their LPNs.

3. The LPN, L(s), offers a compact representation of the set s, encoding the entire set with
just one value. This reduces memory usage and enhances the efficiency of sorting and
comparison processes.

By exploiting these properties of LPNs, the proposed method can effectively sort sets
and remove duplicates without the need for pairwise comparisons or the conversion of
sets into vectors.

The fundamental idea behind the proposed algorithm is to transform each set into a
unique number, ensuring that different sets are assigned different numbers. Subsequently,
these numbers are sorted to facilitate the identification and removal of duplicates. To
optimize runtime efficiency, the LPN of each element is calculated only once at the be-
ginning of the algorithm and then directly utilized in computing the LPNs of the related
sets. This approach eliminates the need for repetitive calculations of the LPN for each arc.
Furthermore, unlike the SSM, the proposed algorithm does not require the conversion of
each set into a vector, streamlining the sorting and duplicate removal process. Once the
LPNs for all sets have been computed, any sorting algorithm can be applied to arrange
these numbers in ascending or descending order. During the sorting process, duplicate
numbers, which correspond to duplicate sets, can be easily identified and eliminated.

3.2. Pseudo-Code

Let S and U be the set of the given sets s1, s2, . . ., and sm for sorting and deduplication,
and the union of all sets in S, respectively. One note that the elements of the sets s1, s2,
. . ., and sm are denoted by ej. Let r be the total number of all the elements ej in all the sets,
and, accordingly, e1, e2, e3, . . ., er be all the elements in all the sets, which constitute the
set U. For instance, in the example with s1 = {e1, e5}, s2 = {e1, e4, e6}, s3 = {e2, e3, e5}, s4 =
{e1, e4, e6}, s5 = {e1, e6}, s6 = {e2, e6}, and s7 = {e1, e4, e6}, we have m = 7, S = { s1, s2, . . ., s7},
U= s1 ∪ s2 ∪ · · · ∪ s7 ={ e1, e2, e3, e4, e5, e6}, and, accordingly, r = 6. Let also P be the set of
the first r prime numbers and assume that index(e) refers to the index or position of the
element e in U. The following pseudo-code, Algorithm 1, provides a high-level overview
of the proposed algorithm based on LPNs:

Big Data Cogn. Comput. 2024, 8, 96 7 of 15

Algorithm 1: Logarithmic Prime Number Approach

Input: S = { s1, s2, . . ., sm} and P = { p1, p2, . . ., pr}, which means there are a total of r different
elements in all the sets.
Output: a new S containing the sorted and duplicate-free sets.
Step 0: Determine U =

⋃m
i=1 si = {e1, e2, . . . , er}. Let L be an empty map (dictionary) to store the

LPNs of elements. Calculate LPNs as l(ei) = log(pi), for i = 1, 2, . . ., r, and let L(s) = 0 for each set s
in S.
Step 1: Calculate the LPN for each set s in S using L(s) = L(s) + l(e).
Step 2: Sort the sets based on their LPNs.
Step 3: Remove duplicate sets in S if their LPNs are equal.

The best way to understand and illustrate an algorithm is through a simple example.
Hence, we use the same example of the sets s1 = {e1, e5}, s2 = {e1, e4, e6}, s3 = {e2, e3, e5}, s4 =
{e1, e4, e6}, s5 = {e1, e6}, s6 = {e2, e6}, and s7 = {e1, e4, e6} to detect and remove the duplicates
by using Algorithm 1.

Step 0. We have U = {e1, e2, e3, e4, e5, e6} and log(2) = 0.301030, log(3) = 0.477121, log(5) =
0.698970, log(7) = 0.845098, log(11) = 1.041393, log(13) = 1.113943. Also, we set L(si) = 0, for i =
1, 2, . . ., 6.

Step 1. We calculate L(s1) = log(2) + log(11) = 1.342423, L(s2) = log(2) + log(7) + log(13)
= 2.260071, L(s3) = log(3) + log(5) + log(11) = 2.217484, L(s4) = log(2) + log(7) + log(13) =
2.260071, L(s5) = log(2) + log(13) = 1.414973, L(s6) = log(3) + log(13) = 1.591065, L(s7) = log(2)
+ log(7) + log(13) = 2.260071.

Step 2. The sorted sets are s1, s5, s6, s3, s2, s4, and s7.
Step 3. As the LPNs for s2, s4, and s7 are equal, s4 and s7 are duplicated and should be

removed. Hence, the solution set is {s1, s2, s3, s5, s6}.
This pseudo-code provides a concise representation of the proposed algorithm. The

actual implementation may vary based on the programming language and specific require-
ments of the project. It is noteworthy that the sorting algorithm in Step 2 can be chosen
based on the desired time complexity and the characteristics of the dataset [19,28]. The
choice of the sorting algorithm does not affect the overall logic of the proposed method.
Furthermore, it is worth noting that Euclid’s theorem demonstrates the existence of an
infinite number of prime numbers [31]. Consequently, for any sizable set of members,
regardless of its length, our proposed method allows for the removal of duplicates by
establishing correspondence with LPNs associated with the set’s members.

While the proposed method is efficient for sorting and removing duplicates in sets of
a relatively large size, it is important to note that floating-point imprecision can impact its
accuracy when dealing with very large sets, such as those containing 10100 distinct elements.
The precision required to accurately distinguish between logarithmic values of large prime
numbers poses a challenge, which should be considered a limitation of this approach.

3.3. Time Complexity Analysis

We compute the time complexity of our proposed approach based on the pseudo-code
provided in Section 3.2. The time complexity of Step 0 to determine the set U and calculate
the LPNs, l(ei), for I = 1, 2, . . ., r is of the order of O(r). In Step 1, L(s) for each set, s in S is
calculated by iterating through the elements of the set and summing their corresponding
LPNs. This operation at worst-case has a time complexity of O(n), where n represents the
maximal cardinality of each set in S. Since there are m sets in S, the time complexity of Step
1 is O(m·n). After obtaining the LPNs for all sets, sorting these numbers using an efficient
sorting algorithm, such as quicksort or merge sort, has a time complexity of O(m·log(m)),
where m is the number of sets. Thus, Step 2 is of the order of O(m·log(m)). The sorting
process also facilitates the identification and removal of duplicates, as duplicate sets will
have the same LPN.

Therefore, as the steps are executed in parallel, the time complexity of our proposed
LPN approach (LPNA) is O(r + m·n + m·log(m)). As there are m sets among which the

Big Data Cogn. Comput. 2024, 8, 96 8 of 15

maximum number of elements in a set is n, hence the total number of distinct elements in
all the sets is less than m·n, that is, r < m·n. As a result, O(r + m·n + m·log(m)) = O(m·n +
m·log(m)), and the following result is at hand.

Lemma 3. The time complexity of the proposed LPN approach is O(m·n +m·log(m)), where m is
the number of sets, and n is the maximal number of elements in each set.

Next, we describe briefly the advantages of our proposed method compared to the
other two approaches.

3.4. Advantages of the Proposed Algorithm

The analysis of our algorithm, LPNA, and comparison to existing methods, i.e., PCT
and SSM, demonstrate several key advantages:

1. Efficiency: The LPNA enhances computational efficiency and improves time complex-
ity in processing large datasets. By calculating the LPN of each element only once
and directly using it for the related sets, the method reduces redundant computations,
which is especially beneficial when the number of sets significantly exceeds the num-
ber of elements. Based on the complexity results, Table 4 below provides all the time
complexities together to have a more convenient comparison of the algorithms.

Table 4. The time complexity of approaches.

Approaches Time Complexities

PCT O(n·m2)
SSM O(n·m·log(m))

LPNA O(m·n +m·log(m))

The table clearly shows the superiority of our proposed approach compared to the
other two available methods in the literature. Moreover, in large enough practical cases,
the number of sets, m, can be greater than 10n, and, hence, log(m) > n; accordingly, the
time complexity of our proposed algorithm in such cases is O(m·log(m)), which shows that
LPNA outperforms the other approaches more significantly as the problem size increases.

2. Simplicity: The proposed algorithm streamlines the sorting process and simplifies
the overall approach in the following ways. Firstly, by representing sets as LPNs, it
reduces the complexity of sorting from handling intricate set structures to merely
organizing a list of numbers. This simplification not only makes the sorting operation
more efficient but also easier to implement. Secondly, the proposed method avoids the
need to convert each set into a vector, thereby simplifying the process of sorting and
removing duplicates. This leads to a reduction in memory overhead and enhances the
readability and maintainability of the algorithm, making it more straightforward and
user-friendly, particularly for large datasets.

3. Compatibility: The proposed method exhibits high compatibility and flexibility, as it
can be integrated with any sorting algorithm. This adaptability allows for tailored
implementation and optimization based on specific requirements, making the method
suitable for a wide range of applications. Furthermore, this compatibility facilitates
the integration of the method with existing systems, enhancing its applicability across
various domains.

Although the superiority of our proposed approach to the other discussed methods
is clear, in the next section, we provide extensive experimental results to demonstrate the
practical efficiency of the proposed method

4. Experimental Results

Here, we first compare all three methods on one thousand randomly generated test
problems and use the CPU times to compare the algorithms’ performances. Comparing the

Big Data Cogn. Comput. 2024, 8, 96 9 of 15

final solutions of the algorithms on these test problems is also a practical way to validate the
algorithms’ results. Moreover, we discuss several potential applications of our proposed
approach in various domains and provide two practical examples of duplicate removal in
malware analysis and gene sequence analysis to show how the proposed approach can be
adopted in real-world problems.

4.1. Randomly Generated Test Problems

We evaluate our proposed technique, logarithmic prime number approach (LPNA),
and the existing methods in the literature outlined in Section 2, pairwise comparison test
(PCT) and sequential sort method (SSM), on one thousand test problems to demonstrate
the practical efficiency LPNA. All three algorithms are implemented in the MATLAB
programming environment. Remembering that m, r, and n denote, respectively, the number
of sets, the number of all the different elements in all the sets, and the maximum number
of elements in each set, the test problems are generated using the MATLAB command
randi ([0 1], m, r), where m (the number of sets in each test problem) and r (the maximum
number of elements in each set) are randomly selected integers from the ranges [8000,
10,000] and [20, 25], respectively. Each test problem is represented by a binary matrix
with m rows and r columns, where each row is a vector representing a set. A value of 1
in a row indicates that the corresponding element belongs to the set, while a value of 0
indicates that it does not. Hence, the number of nonzero entities in each row, which is
less than or equal to r, represents the number of elements in the set associated with that
row. This process generates one thousand test problems, each containing m sets with up
to r elements. To ensure the presence of duplicate sets in each test problem, we generate
a random integer, d, from the range [⌈0.05 × m⌉, ⌈0.2 × m⌉]. We then remove d sets from
each test problem and replace them with d randomly selected duplicate sets. Moreover, a
random number generator with a fixed seed is used to ensure the reproducibility of the
results. The numerical computations were conducted on a computer equipped with a 12th
Gen Intel(R) Core(TM) i5-12500 processor running at 3.00 GHz and with 32 GB of RAM.

We provide the average times of each algorithm to solve each one-hundred test
problem in Table 5 below. The columns in this table are ith (the ith one-hundred test
problem), m (the average number of sets in each test problem), r (the average of the
maximum number of elements in a set), tPCT (the running time of PCT), tSSM (the running
time of SSM), tLPNA (the running time of LPNA), tPCT/tLPNA, and tSSM/tLPNA (the time
ratios). The last two columns of this table demonstrate that, on average, our proposed
algorithm solved the test problems over 2600 times faster than PCT and more than 220 times
faster than SSM. This stark contrast underscores the clear superiority of our proposed
algorithm over those from the existing literature.

Table 5. The results of the comparison of three methods.

ith One
Hundred m r tPCT tSSM tLPNA tPCT/tLPNA tSSM/tLPNA

1 8860 22.71 11.8533 0.9996 0.0046 2566.8 216.45
2 9000.8 22.14 12.1828 0.9647 0.0046 2668.7 211.32
3 8938.3 22.48 11.8803 0.9717 0.0044 2676.5 218.92
4 9080.1 22.24 12.2871 1.0144 0.0046 2661.3 219.71
5 9027.5 22.68 12.0707 1.0307 0.0045 2683.1 229.11
6 9036 22.58 12.1253 1.0378 0.0045 2720.8 232.87
7 8977.2 22.49 12.0541 1.0078 0.0044 2745.3 229.52
8 9071 22.42 12.1596 1.0041 0.0044 2768.9 228.64
9 9043.4 22.59 12.1674 1.0479 0.0045 2681.5 230.95

10 9069.4 22.22 12.2237 0.9888 0.0045 2710 219.21

While the table provides a clear illustration of the superiority of our proposed algo-
rithm over others, we sought to offer a more intuitive comparison by analyzing the running
times of the algorithms across the one thousand random test problems. To achieve this,

Big Data Cogn. Comput. 2024, 8, 96 10 of 15

we utilized the performance profile methodology introduced by Dolan and Moré [32].
This approach considers the ratio of the execution times of each algorithm relative to the
best-performing one.

Assuming ti,j for i = 1, 2, 3 represents the running times of PCT, SSM, and LPNA,
respectively, for j = 1, 2, . . ., 1000, the performance ratios are as follows:

ri,j =
ti,j

mini=1, 2, 3
{

ti,j
} (2)

for i = 1, 2, 3. The performance of each algorithm is calculated as Pri(τ) =
ni
n , where ni is

the number of test problems for which ri,j ≤ τ, j = 1, 2, . . ., 1000.
Figure 1 visually represents the performance profile analysis conducted for the three

algorithms. Notably, LPNA emerges as the superior performer, demonstrating faster
solution times for all test problems. The horizontal axis highlights instances where LPNA
has solved specific problems over 3500 times faster than another algorithm. To facilitate
interpretation, four key points, P1, P2, P3, and P4, have been identified on the diagrams.
Points P1 and P3 indicate that LPNA solved at least 20% of the test problems more than
481 times faster than SSM and 3442 times faster than PCT, respectively. Similarly, points
P2 and P4 demonstrate that LPNA solved at least 50% of the test problems at least 397
times faster than SSM and 3222 times faster than PCT. Overall, in this performance profile,
algorithms positioned higher on the diagram are favored over others [32]. This analysis
unequivocally highlights the effectiveness of our proposed algorithm compared to others
in the literature.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 10 of 15

𝑟, = 𝑡,𝑚𝑖𝑛ୀଵ,ଶ,ଷ{𝑡,} (2)

for i = 1, 2, 3. The performance of each algorithm is calculated as 𝑃𝑟(𝜏) = 𝑛 𝑛ൗ , where ni
is the number of test problems for which 𝑟𝑖,𝑗 ≤ 𝜏, j = 1, 2, …, 1000.

Figure 1 visually represents the performance profile analysis conducted for the three
algorithms. Notably, LPNA emerges as the superior performer, demonstrating faster so-
lution times for all test problems. The horizontal axis highlights instances where LPNA
has solved specific problems over 3500 times faster than another algorithm. To facilitate
interpretation, four key points, P1, P2, P3, and P4, have been identified on the diagrams.
Points P1 and P3 indicate that LPNA solved at least 20% of the test problems more than
481 times faster than SSM and 3442 times faster than PCT, respectively. Similarly, points
P2 and P4 demonstrate that LPNA solved at least 50% of the test problems at least 397 times
faster than SSM and 3222 times faster than PCT. Overall, in this performance profile, al-
gorithms positioned higher on the diagram are favored over others [32]. This analysis un-
equivocally highlights the effectiveness of our proposed algorithm compared to others in
the literature.

Figure 1. CPU time–performance profiles for all three approaches.

Next, we explore various potential applications of our proposed method across dif-
ferent fields. We also present two examples, duplicate removal in malware analysis and
gene sequence analysis, to demonstrate its practical utility. These examples illustrate how
our approach can be effectively applied to real-world challenges.

4.2. Potential Applications and Practical Examples
The proposed method based on LPNs offers a straightforward approach to handling

large datasets, enhancing the efficiency of sorting and duplicate removal processes. Its
compatibility with various sorting algorithms provides flexibility in implementation and
optimization, catering to specific requirements across different domains. This versatility
and practicality make the method a valuable asset in fields that require efficient manipu-
lation and analysis of large-scale datasets. Some potential areas of application include the
following:
1. In cybersecurity, analysts often deal with large datasets of malware samples. Dupli-

cate samples can slow down the analysis and cause redundant work. By removing
duplicates, the analysis becomes faster and more efficient, improving detection and
mitigation strategies. This way, analysts can quickly identify unique threats. In Ex-
ample 1, we compare the performance of LPNA and SSM in removing duplicates

Figure 1. CPU time–performance profiles for all three approaches.

Next, we explore various potential applications of our proposed method across differ-
ent fields. We also present two examples, duplicate removal in malware analysis and gene
sequence analysis, to demonstrate its practical utility. These examples illustrate how our
approach can be effectively applied to real-world challenges.

4.2. Potential Applications and Practical Examples

The proposed method based on LPNs offers a straightforward approach to handling
large datasets, enhancing the efficiency of sorting and duplicate removal processes. Its
compatibility with various sorting algorithms provides flexibility in implementation and
optimization, catering to specific requirements across different domains. This versatility
and practicality make the method a valuable asset in fields that require efficient manipula-
tion and analysis of large-scale datasets. Some potential areas of application include the
following:

Big Data Cogn. Comput. 2024, 8, 96 11 of 15

1. In cybersecurity, analysts often deal with large datasets of malware samples. Dupli-
cate samples can slow down the analysis and cause redundant work. By removing
duplicates, the analysis becomes faster and more efficient, improving detection and
mitigation strategies. This way, analysts can quickly identify unique threats. In Exam-
ple 1, we compare the performance of LPNA and SSM in removing duplicates from
malware datasets, showing the effectiveness and efficiency of our proposed algorithm.

2. In bioinformatics, researchers frequently work with large datasets of genetic sequences,
where duplicates can occur due to sequencing errors or redundant data submissions.
Removing these duplicates is essential for accurate comparative analyses, like identi-
fying unique genetic markers or mutations. Duplicates can lead to misleading results
when comparing gene sequences to identify disease-related genes. Algorithms are
used to filter out redundant sequences, ensuring the integrity of the analysis. In
Example 2, we show how our proposed algorithm effectively detects and eliminates
duplicate gene sequences, demonstrating its superiority over other algorithms from
the literature.

3. The method can identify and remove duplicate data entries in large databases, en-
hancing storage efficiency and data integrity.

4. By efficiently sorting and removing duplicate user preferences or item similarities,
our proposed method can improve the performance of recommendation algorithms,
leading to more precise and relevant suggestions for users.

5. The method can be utilized to sort and eliminate duplicate text fragments or docu-
ments, supporting tasks like plagiarism detection, document clustering, and informa-
tion retrieval.

There are several other areas in which a duplicate detection algorithm can be used,
such as in experimental evaluation, optimization techniques, machine learning for a dataset
preparation, and so forth.

Example 1. (Duplicate Removal in Malware Analysis)

As an illustration of many applications of the proposed method, let us consider a sce-
nario where a cybersecurity firm specializes in analyzing malware samples to identify new
threats and develop appropriate defense mechanisms [33]. Within their analysis pipeline,
they amass a significant volume of binary state vectors representing diverse attributes and
behaviors of malware, encompassing system calls, file operations, network activities, and
memory usage. Recognizing the imperative of streamlining the malware analysis process
and enhancing threat detection accuracy, the administration initiates a request for duplicate
removal before data-processing ensues. Integral to this process is the extraction of relevant
features from the binary state vectors, including the frequency of system calls, file access
patterns, network traffic characteristics, and behavioral anomalies. To demonstrate the
practicality and efficacy of our proposed approach in real-world applications, we consider
the scenario where five hundred thousand 50-tuple binary state vectors are aggregated and
subjected to a duplicate removal procedure. Hence, in this example, there are m = 500,000
sets each of which contains at most r = 50 elements.

In our investigation, we apply both our proposed method and the SSM to eliminate
duplicates from this dataset, facilitating a comparative analysis to ascertain the correctness
and efficacy of each approach. It is noteworthy that, based on experimental findings
outlined in Section 4.2, we discern that the PCT is impractical for such large-scale data and
would entail significant computational time. Therefore, we exclude this method from our
example. The ensuing results are summarized in Table 6 below, with similar columns as in
Table 5. Notably, the observed outcomes demonstrate the outstanding superiority of our
proposed algorithm compared to the others in a relatively large example. As Table 4 shows,
our algorithm solves the example more than 30,000 times faster than SSM.

Big Data Cogn. Comput. 2024, 8, 96 12 of 15

Table 6. The final results of Example 1.

m r tSSM tLPNA tSSM/tLPNA

5 × 105 50 8641.8 0.28622 30,193

Example 2. (Duplicate Removal in Gene Sequence Analysis)

DNA, or deoxyribonucleic acid, is the hereditary material in almost all living organ-
isms. It is composed of two long strands forming a double helix. Each strand is made up of
simpler molecules called nucleotides, which are in turn composed of a sugar, a phosphate
group, and a nitrogenous base. The four nitrogenous bases in DNA are adenine (A), cy-
tosine (C), guanine (G), and thymine (T). These bases pair in a specific manner: adenine
pairs with thymine (A-T), and cytosine pairs with guanine (C-G). The sequence of these
bases encodes genetic information essential for the growth, development, and functioning
of living organisms [34,35].

In the area of bioinformatics, researchers often engage in extensive analysis of genetic
sequences to identify unique genetic markers or mutations linked to various diseases.
Gene sequences are constructed from four nucleotides, represented by the letters A, C, G,
and T [34,35]. Imagine a scenario where a genetic research lab is focused on analyzing
large datasets of gene sequences to uncover disease-related genes and understand genetic
variations. These datasets comprise thousands of gene sequences represented as strings of
these four letters.

To ensure the accuracy and efficiency of their comparative analyses, the lab needs to
eliminate duplicate sequences that may have arisen due to sequencing errors or redundant
data submissions. This duplicate removal process is essential for preventing misleading re-
sults and maintaining the integrity of the analysis. They collect one million gene sequences,
each represented by a string of 100 nucleotides (letters A, C, G, and T). Hence, in this
example, we have m = 1,000,000 sets each with at most r = 100 elements. By applying the
duplicate removal algorithm, the lab can streamline its data-processing pipeline, ensuring
that unique gene sequences are analyzed.

To simulate such a case, we use the MATLAB function randseq (100) to generate one
million random DNA sequences, each consisting of 100 nucleotides. To ensure the presence
of duplicate sequences, we remove 15% of the generated sequences and add the same
number of randomly selected duplicate sequences. Then, we apply both the LPNA and the
SSM to remove the duplicates.

An important note is that these sequences cannot be represented as binary vectors,
requiring an adaptation of LPNA for this case. Let e1, e2, . . ., e100 represent the nucleotides
in each sequence, where ei is one of the letters A, C, G, or T for i = 1, 2, . . ., 100. Define f (ei)
as 1, 2, 3, or 4 if ei is A, C, G, or T, respectively. The adapted LPN of element ei is then l(ei) =
f (ei)·log(pi), for i = 1, 2, . . ., 100, where pi is the ith prime number (e.g., p1 = 2, p2 = 3, p3 = 5,
etc.). The LPN for each set (or sequence) remains as given in Equation (1).

We employ both LPNA and SSM in this example, and the final results are presented in
Table 7, with similar columns as in Table 5. The table shows that our proposed algorithm
can solve such a relatively large-sized example in less than one CPU second, while the SSM
needs more than 18 CPU hours to tackle it. It also shows that LPNA solves the example
more than 71,000 times faster than SSM. Compared to the previous numerical results, the
example vividly illustrates that, as the problem size increases, the performance advantage
of our method also grows.

Table 7. The final results of Example 2.

m r tSSM tLPNA tSSM/tLPNA

106 100 66,707 0.92685 71,971

Big Data Cogn. Comput. 2024, 8, 96 13 of 15

By showcasing the effectiveness of our proposed approach alongside a conventional
method like SSM, we underscore the practical utility and efficiency gains achievable through
our method, particularly in the context of large-scale data-processing tasks, such as gene
sequence analysis.

5. Conclusions

In this study, we explored various methods for sorting sets and removing duplicates,
with a focus on the pairwise comparison test, the sequential sort method, and our newly
proposed algorithm based on LPNs. The pairwise comparison test offers a simple approach
to duplicate removal but is hindered by high computational complexity, especially in
large datasets. The sequential sort method improves efficiency by simultaneously sorting
and removing duplicates but requires converting sets into vectors, which can be memory-
intensive.

To overcome these challenges, we introduced an innovative algorithm that leverages
LPNs to represent each set uniquely, enabling efficient sorting and duplicate removal with-
out the need for pairwise comparisons or set-to-vector conversions. This method utilizes
the fundamental theorem of arithmetic to ensure the uniqueness of the LPN representation
for each set. We demonstrated the theoretical and practical superiority of our proposed
approach compared to the pairwise comparison test and sequential sort method through
the complexity analysis results and extensive numerical results obtained on one thousand
randomly generated test problems.

The proposed algorithm has the potential to revolutionize the way we handle large-
scale datasets across various domains. By providing a more efficient, simple, and com-
patible approach to sorting and duplicate removal, this method can significantly reduce
computational complexity and streamline data-processing pipelines. The impact of this
work extends beyond the realm of computer science and mathematics, as it can be applied
to diverse fields, such as bioinformatics, recommendation systems, text processing, and
more. The algorithm’s ability to efficiently process massive datasets can lead to break-
throughs in data-driven research, enabling faster and more accurate insights that drive
innovation and discovery. Moreover, the compatibility of the proposed method with vari-
ous sorting algorithms opens opportunities for tailored implementation and optimization
based on specific domain requirements. This flexibility makes the algorithm a valuable
tool for researchers and practitioners seeking to push the boundaries of data-processing
and analysis.

Future research will focus on conducting comprehensive experimental evaluations
to compare the performance of our method with other advanced techniques, exploring
optimization strategies to further enhance its efficiency, investigating extensions to accom-
modate more complex data structures, and examining its integration with other algorithms
for holistic data processing and analysis solutions. By building upon the foundation laid
by this work, we aim to contribute to the development of cutting-edge data-processing
techniques that can tackle the ever-growing challenges of the big-data era.

Author Contributions: Conceptualization, W.-C.Y. and M.F.-e.; methodology, W.-C.Y.; validation, W.-
C.Y. and M.F.-e.; formal analysis, W.-C.Y. and M.F.-e.; investigation, W.-C.Y. and M.F.-e.; resources, W.-
C.Y. and M.F.-e.; data curation, W.-C.Y. and M.F.-e.; writing—original draft preparation, W.-C.Y. and
M.F.-e.; writing—review and editing, M.F.-e.; visualization, W.-C.Y. and M.F.-e.; project administration,
W.-C.Y.; funding acquisition, W.-C.Y. and M.F.-e. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported in part by NTHU under grant 113Q2714E1 titled ‘A Study on
Fairness-Constrained Knee Osteoarthritis Severity Classification Model Based on Deep Learning and
Swarm Intelligence Optimization’. This research was also funded in part by the Ministry of Science
and Technology, R.O.C., grant numbers MOST 102-2221-E-007-086-MY3 and MOST 104-2221-E-007-
061-MY3; and in part by FAPESP, grant number 2023/13667-5.

Big Data Cogn. Comput. 2024, 8, 96 14 of 15

Data Availability Statement: Data sharing does not apply to this article, as no new data were
collected or studied in this study.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Selvi, P. An Analysis on Removal of Duplicate Records using Different Types of Data Mining Techniques: A Survey. Int. J. Comput.

Sci. Mob. Comput. 2017, 6, 38–42.
2. Forghani-Elahabad, M.; Francesquini, E. Usage of task and data parallelism for finding the lower boundary vectors in a

stochastic-flow network. Reliab. Eng. Syst. Saf. 2023, 238, 109417. [CrossRef]
3. Andriyanov, N.; Dementev, V.; Tashlinskiy, A.; Vasiliev, K. The Study of Improving the Accuracy of Convolutional Neural

Networks in Face Recognition Tasks. In Pattern Recognition; ICPR International Workshops and Challenges. ICPR 2021. Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12665. [CrossRef]

4. Marszałek, Z. Parallelization of Modified Merge Sort Algorithm. Symmetry 2017, 9, 176. [CrossRef]
5. Raj, D.; Remya, R. An Efficient Technique for Removing Duplicates in A Dataset. Int. J. Eng. Res. Technol. 2013, 2, 3889–3893.
6. Svitov, D.; Alyamkin, S. Margindistillation: Distillation for margin-based softmax. arXiv 2020, arXiv:2003.02586.
7. Sadanandan, I.T.; Chitturi, B. Optimal Algorithms for Sorting Permutations with Brooms. Algorithms 2022, 15, 220. [CrossRef]
8. Yeh, W.C. Novel Binary-Addition Tree Algorithm (BAT) for Binary-State Network Reliability Problem. Reliab. Eng. Syst. Saf. 2021,

208, 107448. [CrossRef]
9. Niu, Y.F.; Shao, F.M. A practical bounding algorithm for computing two-terminal reliability based on decomposition technique.

Comput. Math. Appl. 2011, 61, 2241–2246. [CrossRef]
10. Dhivyabharathi, G.V.; Kumaresan, S. A survey on duplicate record detection in real world data. In Proceedings of the 2016 3rd

International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 22–23 January
2016. [CrossRef]

11. Dong, H.; Ge, Y.; Zhou, R.; Wang, H. An Improved Sorting Algorithm for Periodic PRI Signals Based on Congruence Transform.
Symmetry 2024, 16, 398. [CrossRef]

12. Huang, D.H. An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints.
Reliab. Eng. Syst. Saf. 2024, 249, 110217. [CrossRef]

13. Forghani-elahabad, M.; Alsalami, O.M. Using a Node–Child Matrix to Address the Quickest Path Problem in Multistate Flow
Networks under Transmission Cost Constraints. Mathematics 2023, 11, 4889. [CrossRef]

14. Xu, X.Z.; Niu, Y.F.; Song, Y.F. Computing the reliability of a stochastic distribution network subject to budget constraint. Reliab.
Eng. Syst. Saf. 2021, 216, 107947. [CrossRef]

15. Yeh, W.C. Search for All d-Mincuts of a Limited-Flow Network. Comput. Oper. Res. 2002, 29, 1843–1858. [CrossRef]
16. Niu, Y.F.; Wei, J.H.; Xu, X.Z. Computing the Reliability of a Multistate Flow Network with Flow Loss Effect. IEEE Trans. Reliab.

2023, 72, 1432–1441. [CrossRef]
17. Wang, Q.; Jaffres-Runser, K.; Xu, Y.; Scharbarg, J.-L.; An, Z.; Fraboul, C. TDMA Versus CSMA/CA for Wireless Multihop

Communications: A Stochastic Worst-Case Delay Analysis. IEEE Trans. Ind. Inform. 2017, 13, 877–887. [CrossRef]
18. Sosa-Holwerda, A.; Park, O.-H.; Albracht-Schulte, K.; Niraula, S.; Thompson, L.; Oldewage-Theron, W. The Role of Artificial

Intelligence in Nutrition Research: A Scoping Review. Nutrients 2024, 16, 2066. [CrossRef] [PubMed]
19. Heinrich, M.; Valeske, B.; Rabe, U. Efficient Detection of Defective Parts with Acoustic Resonance Testing Using Synthetic Training

Data. Appl. Sci. 2022, 12, 7648. [CrossRef]
20. Zhang, X.Y.; Shu, J.; Wu, C.H.; Zhou, L.-H.; Song, X.R. Island microgrid based on distributed photovoltaic generation. Power Syst.

Prot. Control 2014, 42, 55–61.
21. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting

approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]
22. Narushynska, O.; Teslyuk, V.; Doroshenko, A.; Arzubov, M. Data Sorting Influence on Short Text Manual Labeling Quality for

Hierarchical Classification. Big Data Cogn. Comput. 2024, 8, 41. [CrossRef]
23. Bureš, V.; Cabal, J.; Čech, P.; Mls, K.; Ponce, D. The Influence of Criteria Selection Method on Consistency of Pairwise Comparison.

Mathematics 2020, 8, 2200. [CrossRef]
24. Basheer Ahmed, M.I.; Zaghdoud, R.; Ahmed, M.S.; Sendi, R.; Alsharif, S.; Alabdulkarim, J.; Albin Saad, B.A.; Alsabt, R.; Rahman,

A.; Krishnasamy, G. A Real-Time Computer Vision Based Approach to Detection and Classification of Traffic Incidents. Big Data
Cogn. Comput. 2023, 7, 22. [CrossRef]

25. Krivulin, N.; Prinkov, A.; Gladkikh, I. Using Pairwise Comparisons to Determine Consumer Preferences in Hotel Selection.
Mathematics 2022, 10, 730. [CrossRef]

26. Huang, D.-H.; Huang, C.-F.; Lin, Y.-K. Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary
Vectors. Mathematics 2019, 7, 1115. [CrossRef]

https://doi.org/10.1016/j.ress.2023.109417
https://doi.org/10.1007/978-3-030-68821-9_1
https://doi.org/10.3390/sym9090176
https://doi.org/10.3390/a15070220
https://doi.org/10.1016/j.ress.2021.107448
https://doi.org/10.1016/j.camwa.2010.09.033
https://doi.org/10.1109/ICACCS.2016.7586397
https://doi.org/10.3390/sym16040398
https://doi.org/10.1016/j.ress.2024.110217
https://doi.org/10.3390/math11244889
https://doi.org/10.1016/j.ress.2021.107947
https://doi.org/10.1016/S0305-0548(01)00062-4
https://doi.org/10.1109/TR.2023.3244955
https://doi.org/10.1109/TII.2016.2620121
https://doi.org/10.3390/nu16132066
https://www.ncbi.nlm.nih.gov/pubmed/38999814
https://doi.org/10.3390/app12157648
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.3390/bdcc8040041
https://doi.org/10.3390/math8122200
https://doi.org/10.3390/bdcc7010022
https://doi.org/10.3390/math10050730
https://doi.org/10.3390/math7111115

Big Data Cogn. Comput. 2024, 8, 96 15 of 15

27. Dodevska, Z.; Radovanović, S.; Petrović, A.; Delibašić, B. When Fairness Meets Consistency in AHP Pairwise Comparisons.
Mathematics 2023, 11, 604. [CrossRef]

28. Cheon, J.; Son, J.; Ahn, Y. Economic and environmental factor-integrated optimal model for plastic-waste sorting. J. Ind. Eng.
Chem. 2024; in press. [CrossRef]

29. Qian, K.; Fachrizal, R.; Munkhammar, J.; Ebel, T.; Adam, R. Large-scale EV charging scheduling considering on-site PV generation
by combining an aggregated model and sorting-based methods. Sustain. Cities Soc. 2024, 107, 105453. [CrossRef]

30. Liu, T.; Chen, X.; Peng, Q.; Peng, J.; Meng, J. An enhanced sorting method for retired battery with feature selection and multiple
clustering. J. Energy Storage 2024, 87, 111422. [CrossRef]

31. Carbó-Dorca, R. On Prime Numbers Generation and Pairing. Int. J. Innov. Res. Sci. Eng. Stud. (IJIRSES) 2023, 3, 12–17.
32. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213.

[CrossRef]
33. Ramamoorthy, J.; Gupta, K.; Shashidhar, N.K.; Varol, C. Linux IoT Malware Variant Classification Using Binary Lifting and

Opcode Entropy. Electronics 2024, 13, 2381. [CrossRef]
34. Brown, T.A. Gene Cloning and DNA Analysis: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2020.
35. Laforgia, A.; Inchingolo, A.D.; Piras, F.; Colonna, V.; Giorgio, R.V.; Carone, C.; Rapone, B.; Malcangi, G.; Inchingolo, A.M.;

Inchingolo, F.; et al. Therapeutic Strategies and Genetic Implications for Periodontal Disease Management: A Systematic Review.
Int. J. Mol. Sci. 2024, 25, 7217. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math11030604
https://doi.org/10.1016/j.jiec.2024.04.045
https://doi.org/10.1016/j.scs.2024.105453
https://doi.org/10.1016/j.est.2024.111422
https://doi.org/10.1007/s101070100263
https://doi.org/10.3390/electronics13122381
https://doi.org/10.3390/ijms25137217
https://www.ncbi.nlm.nih.gov/pubmed/39000324

	Introduction
	Current Related Methods
	Pairwise Comparison Test
	Sequential Sort Method

	The Proposed Method
	Logarithmic Prime Number and Algorithm Description
	Pseudo-Code
	Time Complexity Analysis
	Advantages of the Proposed Algorithm

	Experimental Results
	Randomly Generated Test Problems
	Potential Applications and Practical Examples

	Conclusions
	References

